新型阴离子交换膜高酸多杂质元素含钒溶液分离纯化工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强酸浸出作业因其钒回收率高、原料适应性广等特点而广泛应用于石煤提钒工艺。但强酸浸出机制下,固然钒浸出率大幅度提高,亦造成多种杂质元素如Fe、Al、Mg、K、Na等大量进入酸浸液,且残余氢离子浓度较高,从而形成高酸多杂质含钒溶液。此类含钒溶液具有杂质离子种类多、浓度高,pH值极低,钒浓度不能直接沉钒等特征,其杂质离子的去除、酸的回收和钒的富集是强酸提钒工艺的关键环节。
     本文系统研究了高酸多杂质含钒溶液的膜分离预处理方法、对比酸性体系中钒及各杂质离子的离子交换及萃取行为特性,结合钒及杂质离子在离子交换及萃取过程中的热力学和动力学分析,提出膜分离回收酸—溶剂萃取去除杂质离子富集钒的高酸多杂质含钒溶液分离纯化工艺;研制出酸分离及钒截留效果良好的新型阴离子交换膜,并通过红外光谱、核磁共振等检测手段对阴离子交换膜进行了表征。
     湖北某地石煤经焙烧—硫酸浸出后,得pH为-1.08的多杂质酸浸液,利用市售DF120型阴离子交换膜对该高酸多杂质酸浸液进行预处理以分离回收硫酸。研究表明:在料液流速为0.21×10~(-3)m~3/(h·m~2),水料流速比为1.1~1.3的条件下,硫酸的回收率可达84%,钒、铝和铁的截留率分别为93%、92%和85%,证实阴离子交换膜预处理高浓度酸浸液具有酸回收率高和钒的截留效果良好的特点。阴离子交换膜预处理酸浸液的过程中,钒、铝和铁离子的截留率随料液流速的增加而增加,随水料流速比的增加而减小;硫酸回收率和金属截留率(Ⅴ,Al和Fe)均随金属离子浓度的增加而增加。处理后酸浸液的pH值由-1.08升至0.8,满足后续净化富集要求。但DF120型阴离子交换膜在长时间使用后易出现水反渗透现象。
     对经DF120型阴离子交换膜预处理后pH值升至0.8的含钒酸浸液进行离子交换和溶剂萃取的净化富集对比研究。离子交换试验结果表明:ZGA414树脂具有最优的吸附Ⅴ(Ⅴ)的性能,而树脂对Ⅴ(Ⅳ)的吸附能力较低;酸浸液中Fe(Ⅲ)杂质对树脂吸附Ⅴ(Ⅴ)的负面影响最为显著,Fe(Ⅲ)会导致树脂中毒;其他杂质离子如Al、Mg和K对树脂吸附Ⅴ(Ⅴ)无明显影响。ZGA414树脂吸附Ⅴ(Ⅴ)的热力学研究结果表明Ⅴ(Ⅴ)在树脂上的吸附过程是吸热过程,符合Freundlich等温吸附方程,吸附热力学参数△H=3.97kJ/mol,△S=47.83J/(mol/K),△G298.15=-10.29kJ/mol;ZGA414树脂对Ⅴ(Ⅴ)的吸附动力学研究表明该过程符合拟二级吸附交换动力学过程,pH为2.0时Ⅴ(Ⅴ)理论吸附量为217.39mg/g,吸附速率常数k298.15=0.0011g/(mg·h),同时该吸附过程主要受颗粒扩散控制。萃取试验结果表明:在15%D2EHPA为萃取剂、5%TBP为相调节剂、O/A为1:1条件下,Ⅴ(Ⅳ)的萃取率显著高于Ⅴ(Ⅴ),而Fe(Ⅲ)浓度大于5g/L时将严重影响Ⅴ(Ⅳ)的萃取;Fe(Ⅱ)、Al、Mg、Na和K等杂质离子对钒的萃取影响较小。该体系下Ⅴ(Ⅳ)的萃取热力学表明萃取反应的表观平衡常数K=0.9152,△H=9.367kJ/mol,△S=0.031J/(mol/K),△G298.15=0.22kJ/mol;Ⅴ(Ⅳ)的萃取机理研究表明D2EHPA对Ⅴ(Ⅳ)的萃取在溶液pH较低(<1.0)时生成VOR_2(HR)2,而在高pH值(>1.5)条件下生成VOR2;在pH值为1.5时,硫酸介质中Ⅴ(Ⅳ)对Fe(Ⅲ)和对Fe(Ⅱ)的分离系数分别为1.6和102,D2EHPA对三种离子萃取顺序为:Ⅴ(Ⅳ)>Fe(Ⅲ)>Fe(Ⅱ)。通过离子交换和溶剂萃取的净化富集对比研究确定:溶剂萃取法更适合于酸性体系多杂质含钒溶液的杂质离子去除和钒富集,实际含钒酸浸液进行五级萃取八级反萃试验,钒回收率可达99%。为克服市售DF120型阴离子交换膜易出现水反渗透现象的缺陷,采用聚苯醚(PPO)
     为基底膜材料,以PPO:Br2<1.42质量比加入溴水25°C反应3h,再150°C溴化改性8h后,PPO苯环及苯甲基位置被溴化总量为96%,通过控制PPO苯环和苯甲基位置的溴化取代度控制成膜的亲水性。采用平板刮膜的制膜方式,制得均质无孔溴化聚苯醚(BPPO)基膜;BPPO基膜与氨水交联后,再用三甲胺和乙二胺混合溶液(TMA:EDA=2:1)于45°C左右胺化16h,研制出机械性能良好的新型阴离子交换膜。通过静态扩散渗析试验,确定新型阴离子交换膜的酸分离及钒截留效果良好,同时膜的水反渗透现象得到缓解;通过红外光谱、核磁共振、电镜扫描以及接触角测定等手段对该阴离子交换膜进行表征,表明膜制备过程中溴化反应是影响后续胺化反应及阴离子交换膜制备效果的关键步骤,同时适当提高聚苯醚苯环位置溴化取代度和在一定范围内提高膜交联度可降低膜的水反渗透现象。
The sulfuric acid leaching is broadly employed in vanadium extraction from stone coal, which is characterized by high vanadium recovery and wide adaptability for raw ore. However, as the vanadium recovery increases significantly with this strong acid leaching method, many impurities including Fe, Al, Mg, K, Na etc. are leached with vanadium at the same time. And also the residual H+concentration is too high in acid leaching solution. The above vanadium solution is characterized by variety of impurities and their high content, super low pH value and low vanadium concentration for precipitation recovery. So the key steps for vanadium recovery after this strong acid leaching process are separating impurities, recovering acid and concentrating vanadium.
     The methods for pre-treating acid leaching solution with variety of impurities are discussed. The extraction and ion exchange behaviors of vanadium and various impurities in acid system are investigated contrastively. The extraction and ion exchange of thermodynamics and kinetics are theoretically analyzed. The suitable separation and purification process for vanadium extraction from above acid leaching liquid is determined, which is vanadium acid solution-sulfuric acid separated by membrane-purified by solvent extraction-vanadium precipitation. And a new anion exchange membrane (AEM) was made for high acid recovery and vanadium rejection. The Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear magnetic resonance (NMR) are employed for characterization of its function groups.
     The acid leaching solution with variety of impurities is obtained by roasting-sulfuric acid leaching process to the stone coal from Hubei area, of which the pH is-1.08. The commercial DF120AEM is used to recover sulfuric acid as a pre-treatment method from above acid solution. The results show that sulfuric acid recovery can reach to84%, and vanadium, iron and aluminum rejection can attain93%,92%and85%with the feed flow rate of0.21×10-3m3/(h·m2), flow rate ratio of water and feed of1.1-1.3. The AEM is proved to be characterized by high recovery of acid and well V rejection for pre-treating the strong acid solution. The rejection of V, Al and Fe ions are found to increase with the increase of feed flow rate and the decrease of the flow rate ratio of water to feed. Both the acid recovery and metal ions (V, Al and Fe) rejections are increased by raising the concentrations of these ions. The pH value of treated solution increases from-1.08to0.8, which meets the requirement of the next separation and concentration process. But the DF120AEM has a serious water osmosis problem after long term use.
     The comparison study of ion exchange and solvent extraction is conducted after the vanadium acid leaching solution is pre-treated by DF120AEM, where the pH increases to0.8. Ion exchange test results show that ZGA414resin has the optimal adsorption performance of V(V), and the resin has the lower adsorption capacity of V(IV). Fe(III) has the most serious negative influence on V(V) adsorption in the acid leaching solution, which leads to resin poisoning. Other impurity ions such as Al, Mg and K have no obvious effect on V(V) absorption. Thermodynamic research results show that the V(V) absorption on the ZGA414resin is endothermic process, which is in accordance with the Freundlich isothermal adsorption equation. The adsorption thermodynamics parameter ΔH=3.97kJ/mol, ΔS=47.83J/(mol/K), ΔG298.15=-10.29kJ/mol. Kinetics study of V(V) adsorption on ZGA414resin shows that the process is in line with the simulative secondary exchange kinetics of adsorption process. The theory maximum V(V) adsorption content is217.39mg/g at pH value of2.0, and the adsorption rate constant k298.15=0.0011g/(mg-h). At the same time, the adsorption process is mainly controlled by particle diffusion. Extraction test results show that the V(IV) extraction ratio is significantly higher than that of V(V) under the condition of the O/A1:1with15%D2EHPA as extraction agent and5%TBP as the phase modifier. The effect of Fe (II) on the V(IV) extraction is not obvious, but the V(IV) extraction is seriously affected while Fe(III) concentration is higher than5g/L. Al, Mg, Na and K have no obvious negative effect on vanadium extraction. V(IV) thermodynamics study in this system shows that the extraction reaction apparent equilibrium constant K=0.9152, ΔH=9.367kJ/mol, ΔS=0.031J/(mol/K), ΔG298.15=0.22kJ/mol. The extraction mechanism of V(IV) with D2EHPA studies have shown that VOR2(HR)2compound generated when pH value is low (<1.0), and VOR2compound generated under the condition of high pH value (>1.5). Separation factor of V(IV) to Fe(III) and Fe(II) in sulfuric acid medium is1.6and102respectively at pH value of1.5. Sequence of three kinds of ion extractions with D2EHPA is:V(IV)> Fe(III)> Fe(II). So solvent extraction is a more suitable separation and purification technology to separate impurities and concentrate vanadium from acid leaching solution with variety of impurities in this study. The vanadium recovery can reach to99%by a five-stage extraction and a eight-stage stripping process from the real acid leaching solution.
     The water-osmosis problem is easily found when the commercial DF120AEM is used. For overcoming this defect, the polyphenylene oxide (PPO) is used as a base membrane material. The bromination of PPO is operated with weight ratio of PPO:Br2<1.42first at25℃for3h and then at150℃for8h, and the total bromination degree of aryl and benzyl position of PPO is96%. The hydrophility of membrane can be controlled by changing the bromination degree in aryl and benzyl position of PPO. The homogeneous and nonporous brominated PPO (BPPO) is prepared by using casting film forming method. The base BPPO is cross-linked by ammonia solution and aminated with trimethylamine(TMA) and ethylenediamine(EDA) mixed solution (TMA:EDA=2:1, v/v) for16h at45℃. The novel AEM with well mechanical property is fabricated. Static diffusion dialysis experiment with this new membrane is carried out, the acid recovery and vanadium rejection is good and the water-osmosis problem is solved. FTIR, NMR, SEM and contact angle tests are used for this AEM characterization. It is certified that the film bromination reaction significantly is the key step for the followed amination reaction and the properties of the final film in the whole preparation process. The water-osmosis problem can be solved by properly increasing aryl bromination degree and amination cross-linking degree within a certain degree.
引文
[1]Zhang Y M, Bao S X, Liu T, et al. The technology of extracting vanadium from stone coal in China: History, current status and future prospects [J]. Hydrometallurgy,2011,109(1-2):116-124.
    [2]包申旭,张一敏,刘涛,等.全球钒的生产、消费及市场分析[J].中国矿业,2009,18(7):12-15.
    [3]Moskalyk R R, Alfantazi A M. Processing of vanadium:a review [J]. Minerals Engineering,2003,16:793-805.
    [4]He D S, Feng Q M, Zhang G F, et al. An environmentally-friendly technology of vanadium extraction from stone coal [J]. Minerals Engineering,2007,20:1184-1186.
    [5]Wei C, Li M T, Fan G. The study on main factors effect of extracting vanadium from stone-coal containing vanadium by acid leaching with oxygen pressure[J]. Rare Metals,2007,31:28-31.
    [6]He D S, Feng Q M, Zhang G F, et al. Study on leaching vanadium from roasted residue of stone coal[J]. Mineral and Metallurgical Process,2008,25(4):181-184.
    [7]Zhou X Y, Li C L, Li J, et al. Leaching of vanadium from carbonaceous shale [J]. Hydrometallurgy,2009,99:97-99.
    [8]Wang M Y, Wang X W, Zhang L F, et al. Effect of vanadium occurrence state on the choice of extracting vanadium technology from stone coal[J]. Rare Metals,2008,27(2):112-115.
    [9]Wang M Y, Xiao L S, Li Q Q, et al. Leaching of vanadium from stone coal with sulfuric acid[J]. Rare Metals,2009,28(1):1-4.
    [10]Zhu X B, Zhang Y M, Huang J. A kinetics study of multi-stage counter-current circulation acid leaching of vanadium from stone coal[J]. International Journal of Mineral Processing,2012,114-117:1-6.
    [11]Zhu Y G, Zhang G F, Feng Q M, et al. Acid leaching of vanadium from roasted residue of stone coal[J]. Transactions of Nonferrous Metals Society of China,2010,20:s107-s111.
    [12]Chen X Y, Lan X Z, Zhang Q L, et al. Leaching vanadium by high concentration sulfuric acid from stone coal[J]. Transactions of Nonferrous Metals Society of China,2010,20:123-126.
    [13]Holloway P C, Etsell T H. Process for the complete utilization of oil sands fly ash[J]. Canadian Metallurgical Quarterly.2006,45(1):25-32.
    [14]Li M T, Wei C, Fan G, et al. Acid leaching of black shale for the extraction of vanadium [J]. International Journal of Mineral Processing,2010,95:62-67'.
    [15]Li M T, Wei C, Fan G, et al. Pressure acid leaching of black shale for extraction of vanadium [J]. Transactions of Nonferrous Metals Society of China,2010,20:s112-s117.
    [16]Liu Y H, Yang C, Li P Y, et al. A new process of extracting vanadium from stone coal[J]. International. Journal of Mineral, Metallurgical and Material,2010,17(4):381-388.
    [17]Vitolo S, Seggiani M. Recovery of vanadium from heavy oil and orimulsion fly ash[J]. Hydrometallurgy,2000,57(1/2):141-149.
    [18]Wang M Y, Wang X W. Research status and prospect of vanadium leaching process from stone coal [J]. Chinese Journal of Rare Metals.2010,34(1):90-97.
    [19]马荣骏著.溶剂萃取在湿法冶金中的应用[M].北京:冶金工业出版社,1979,99-125.
    [20]杨佼庸,刘大星著.萃取[M].北京:冶金工业出版社,1988,7-13.
    [21]朱屯,李洲,等著.溶剂萃取[M].北京:化学工业出版社,2008,1-17.
    [22]朱军,王毅,李欣,等.硫磷混酸体系中钒的萃取实验研究[J].稀有金属,2011,35(1):96-100.
    [23]陈庆根.溶剂萃取法从石煤酸浸液中提取V2O5的新工艺研究[J].矿产综合利用,2010,(1):19-22.
    [24]李桂英,戴子林,唐谦.水相pH值和有机相配比对从石煤酸浸液中萃取钒影响的研究[J].材料研究与应用,2010,4(2):142-144.
    [25]李尚勇,谢刚,俞小花.从含钒浸出液中萃取钒的研究现状[J].有色金属,2011,63(1):100-104.
    [26]Li X B, Wei C, Deng Z G, et al. Selective solvent extraction of vanadium over iron from a stone coal/black shale acid leach solution by D2EHPA/TBP[J]. Hydrometallurgy,2011,105(3-4):359-363.
    [27]Li X B, Wei C, Wu J, et al. Co-extraction and selective stripping of vanadium (Ⅳ) and molybdenum (Ⅵ) from sulphuric acid solution using2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester [J]. Separation and Purification Technology,2012,86:64-69.
    [28]Zhang P W, Inoue K, Yoshizuka K, et al. Extraction and selective stripping of molybdenum (Ⅵ) and vanadium (Ⅳ) from sulfuric acid solution containing aluminum (Ⅲ), cobalt (Ⅱ), nickel (Ⅱ) and iron (Ⅲ) by LⅨ63in Exxsol D80[J]. Hydrometallurgy,1996,41(1):45-53.
    [29]Bal Y, Bal K E, Cote G, et al. Characterization of the solid third phases that precipitate from the organic solutions of Aliquat336after extraction of molybdenum (Ⅵ) and vanadium (Ⅴ)[J]. Hydrometallurgy,2004,75(1-4):123-134.
    [30]Lozano L J, Godinez C. Comparative study of solvent extraction of vanadium from sulphate solutions by primene81R and alamine336[J]. Minerals Engineering,2003,16(3):291-294.
    [31]Chagnes A, Rager M N, Courtaud B, et al. Speciation of vanadium (Ⅴ) extracted from acidic sulfate media by trioctylamine in n-dodecane modified with1-tridecanol[J]. Hydrometallurgy,2010,104(1):20-24.
    [32]鲁兆伶.用酸法从石煤中提取五氧化二钒的试验研究与工业实践[J].湿法冶金,2002,21(4):175-183.
    [33]刘公召,隋智通.萃取法从废催化剂中提取的V2O5研究[J].矿产资源综合利用,2001,6:41-44.
    [34]胡建锋,朱云.P204萃取硫酸体系中钒的性能研究[J].稀有金属,2007,31(3):367-369.
    [35]古国榜,程飞,杨新荣,等P204-PSO协同萃取钒(Ⅴ)的机理[J].华南理工大学学报(自然科学版),1997,25(2):85-87.
    [36]Coleman C F, Brown K B, Moore J G, et al. Solvent extraction with alkyl amines [J]. Industrial and Engineering Chemistry,1958,50:1756-1762.
    [37]Sato T, Nakamura T, Kawamura M. The extraction of vanadium (Ⅳ) from hydrochloric acid solutions by di-(2-ethylhexyl)-phosphoric acid[J]. Journal of Inorganic and Nuclear Chemistry,1978,40:853-856.
    [38]Ipinmoroti K O, Hughes M A. The mechanism of vanadium (Ⅳ) extraction in a chemical kinetic controlled regime[J]. Hydrometallurgy,1990,24:255-262.
    [39]Tangri S K, Suri A K, Gupta C K. Development of solvent extraction processes for production of high purity oxides of molybdenum, tungsten and vanadium [J]. Transactions of the Indian Institute of Metals,51(1):27-39.
    [40]李晓健.酸浸-萃取工艺在石煤提钒工业上的设计与应用[J].湖南有色金属,2000,16(3):21-23.
    [41]Deng Z G, Wei C, Fan G, et al. Extracting vanadium from stone-coal by oxygen pressure acid leaching and solvent extraction [J]. Transactions of Nonferrous Metals Society of China,2010,20:s118-s122.
    [42]邓志敢,魏昶,李昱廷,等.石煤氧压酸浸液萃钒除铁工艺研究[J].稀有金属,2009,33(2):290-292.
    [43]Navarroa R, Guzmana J, Saucedoa I, et al. Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes [J]. Waste Management,2007,27(3):425-438.
    [44]魏昶,李兴彬,邓志敢,等.P204从石煤浸出液中萃取钒及萃余废水处理研究[J].稀有金属,2010,34(3):400-405.
    [45]陈兴龙,朱火清,吴海鹰,等.皂化P204微乳液膜萃取分离钒铁的研究[J].材料研究与应用,2008,2(2):137-140.
    [46]曹耀华,高照国,刘红召,等.萃取法从含钒酸浸液中提取钒的研究[J].河南化工,2007,24(6):20-23.
    [47]曾平,魏红梅,苏国钧,等.皂化P204萃取剂的微乳状液及其对钒(Ⅳ)的萃取机理研究[J].湘潭大学自然科学学报,1995,17(4):64-65.
    [48]Li X B, Wei C, WuJ, et al. Thermodynamics and mechanism of vanadium(IV) extraction from sulphate medium with D2EHPA, EHEHPA and CYANEX272in kerosene [J]. Transactions of Nonferrous Metals Society of China,2012,22:461-466.
    [49]刘玉国,安悦,付晓东,等.P538萃取钒(Ⅳ)的研究[J].光谱实验室,1998,15(5):32-34.
    [50]张云,范必威,彭达平,等.从石煤酸浸液中萃取钒的工艺研究[J].成都理工学院学报,2001,28(1):107-110.
    [51]陈金清,朱志全,陈传林.W/O微乳液对强碱体系中钒的萃取[J].有色金属(冶炼部分),2010(4):29-32.
    [52]刘波,冯光熙,黄祥玉,等.用N-263从钒溶液中回收钒[J].化学研究与应用,2003,15(1):54-57.
    [53]曾平,王桂清.N1923盐萃取V(Ⅳ)的机理及其光谱研究[J].光谱实验室,1998,15(5):32-34.
    [54]陶祖贻.91年国际离子交换会议简介[J].离子交换与吸附,1992,8(4):376-378.
    [55]姜志新.离子交换动力学及其应用(上)[J].离子交换与吸附,1989,5(1):54-73.
    [56]钱庭宝.离子交换剂应用技术[M].天津:天津科学技术出版社,1984,7-19.
    [57]马荣骏.离子交换在湿法冶金中的应用[M].北京:冶金工业出版社,1991,35-35,78-78.
    [58]王方.离子交换树脂标准手册[M].(第6版),北京:中国标准出版社,2003,348-360.
    [59]姜志新,竟清,宋正孝.离子交换分离工程[M].天津:天津大学出版社,1992,77-79.
    [60]王方,凌达仁,黄文强.国际通用离子交换技术手册[M].辽宁:科学技术文献出版社,2000,347-624.
    [61]赵坤.离子交换树脂对钒(V)离子的吸附行为及其应用[D].长沙:中南大学,2009,1-10.
    [62]Huang J W, Su P, Wu W W, et al. Concentration and separation of vanadium from alkaline media by strong alkaline anion-exchange resin717[J]. Rare Metals2010,5:439-443.
    [63]康兴东,张一敏,黄晶,等.石煤提钒离子交换工艺的研究[J].矿产保护与利用,2008,4:34-38.
    [64]张华丽,张一敏,黄晶,等.石煤提钒离子交换树脂解吸试验研究[J].矿冶工程,2009,8(4):26-29.
    [65]Hu J, Wang X W, Xiao L S, Song S R, et al. Removal of vanadium from molybdate solution by ion exchange[J]. Hydrometallurgy,2009,95:203-206.
    [66]Wang X W, Wang M Y, Shi L H, et al. Recovery of vanadium during ammonium molybdate production using ion exchange [J]. Hydrometallurgy,2010,104:317-321.
    [67]Chen L, Liu F Q, Li D B. Precipitation of crystallized hydrated iron(III) vanadate from industrial vanadium leaching solution [J]. Hydrometallurgy,2011,105:229-233.
    [68]Zhou X J, Wei C, Li M T, et al. Thermodynamics of vanadium-sulfur-water systems at298K[J]. Hydrometallurgy,2011,106:104-112.
    [69]陶祖贻.四种常用的离子交换动力学模型及速度方程[J].离子交换与吸附,1990,6(3):2-12.
    [70]邓庆云,刘松英.石煤钠化焙烧、酸浸、离子交换新工艺研究[J].稀有金属与硬质合金,1993,(4):27-33.
    [71]肖新望,刘绍书,熊平.用树脂矿浆法从石煤中提取钒[J].湿法冶金,2007,26(2):84-87.
    [72]张清明,艾南山,徐帅,等.含钒废水的处理现状及发展趋势[J].科技情报开发与经济,2007,17(2):142-143.
    [73]宋阜,朱宾权.离子交换法分离富集钨酸钠溶液中的钒[J].稀有金属与硬质合金,2006,34(3):5-7.
    [74]郝喜才,胡斌杰,邱永宽.离子交换法回收废钒催化剂中钒的研究[J].无机盐工业,2007,39(2):52-54.
    [75]王斌.石煤浸出液离子交换法提钒的研究[J].钢铁钒钛,2007,28(1):22-25.
    [76]郝喜才,胡斌杰,邱永宽.离子交换法回收废钒催化剂中钒的研究[J].2007,39(2):52-54.
    [77]陈晓峰,黄箫,张宇.影响离子交换树脂使用寿命因素的探讨[J].炼油与化工,2003,3(14):17-19.
    [78]师亚茹,李璐.树脂再生技术新探讨[J].医药工程设计杂志,2004,25(1):22-24.
    [79]付自碧,张林,张涛.含钒浸出液离子交换余液循环试验[J].钢铁钒钛,2009,30(3):21-25.
    [80]Zeng L, Li Q G, Xiao L S. Extraction of vanadium from the leach solution of stone coal using ion exchange resin [J]. Hydrometallurgy,2009,97:194-197.
    [81]Zeng L, Li Q G, Xiao L S, et al. A study of the vanadium species in an acid leach solution of stone coal using ion exchange resin [J]. Hydrometallurgy,2010,105:176-178.
    [82]Zeng L, Cheng C Y. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts Part Ⅱ:Separation and purification[J]. Hydrometallurgy,2009,98:10-20.
    [83]曾理,李青刚,肖连生.离子交换法从石煤含钒浸出液中提钒的研究[J].稀有金属,2007,31(3):362-366.
    [84]曾理,肖连生,李青刚,等.离子交换法从钼酸铵溶液中分离钼钒的研究[J].稀有金属与硬质合金,2006,34(2):1-4.
    [85]Zeng L, Li Q G, Xiao L S. Extraction of vanadium from vanadiferous leaching liquor of rock-coal by ion-exchange[J]. Chinese Journal of Rare Metals,2007,31(3):362-366.
    [86]Li Q G, Zeng L, Xiao L S, et al. Completely removing vanadium from ammonium molybdate solution using chelating ion exchange resins [J]. Hydrometallurgy,2009,98:287-290.
    [87]李青刚,曾理,艾馨鹏,等.一种弱碱性阴离子树脂对石煤酸浸液中钒的吸附形态研究[J].稀有金属,2007,31:64-68.
    [88]Soldi T, Pesavwnto M, Alberti G. Separation of vanadium (V) and (IV) by sorption oil an iminodiacetic chelating resin[J]. Analytical Chemical Acta,1996,323(1-3):27-37.
    [89]张云,范必威,林海玲,等.D290树脂从石煤酸浸液中吸附钒的工艺[J].矿物岩石,2000,20(4):95-98.
    [90]常娜,顾兆林,李云.石煤提钒离子交换工艺研究[J].无机盐工业,2007,39(2):53-61.
    [91]曾添文,戴文灿,张志,等.离子交换树脂对钒(Ⅴ)交换性能的研究[J].离子交换与吸附,2002,18(5):453-458.
    [92]冯其明,孙健程,张国范,等.D201树脂吸附钒(Ⅴ)过程[J].有色金属,2010,(1):73-77.
    [93]司士辉,赵坤,李凌璞,等.D301大孔树脂吸附钒(Ⅴ)的性能研究[J].离子交换与吸附,2009,25(6):511-518.
    [94]刘彦华,杨超.用D301树脂从含钒萃余液中回收钒的试验研究[J].湿法冶金,2010,29(2):96-98.
    [95]曾小明,赵坤,司士琪,等.312树脂吸附钒的行为研究[J].稀有金属,2009,33(3):446-449.
    [96]赵卓,李小斌,赵清杰.树脂离子交换提取拜耳法流程中钒的动力学[J].过程工程学报,2009,9(3):462-467.
    [97]石美莲,段友构,颜文斌,等.SQD201树脂对钒的吸附—解吸行为及机理[J].过程工程学报,2011,11(2):233-238.
    [98]高峰,颜文斌,石美莲,等.D201树脂吸附钒的静态性能及动力学研究[J].应用化工,2010,39(6):806-811.
    [99]蒋馥华,张萍.用天然碱浸法从废钒催化剂中回收五氧化二钒的试验[J].硫酸工业,2000,4:28-30
    [100]罗彩英.石煤提钒新工艺研究[J].湖南冶金,1995,(4):5-8.
    [101]徐铜文.扩散渗析法回收工业酸性废液的研究进展[J].水处理技术,2004,30(2):63-66.
    [102]谭翎燕,靳会杰.离子交换膜技术处理冶金工业废液的研究与应用[J].工业水处理,2002,22(11):10-12.
    [103]徐铜文,杨伟华,刘兆明,等.膜法回收钛白废液中硫酸的试验研究[J].水处理技术,1999,25(4):204.
    [104]张玲玲.扩散渗析法从铜冶炼废酸中回收硫酸的研究[J].铜业工程,2009,(3):40-42.
    [105]唐建军,张伟,周康根,等.膜法回收稀土冶金过程中废酸的可行性研究[J].矿冶工程,2007,27(6):54-57.
    [106]兰生杰,温现明,祝增虎.工业酸性废液回收利用的现状[J].无机盐工业,2010,42(7):9-11.
    [107]彭会清,庞翠玲.膜分离技术在处理酸性废液中的应用概述[J].金属矿山,2006,363(9):14-17.
    [108]Stancheva K A. Application of dialysis [M]. Oxide Commun.2008,31:758-775.
    [109]Luo J Y, Wu C M, Xu T W, et al. Diffusion dialysis—concept, principle and applications[J]. Journal of Membrane Science,2011,366:1-16.
    [110]张邦胜,施友富.膜技术在我国冶金工业中的应用[J].有色金属,2003,(6):21-23.
    [111]任建新.膜分离技术及其应用[M].北京:化学工程出版社,2003,253-256.
    [112]Negro C, Blanco M A, Lopez-Mateos F, et al. Free acids and chemicals recovery from stainless steel pickling baths [J]. Separation Science Technology,2001,36:1543-1556.
    [113]付丹,徐静.酸回收的扩散渗析技术及其发展现状[J].污染控制技术,2008,21:59-61.
    [114]王昆,王伟,邢卫红.扩散渗析法回收不锈钢酸洗废液中硝酸[J].膜科学技术,2010,3(6):62-65.
    [115]万金保.铜厂酸洗废液治理新工艺[J].工业水处理,2000,20(5):45-46.
    [116]李辉波,牛玉清,黄崇元,等.渗析法从铀溶液中分离硫酸的初探[J].铀矿冶,2005,24(1):23-27.
    [117]Xu J, Lu S G, Fu D. Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis[J]. Journal of Hazardous Materials,2009,165(1-3):832-837.
    [118]Wei C, Li X B, Deng Z G, et al. Recovery of H2SO4from an acid leach solution by diffusion dialysis[J]. Journal of Hazardous Materials,2010,176(1-3):226-230.
    [119]李兴彬,魏昶,邓志敢,等.扩散渗析法在湿法冶金中的应用[J].中国有色金属学报,2008,18(1):s88-s91.
    [120]Tomaszewska M, Gryta M, Morawski A W. Recovery of hydrochloric acid from metal pickling solutions by membrane distillation [J]. Separation and Purification Technology,2001,(22-23):591-600.
    [121]Shin C H, Kim J Y, Kim J Y, et al. Recovery of nitric acid from waste etching solution using solvent extraction[J]. Journal of Hazardous Materials,2009,163(2-3):729-734.
    [122]Nenov V, Dimitrova N, Dobrevsky I. Recovery of sulphuric acid from waste aqueous solutions containing arsenic by ion exchange [J]. Hydrometallurgy,1997,44(1-2):43-52.
    [123]Cifuentes L, Garcia I, Ortiz R, et al. The use of electrohydrolysis for the recovery of sulphuric acid from copper-containing solutions [J]. Separation and Purification Technology,2006,50(2):167-174.
    [124]Akgemci E G, Ersoz M, Atalay T. Transport of formic acid through anion exchange membrane by diffusion dialysis and electro-electro dialysis [J]. Separation Science Technology,2004,39:165-184.
    [125]Narebska A, Warszaski A. Diffusion dialysis transport phenomena by irreversible thermodynamics [J]. Journal of Membrane Science,1994,88:167-175.
    [126]Oh S J, Moon S H, Davies T. Effect of metal ions on diffusion dialysis of inorganic acid[J]. Journal of Membrane Science,2000,169:95-105.
    [127]Luo J Y, WuCM, WuYH, et al. Diffusion dialysis of hydrochloride acid at different temperatures using PPO-SiO2hybrid anion exchange membranes[J]. Journal of Membrane Science,2010,347:240-249.
    [128]Lin S H, Lo M C. Recovery of sulfuric acid from waste aluminum surface processing solution by diffusion dialysis [J]. Journal of Hazardous Materials,1998,60:247-257.
    [129]Luo J Y, Wu C M, Wu Y H, et al. Diffusion dialysis processes of inorganic acids and their salts:The permeability of different acidic anions[J]. Separation Science Technology,2011,78:97-102.
    [130]Xu T W, Yang W H. Sulfuric acid recovery from titanium white (pigment) waste liquor using diffusion dialysis with a new series of anion exchange membranes:batch dialysis[J]. Journal of Membrane Science,2001,183:193-200.
    [131]Xu T W, Liu Z M, Huang C H, et al. Preparation of a novel hollow-fiber anion-exchange membrane and its preliminary performance in diffusion dialysis[J]. Industrial&Engineering Chemistry Research,2008,47:6204-6210.
    [132]Agrawal A, Sahu K K. An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries [J]. Journal of Hazardous Material,2009,171:61-75.
    [133]Tang J J, Zhou K G, Zhang Q X. Sufuric acid recovery from rare earth sulphate solutions by diffusion dialysis[J]. Transactions of Nonferrous Metals Society of China,2006,16:951-955.
    [134]唐建军,陈建军,张伟,等.扩散渗析法回收硫酸稀土溶液中硫酸研究[J].膜科学与技术,2005,25(2):50-53.
    [135]张启修,肖连生.膜技术在稀有金属冶炼中的应用[J].稀有金属,2003,27(1):1-7.
    [136]周康根,张贵清,李潜,等.膜法处理硫酸法钛白工艺中废酸的研究[J].钛工业进展,2001,5:30-37.
    [137]Jeong J K, Kim M S, Kim B S, et al. Recovery of H2SO4from waste acid solution by a diffusion dialysis method[J]. Journal of Hazardous Materials,2005,124:230-235.
    [138]翟建文,王文正,安兴才,等.扩散渗析处理化纤厂酸性废水[J].膜科学与技术,2003,23(1):18-20.
    [139]赵宜江,邢卫红,徐南平.扩散渗析法从钛白废酸中回收硫酸[J].高校化学工程学报,2002,16(2):217-221.
    [140]Palaty Z, ZakovaA. Separation of H2SO4+ZnSO4mixture by diffusion dialysis [J]. Desalination2004,169:277-285.
    [141]Palaty Z, Zakova A. Separation of H2SO4+CUSO4mixture by diffusion dialysis[J]. Journal of Hazardous Materials,2004,114:69-74.
    [142]Elmidaoui A, Cherif A T, Molenat J, et al. Transfer of H2SO4, Na2SO4and ZnSO4by dialysis through an anion exchange membrane [J]. Desalination,1995,101:39-46.
    [143]Palaty Z, ZakovaA. Separation of HCl+MCl2mixture by diffusion dialysis, Separation Science Technology[J].2007,42:1965-1983.
    [144]Palaty Z, Zakova A. Competitive transport of hydrochloric acid and zinc chloride through polymeric anion-exchange membrane [J]. Journal of Applied Polymer Science,2006,101:1391-1397.
    [145]Palaty Z, Bendova H. Separation of HCl+FeCl2mixture by anion-exchange membrane[J]. Separation and Purification Technology,2009,66:45-50.
    [146]Xu T W, Yang W H. Industrial recovery of mixed acid (HF+HNO3) from the titanium spent leaching solutions by diffusion dialysis with a new series of anion exchange membranes [J]. Journal of Membrane Science,2003,220:89-95.
    [147]葛道才.均相离子交换膜在我国若干工业领域的应用[J].膜科学与技术,2003,23(4):202-207.
    [148]葛道才,刘彦华,张沛.均相离子交换膜的研制[J].铀矿冶,2009,28(4):199-202.
    [149]Mulder M膜技术基本原理(第二版)[M].李琳,译.北京:清华大学出版社,1999,16-24.
    [150]吴亮.聚合物基均相离子交换膜的制备、表征及离子传导特性研究[D].合肥:中国科技大学,2009,5-12.
    [151]Chowdhury G, Kruczek B, Matsuura T. Polyphenylene oxide and modified polyphenylene oxide membranes gas, vapor and liquid separation[M]. London:Kluwer Academic Publishers,2001,1-27.
    [152]刘茉娥,蔡邦肖,陈益棠.膜技术在污水治理及回用中的应用[M].北京:化学工业出版社,2004,8-14.
    [153]Xu T W. Ion exchange membranes:State of their development and perspective[J]. Journal of Membrane Science,2005,263:1-29.
    [154]Xu T W, Zha F F. Fundamental studies on a new series of anion exchange membranes:effect of simultaneous amination-crosslinking processes on membranes ion-exchange capacity and dimensional stability[J]. Journal of Membrane Science,2002,199:203-210.
    [155]XuTW, LiuZM, Li Y, et al. Preparation and characterization of Type Ⅱ anion exchange membranes from poly(2,6-dimethyl-1,4-phenylene oxide)(PPO)[J]. Journal of Membrane Science,2008,320:232-239.
    [156]XuTW, Liu Z M, Yang W H. Fundamental studies of a new series of anion exchange membranes: membrane prepared from poly(2,6-dimethyl-1,4-phenylene oxide)(PPO) and triethylamine[J]. Journal of Membrane Science,2005,249:183-191.
    [157]Tang B B, Xu T W, Yang W H. A novel positively charged asymmetry membranes from poly(2,6-dimethyl-1,4-phenylene oxide) by benzyl bromination and in situ amination Part Ⅱ:Effect of charged group species on membrane performance and morphologies [J]. Journal of Membrane Science,2006,268:123-131.
    [158]Tang B B, Xu T W, Gong M, et al. A novel positively charged asymmetry membranes from poly(2,6-dimethyl-1,4-phenylene oxide) by benzyl bromination and in situ amination:membrane preparation and characterization [J]. Journal of Membrane Science,2005,248:119-125.
    [159]Tang B B, Xu T W, Sun P J, et al. A novel positively charged asymmetry membranes from poly(2,6-dimethyl-1,4-phenylene oxide) by benzyl bromination and in situ amination Part III:Effect of benzyl and aryl bromination degrees of polymer on membrane performance and morphologies [J]. Journal of Membrane Science,2006,279:192-199.
    [160]Wu L, Xu T W, Yang W H. Fundamental studies of a new series of anion exchange membranes: Membranes prepared through chloroacetylation of poly(2,6-dimethyl-1,4-phenylene oxide)(PPO) followed by quaternary amination [J]. Journal of Membrane Science,2006,286:185-192.
    [161]Li Y, Xu T W. Permselectivities of monovalent anions through pyridine-modified anion-exchange membranes[J]. Separation and Purification Technology,2008,61:430-435.
    [162]Chang H I, Yang M S, Liang M. The synthesis, characterization and antibacterial activity of quaternized poly(2,6-dimethyl-1,4-phenylene oxide)s modified with ammonium and phosphonium salts[J]. Reactive&Functional Polymers,2010,70:944-950.
    [163]Xu T W, Li Y, Wu L, et al. A simple evaluation of microstructure and transport parameters of ion-exchange membranes from conductivity measurements [J]. Separation and Purification Technology,2008,60:73-80.
    [164]Wu D, Fu R Q, Xu T W, et al. A novel proton-conductive membrane with reduced methanol permeability prepared from bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide)(BPPO)[J]. Journal of Membrane Science,2008,310:522-530.
    [165]Lin Z, Xu T W, Zhang L. Radiation-induced grafting of N-isopropylacrylamide onto the brominated poly(2,6-dimethyl-1,4-phenylene oxide) membranes[J]. Radiation Physics and Chemistry,2006,75:532-540.
    [166]Zhang S L, Xu T W, Wu C M. Synthesis and characterizations of novel, positively charged hybrid membranes from poly(2,6-dimethyl-1,4-phenylene oxide) membranes [J]. Journal of Membrane Science,2006,269:142-151.
    [167]Zhang S L, Wu C M, Xu T W, et al. Synthesis and characterizations of anion exchange organic-inorganic hybrid materials based on poly(2,6-dimethyl-1,4-phenylene oxide)(PPO)[J]. Journal of Solid State Chemistry,2005,178:2292-2300.
    [168]Xu T W, Yang W H. Tuning the diffusion dialysis performance by surface cross-linking of PPO anion exchange membranes-simultaneous recovery of sulfuric acid and nickel from electrolysis spent liquor of relatively low acid concentration [J]. Journal of Hazardous Materials,2004, B109:157-164.
    [169]Li Y, Xu T W, Gong M. Fundamental studies of a new series of anion exchange membranes: Membranes prepared from bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide)(BPPO) and pyridine[J]. Journal of Membrane Science,2006,279:200-208.
    [170]Nasefa M M, Hegazy E S A. Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films [J]. Progress in Polymer Science,2004,29:499-502.
    [171]Choi S H, Nho Y. Radiation-induced graft copolymerization of binary monomer mixture containing acrylonitrile onto polyethylene films [J]. Radiation Physics and Chemistry,2000,58:157-160.
    [172]Nasef M M, Saidi H, Nor H M, et al. Radiation-induced grafting of styrene onto poly(tetrafluoroethylene)(PTFE) films. Part Ⅱ. Properties of the grafted and sulfonated membranes [J]. Polymer International,2000,49:1572-1574.
    [173]Roualdes S, Kourda N, Durand J, et al. Plasma-grafted PVDF polymers as anion exchange membranes for the electrotransport of Cr(VI)[J]. Desalination,2002,146:273-275.
    [174]Hamad F, Khulbe K C, Matsuura T. Characterization of gas separation membranes prepared from brominated poly(phenylene oxide) by infrared spectroscopy[J]. Desalination,2002,148:369-375.
    [175]Saracco G. Ionic membrane technologies for the recovery of valuable chemicals from waste waters [J]. Ann. Chim. Rome,2003,93:817-819.
    [176]Sata T. Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis-effect of hydrophilicity of anion exchange membranes on permselectivity of anions [J]. Journal of Membrane Science,2000,167:1-3.
    [177]Saito K, Sugita K, Tamada M, et al. Convection-aided collection of metal ions using chelating porous flatsheet membranes [J]. Journal of Chromatography A,2002,954:277-279.
    [178]Hwang G J, Ohya H. Preparation of anion exchange membrane based on block copolymers. Part Ⅱ. The effect of the formation of macroreticular structure on the membrane properties [J]. Journal of Membrane Science,1998,149:163-165.
    [179]Tang B B, W uD, Xu T W. Effect of PEG additives on properties and morphologies of the membranes prepared from poly(2,6-dimethyl-1,4-phenylene oxide) by benzyl bromination and in situ amination[J]. Journal of Applied Polymer Science,2010,262:72-78.
    [180]Wu H Q, Tang B B, Wu P Y. Novel ultrafiltration membranes prepared from a multi-walled carbon nanotubes/polymer composite[J]. Journal of Membrane Science,2010,362:374-383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700