纳米碳化钨粉的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超细晶硬质合金具有高强度、高硬度的特性,被誉为“工业的牙齿”,在机械加工、电子、医疗、军工等领域有重要用途。纳米碳化钨是制造超细晶硬质合金的重要原料,其性能对超细晶硬质合金的性能有重要影响,纳米钨粉是制备纳米碳化钨和其他纳米/超细钨合金的重要原材料。本论文从钨精矿出发,研究制备了超细APT、WO_3、纳米钨粉,并进一步试制了纳米WC以及超细晶硬质合金,研究过程中采用XRD法测定物相及晶粒大小,BET测定表面积,换算得到粉末的粒度,用金相显微镜、SEM、TEM观测粉末微观形貌,成分分析法确定粉末总碳含量(Ct)、游碳含量(Cf),利用材料试验机、硬度计等研究了合金的力学性能。研究获得的主要结论如下:
     1.在钨冶金离子交换工艺产出的高峰液(WO_3200~280g/l)中加入专用药剂(药剂1#)进行处理,控制APT晶体的形核期和晶核生长期,通过改变控温方式、调整搅拌转速、控制结晶终点等措施,能够有效地控制了晶粒的形成、长大,获得了超细APT;采用专用药剂(药剂2#),能够实现超细APT的固液分离,获得的APT费氏粒度为1~10μm。
     2.用氢气还原氧化钨粉末制备W粉时,正交试验结果结果表明:影响晶粒度的次序为:还原温度>料层厚度>还原时间;较佳工艺为:还原温度T=650℃,料层厚度t=4mm,还原时间=60min。
     3.在推进式四管还原炉中用露点为-70℃的高纯氢气还原氧化钨粉末,采用特制舟皿,调整还原温度、装舟量、氢气流量等生产工艺参数,在最佳实验条件下制备得到的纳米钨粉BET比表面积>10 m~2/g(BET粒度约为30nm),指标在国内领先、达到国际先进水平。
     4.分别采用TEM、SEM、BET、XRD多种手段相结合,对所制备的纳米钨粉微观组织结果进行了表征,结果表明所制备的纳米钨粉颗粒尺寸约为30nm。钨粉颗粒形貌主要为片状多边形或短片状,部分接近与球状。
     5.采用所研制的纳米钨粉,在氢气保护下,1050℃碳化2小时获得的纳米碳化钨BET为3.53m~2/g,颗粒大小约为100nm。
     6.采用所研制的纳米碳化钨粉,在烧结温度为1360℃下制备的超细硬质合金其晶粒尺寸约0.34μm,硬度达到1600 kg/mm~2,断裂韧性10.32 MPa·m~(1/2)已经达到国际先进水平。
Ultra-fine cemented carbides, well known as "the teeth of industry", have been widely applied in many fields of industry such as machining, electron, medical treatment, war industry due to their high -strength and high-rigidity. Nanometer WC powders are the important raw materials of ultra-fine cemented carbides and nanometer W powders are the important raw materials of nanometer WC powders and nanometer / ultra-fine cemented carbides. In this thesis we used tungsten concentrate as the raw materials to produce ultra-fine ammonium paratungstate (APT), ultra-fine tungsten oxide(WO_3) and nanometer W powders. Further more we trial-produced nanometer WC powders and ultra-fine cemented carbides.
     The phase and grain size were exanmined by XRD, and the uniformity and microstructure of WC powders were investigated by SEM, TEM and BET. The total carbon (C_t) and free carbon (C_f) of ultra-fine / nanocys- talline powders were analysized by composition analysis instrument. Mechanaical properties were tested by material testing machine and hardness machine. The following results are obtained:
     1. Added special medicament (1#) in the high peak solution produced by tungsten metallurgy ion exchange to control the nucleation periods and growth periods of APT. By changing the mode of temperature control, the rotate speed of whisk and the end-point of solidification, we can obtain ultra-fine APT. By adding special medicament (2#) we can achieve solid-liquid separation to obtain ultra-fine APT, which has a Fess particle size about 1~10um.
     2. During the preparation of nanometer W powders, the orthogonal experiment results showed: the best process is reducing tempeture 650℃, materieal thickness 4 mm, time 1 hour. The factors affecting grain size in order is: reducing tempeture→material thickness→time.
     3. During the preparation of nanometer W powders, tungsten oxide powders reduced by hydrogen in a special boat. The influence of tempeture, material weight and hydrogen flux on preparation process was studied. BET of the obtained nanometer W powders is above 10m~2/g (BET grain size is 30nm).
     4. The micro-structre of nanopowder was characterized by TEM, SEM, BET and XRD technologies. It has been found that the size of the powder is about 30nm in average. The grain morphology mainly is sheet-polygon or short-flake. And some grains can almost spherical.
     5. Using the nanometer W powders, we can obtain nanometer WC powders in the condition of 1050℃carbonized 2 hours in hydrogen atmosphere. BET of the obtained nanometer WC powders is about 3.53m~2/g, grain size is around 100 nm.
     6. Using the nanometer WC powders prepared ultra-fine cementedcarbide in 1360℃.The diameter size of the obtained cementedcarbide is about 0.34um.The hardness and fracture toughness areabout 1600 kg/mm~2 and 10.32 MPa·m~(1/2).
引文
[1]陈世瑞.钨及仲钨酸铵.江西冶金,1997,10(17):57-58
    [2]刘光俊.近年来钨铝冶炼技术发展评述.全国有色金属冶炼经验交流会论文,1989.5
    [3]普崇恩.提高钨冶炼金属回收率的研究.稀有金属,1988,3(7):178一191
    [4]国外硬质合金.冶金工业出版社,1976,115一125
    [5]全国有色金属加工行业概况(硬质合金分册).中国有色金属工业总公司生产部,1988,189-211
    [6]邸毓莹,李景凡,张玲,等.热还原仲钨酸铵制取铵钨青铜[J].稀有金属,1993,2(2):156
    [7]莫似浩.钨冶炼的原理和工艺[M].北京:冶金工业出版社,1984:12
    [8]Improvment in or relating to methods of preparing ammonium paratunstate IS].GB1132156.1968
    [9]林振淳.仲钨酸铵的生产与市场[J].中国钨业,1999(5):11
    [10]Richard A Scheithauer,Clarence D Vanderpool,Michacl J Miller.Method for producing ammonium paratungstate[P].USA,Invention,US4623534.1986
    [11]Bartha L,Gyarmati G,Kiss B A,et al.Complex studies on intermediate decomposition products of ammonium paratungstate[J].Acta Chim Sci Hum,1979,101(1/2):t27
    [12]Basu A K,Sale F R.Characterization of various commercial forms of ammonium paretungstate powder[J].J Mater Sci,1975,(10):571
    [13]Hempel K,Saradshow M.L.Slichkeit and stabile kristallhydrate in sytem ammoniumpara-wolframatwasser[J].Kristall Technik,1967,3:437
    [14]Leo W Beckstead,Arvada Colo,Tom C Kearns,et al.Purification of APT[P].USA,Invention,US4963336.1990
    [15]黄成通.热离解法制取高纯仲钨酸铵[J].稀有金属与硬质合金,1989,98(9):18
    [16]Ogata Takashi.Production of highly pure ammonium paratungstate crystal[P].Japan,Invention,JP6056427.1994
    [17]A·K·Basu etal.J·Materials Science,1987,7(12)1115-1124
    [18]李沐山.八十年代硬质合金技术进展.硬质合金编辑部,1992,32-44
    [19]C.N·J·Wagner,E·yang,M·S·Boldrick.The Structure of Nano-crystalline Fe,Wand NiAl Powders Prepared by High-energyBall-milling[J].Nano-stuct Mater.1996,(7):1-11
    [20]柴永新.纳米金属钨粉制备方法的研究进展.江西冶金,2005,10(25):38
    [21]Moriysohi Y.The Preparation and Characterization of Ultrafine Tungsten Powder[J].Journal of Materials Science Letter,1997,16:347-349
    [22]王延玲,张廷安,杨欢,等.自蔓延高温还原法制备钨粉的研究[J].稀有金属材料与工程,2001,30(4):310-313
    [23]廖寄乔,黄志锋,吕海波,等.不同氧化钨氢还原制取超细钨粉[J].中南工业大学学报,2000,31(1):337-348
    [24]Schubert W.D,LassnerE,Production and Characterization of Hydrogen reduced Submicron Tungsten Powders(part1)[J].Int.Journal of RefractoryMetals and Hard Materials,1991,10:133-141
    [25]LassnerE,SchubertWD.Tungsten BlueOxide[J].Int.Journalof Refractory Metals and Hard Materials,1995,13(1-3):111-117
    [26]TangXinhe,CaoRongjiang.New Processes for the Production of Blue Tungsten Oxide and Superfine Tungsten Powder[J].W-Ti-RE-Sb88International Conference Proceedings,Changsha China,1988,(1):162-167
    [27]邹志强,SchubertWD,Lux B.胺钨盐的性质及其在制取亚微米级钨粉方面的应用[J].中南矿冶学院学报,1990,21(6):622-631
    [28]刘辉.用ART制造超细钨粉及碳化钨粉的工艺试验[J].稀有金属与硬质合金,1995,(121):8-10
    [29]Fang Zhigang,Eason JimmyW.Study of Nanostructured WC-Co Composites[J].Int,JournalofRefractoryMetals andHardMaterials,1995,13(5):297-30
    [30]李在元,宫泮伟,翟玉春,等.封闭循环氢还原法制备纳米钨粉[J].硬质合金,2004,21(1):18-20
    [31]于杰栋,吕天河等.国外硬质合金的技术发展趋势.上海金属,1998,4(3):63
    [32]Prakash L J.Application of fine-grained tungsten carbide based cemented carbides[J].Inter J of Refractory& Hard Materials,1995,13(5):257-264
    [33]Hogwood M C,Bentley R.Wungsten Refractory Metal-1994,Proc.Int.Conf.2nd[C].New Jersey:MetalPowder International Federation,1995:37-45
    [34]张玉华,张纪生.超细硬质合金综述.粉末冶金技术,1995,3(13):216-222
    [35]东京钨公司.碳化钨粉末生产.日本专利:325306A,1991-11-11
    [36]钟海云,李荐,等.纳米碳化钨粉的研究及应用及开发动态.稀有金属与硬质合金:2001,145:44-48
    [37]《国外硬质合金》编写组.国外硬质合金,冶金工业出版社,1976
    [38]李有观.国外硬质合金技术发展的主要特点.世界有色金属,2002,10(2):12-17
    [39]柳林,李兵,丁星兆,等.硬质合金的制备.科学通报,1994,13(3):32-36
    [40]B.H.Rear and L.E.Mccandlish.Nanostructure dw base materials Synthesis,processing and properties,Journalofadvanced Materials,1993,25(1):205-221
    [41]RhaidarorV,etal.In:BilldsteinHandEckReds.13th International Plansee Siminar'93,Proceedings.Vol.4,Warrens:RWF,Werbegessellschaft m.b.H.,1993:306
    [42]Kameyame T.etal.Study of the Japan Society of Powder 1.Power Metallurg(Japan),1991,38(2):109-113
    [43]国际卡比泰克工业公司.生产碳化钨的方法[P].cn.1137415.2,2003.2.12
    [45]Li Q Z,Zhang H F,Wang Y Q etal.Nanostructured materials,1998,10:179-183
    [44]Y.T.Zhou and A.Manthiram,J.Am.Ceram.Soc,1994:77
    [46]L.E.McCandlish,B.H.Kear,B.K.Kim.Mater.Sci.Eng.1990,6
    [47]Zhou Zhiqang.In:Billdstein H and Eck Reds.13th International Plansee Siminar' 93,Proceedings.Vol.4,Innsbuck:Vertangsanstalt Tyrolia,1989,79
    [48]彭子飞,张立德.尺寸可控纳米级碳化钨的z制备方法.[P].cn95112812.8,1995.8.25
    [49]李华瑞主编.X射线衍射分析使用方法.北京:冶金工业出版社,1994
    [50]株洲硬质合金厂.硬质合金的检测与分析.北京:冶金工业出版社,1972
    [51]廖为鑫,解子章.粉末冶金过程热力学分析[M]北京:冶金工业出版社.1984:75-80,132-139
    [52]Leclercq,L.Provost,M.Pastor,etal.Catalytic properties of transition metal carbides[J]Journal of Catalysis.,1989,117:371-383
    [53]L.Gao and B.H.Kear,Low temperature carburization of high surface area tungsten powders.Nanostructured Materials.1995,5:555-569
    [54]曾文明,陈启元,李元高等.仲钨酸铵热分解动力学研究.稀有金属,1994,18(1):9-13
    [55]陈绍衣.紫色氧化钨制取钨粉.中南矿业学院学报,1994,25(5):606-610
    [56]傅小明,吴晓东.三氧化钨还原过程相成分探讨.稀有金属与硬质合金,2003,31(4)7-10
    [57]黄忠耿.蓝钨氢还原制取钨粉.稀有金属与硬质合金,1997,128:57-60
    [58]GerhardGille,J.Bredthauer,B.Gries,etal.Advancedand new grades of WC and binder powder theirproperties and applicationInternational Journal of Refractory Metals & Hard Materials,2000,18(87):102
    [59]Coren-Muginstein G R.Sintering Study of Nanocrysta]line Tungsten Carbide Powders.Nanostructured Materials,1998
    [60]刘舜尧,张春友.纳米硬质合金开发与应用.矿冶工程,2000,20(1):70-72
    [61]虞觉奇,易文质,陈邦迪等.二元合金状态图集.上海科学技术出版社,1987
    [62]曾庆衡主编。物理化学.湖南:中南工业大学出版社
    [63]黄培云主编.粉末冶金原理[M].北京:冶金工业出版社,1982:53-55
    [64]黄培云主编.粉末冶金原理[M].北京:冶金工业出版社,1982:266-268
    [65]刘兵海,张跃,欧阳世翕.超细晶粒wC-Co硬质合金的收缩与晶粒长大.华东理工大学学报,1999,25(5):494-498
    [66]Schubert W D,Bock A,Lux B.General aspects and limits of conventional and ultralfine WC powder manufacture and hard metal production.Int Jof Re fra Metals & Hard Mater,1995,13:281-296
    [67]纳米复合WC-Co粉末的热压烧结.武汉工业大学硕士论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700