基于颗粒离散元法的卵石层中成都地铁施工力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国社会经济的发展,城市人口快速增加,越来越多的城市开始规划和修建地铁。由于我国幅员辽阔,不同地区地质情况差异很大,一些新建地铁在施工期间遇到了非常复杂的地质条件,如成都地铁1、2号线沿线广泛分布的卵石地层等。卵石地层一般由粘性土或砂卵石、粗砂、卵石等组成,偶遇巨石块,大多数砂卵石地层结构松散,分布不匀,具有强烈的离散特性,与砂土、黏土等的工程性质有着本质区别。目前,在该地层中应用明挖、盾构及浅埋暗挖等施工方法修建的地下工程案例很少,几乎没有现成的经验可供借鉴。随着成都地铁工程的全面展开,如何安全经济的在卵石地层中进行地铁建设是一个亟待解决的问题。据此,本文针对成都地铁1、2号线建设期间遇到的几个重点问题:卵石地层深基坑土压力大小及分布规律、盾构隧道开挖面稳定性、暗挖法施工时的合理预支护措施及工法等进行了系统的研究,其工作具体体现在以下几个方面:
     1.建立三轴数值试验模型,对模型中颗粒单元的性质进行多组试样的参数比较研究,分析细观参数对材料宏观物理力学特性的影响规律,并据此对成都地铁1、2号线沿线密实、中密及稍密卵石土体的宏观参数和模型细观参数的关系进行标定;然后通过理论分析和数值计算相结合,验证应用颗粒离散元模拟基坑围护桩等支护结构的可行性,并标定支护结构的宏观物理力学参数与其数值模型细观参数之间的关系。
     2.针对卵石土体本身结构具有强烈的离散特性的特点,利用颗粒离散元数值方法,对墙体平动、绕墙顶转动及绕墙底转动三种变位模式下卵石地层基坑土压力的大小及分布规律进行了研究,通过将数值模拟结果与经典土压力的计算结果进行比较,确定了平动模式下卵石土基坑土压力的修正计算方法;依托成都市历史上埋置最深(28.5m)、规模最大(占地面积约48000m2)的天府广场深基坑工程,探明了卵石地层基坑破坏、坍塌的演化过程。利用本文的卵石地层基坑土压力修正计算方法,分析了不同支护条件下基坑施工安全性,确定了天府广场深基坑合理的开挖及支护方案。
     3.根据成都地铁1号线区间盾构隧道的施工情况,对支护压力较小时,卵石地层盾构开挖面坍塌破坏过程及坍塌破坏时前方土体应力分布演变情况进行了模拟分析,明确了盾构施工开挖面变形与破坏的机理,提出了卵石地层盾构隧道开挖面破坏坍塌模式。
     探讨了卵石地层中盾构开挖面支护压力大小对隧道围岩变形及压力影响规律,并将此影响分为三个阶段,即影响不敏感阶段、影响敏感阶段、破坏失效阶段;据此,对目前盾构隧道开挖面极限支护压力的计算模型进行了发展,建立了适用于卵石地层盾构隧道开挖面极限支护压力的三维计算模型。在此过程中,还通过挡板下移数值模拟试验,探讨了松动土压力大小与挡板位移量的关系,针对太沙基松动土压力计算值与数值模拟结果差值偏大的情况,修正了上覆土压力的计算公式。
     最后利用本文的三维计算模型,对成都地铁1号线ZDK13+630处采取带压进舱换刀的舱内极限压力进行了分析。
     4.结合成都地铁1号线天府广场北端暗挖隧道试验段,利用颗粒离散元数值方法,对卵石地层浅埋暗挖隧道破坏、坍塌的机理进行了分析。探明了管棚、小导管及正面锚杆(管)等预支护措施在卵石地层中的作用效果,给出了合理的预支护方法及其参数;分析了CD法和台阶法对隧道施工安全性的影响,得出了卵石地层浅埋暗挖隧道的合理开挖工法。
In recent years, with China's social and economic development, the urban population increasing rapidly, so more and more cities began to plan and build the subway. However, because China has a vast territory, the geological conditions are great difference in different regions, some new metro encountered to the very complexed geological conditions during the construction, such as the cobble stratum which is widely distributed along Chengdu Subway line 1 and 2. Generally speaking, the cobble stratum consisting of the cohesive soil, pebble soil, coarse sand, gravel and so on, and occasional consisting of the giant stones. Most the structure of cobble stratum are loose, and theirs distribution were not even. The engineering properties of the cobble stratum is essential different from the sand or the cohesive soil, it has strongly discrete character. At present, the underground engineering which are builded by the open cut method, shield-driven and mining excavation method in cobble stratum is seldom, and there is no exsisting experience can be referenced. With the comprehensively launches of Chengdu subway project, building the subway safely and economically in cobble stratum is the key problem which is needed to be solved. Hereby, according to the several key problems needed to be solved which encountered during building Chengdu Subway line 1 and 2, the earth pressure distribution of cobble stratum,the tunnel face stability and the construction projects were studied in this dissertation. which embodies in 4 ways as follows:
     1. Through establishing the triaxial numerical test model, studied the parameters of the particles by many samples test and analysed the influence law of meso parameter to the characteristics of materials macromechanics. And according to the law, calibrated the meso parameters and macro parameters of the dense, medium dense and slightly dense sandy pebble soil in chengdu subway line 1 and 2. And the feasibility of which using the granular discrete element to simulate the foundation pit enclosure piles was discussed by the theoretical analysis and numerical method, and then calibrated the macro physical and mechanical parameters and meso parameters of the supporting structure.
     2. According to the discrete character of cobble stratum, using granular discrete element numerical method, studied the earth pressure distribution of cobble stratum foundation pit when the wall move with basic modes-translation(T), rotation about base(RB), rotation about top(RT), and the correction calculation method of earth pressure of cobble stratum foundation pit based on the translational wall-movement modes'has been determined by compared the compute results with the classical theory. And then,according to the tianfu-square foundation pit which was the most depth(28.5 m) and the largest scale (area is about 48000m2) in chengdu history, the failure and collapse evolution process were proved. And finally, using the correction calculation method of earth pressure of cobble stratum foundation pit which was proposed in this paper, analysed the construction safety of foundation in several different support condition and dicided the reasonable construction and supporting scheme of tianfu-square foundation pit.
     3. According to the construction situation of shield tunnel in Chengdu subway line 1, the face collapse and failure process of cobble stratum shield and the stress distribution evolution of the soil during the excavation surface collapsing were simulated and analysed, and he deformation and failure mechanism of the shield excavation surface was made clear, the collapse and failure modes of cobble stratum shield tunnel excavation face was put forward.
     And then the influence law of surrounding rock deformation and stress by the varying support pressure of excavation surface in cobble stratum shield tunnel was discussed, The relation between face support pressure and soil deformation indicates that the influence of support pressure can be figured as three stages,that is insensitive stage, sensitive stage and failure stage. Hereby, the 2-dimension mode of shield tunnel face limit support pressure was improved and the 3-dimension calculation model of limit support pressure which is suitable for cobble stratum shield tunnel face was established. In the process, By the numerical simulation test of baffle move, discussed the relationship between loosening earth pressure and baffle displacement. According to the large difference of results by terzaghi theory and numerical computation, modified the terzaghi calculation formula.
     Finally, the limit pressure in shield module at ZDK13+630 in chengdu Subway line 1 was analysed by the 3-dimension limit support pressure calculation mode which is established in this dissertation.
     4. According to the construction condition of the shallow bury subsurface excavation test section in chengdu subway line 1, the failure and collapse mechanism of shallow bury subsurface excavation in cobble stratum were analysed by particle discrete element method. The action effect of the advance support such as pipe roof, small pipe and front anchor in cobble stratum shallow bury subsurface excavation tunnel was proved, and the reasonable pre-supporting method and its parameters were given. And then the effection of working security by CD method and bench method in the cobble stratum shallow bury subsurface excavation tunnel was analysed, the results showed that the bench method have some advantages in the cobble stratum shallow bury subsurface excavation tunnel at construction dewatering condition.
引文
[1]中国建筑西南勘察设计研究院.成都市地铁天府广场综合改造工程岩土工程勘察成果报告[M].北京:人民交通出版社,2004.
    [2]成都地铁公司.成都市地铁一期工程可行性研究岩土工程地质勘察报告,2000.
    [3]成都市地铁一号线试验段水文、工程、环境地质条件及主要问题及对策专题研究报告,成都市地铁办,2001.
    [4]刘辉.浅埋暗挖法和盾构法在地铁修建中的适应性问题研究[D].成都:西南交通大学硕士学位论文,2000.
    [5]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社,1999.
    [6]王梦恕等.北京地铁浅埋暗挖法施工闭[J].岩石力学与工程学报,1989,8(1):52-61.
    [7]关宝树,国兆林.隧道及地下工程[M].成都:西南交通大学出版社,2000
    [8]Cundall P.A.A computer model for simulating progressive large scale movements in block rock system[A]. In:Proceeding of the symposium of the international society for rock mechanics, Nancy, France,1971,1(8)
    [9]关宝树.隧道工程施工要点集[M].北京,人民交通出版社,2003.
    [10]孙钧.地下工程设计理论与实践[M].上海,上海科学技术出版社,1996.
    [11]施仲衡,张弥,宋敏华等.地下铁道设计与施工[M].北京:陕西科学技术出版社,2006.
    [12]王梦恕.地下工程浅埋暗挖技术通论[M].合肥:安徽教育出版社,2004.
    [13]Richard L.Handy.The arch in soil arching. Journal of Geotechnical Engineering, 1985,111(3):302-318.
    [14]Yung-Show Fang, Associate Member. Passive Earth Pressures with Various Wall Movements[J] Journal of Geotechnical Engineering, Vol.120, No.8,1994
    [15]王渭漳,吴亚中.墙背土压力分布计算的新理论公式及试验验证[J].湖南交通科技.1995,21(2):70-74.
    [16]王渭漳,吴亚中.重力式挡土墙墙背土压力及其分布的研究[J].中南公路工程.1992,总第60期,22-29.
    [17]杨雪强,刘祖德.论深基坑支护的空间效应[J].岩土工程学报.1998,20(2): 74-78.
    [18]王元战,王海龙,张文忠.挡土墙土压力分布[J].中国港湾建设.2000年第4期:1-5,14.
    [19]王元战,李蔚,黄长虹.墙体绕基础转动情况下挡土墙主动土压力分布[J].岩土工程学报,2003,25(2):208-211.
    [20]杨斌,胡立强.挡土结构侧土压力与水平位移关系的试验研究[J].建筑科学,2000,16(2):14-20.
    [21]杨光华.深基坑支护结构的实用计算方法及其应用[J].岩土力学,2004,25(12):1885-1896.
    [22]易南概,吴大群,谢志,任拓.基于支护结构位移计算土压力的方法[J].沈阳建筑大学学报(自然科学版),2005,21(1):26-28.
    [23]陈书申.经典土压力理论的局限与小变位土压力计算的建议[J].土工基础,1997,11(2):15-21.
    [24]杨光华.深基坑开挖中多支撑支护结构的土压力问题[J].岩土工程学报,1998,20(6)113-115.
    [25]夏永承,董道洋,胡敏云等.深基坑支护桩的受力特性和土压力[J].岩土工程学报,1999,21(2):222-226.
    [26]朱彦鹏,王秀丽,于劲等.悬臂式支护桩内力的试验研究[J].岩土工程学报,1999,21(2):236~239.
    [27]何昌荣,陈群,富海鹰.两种支挡结构的实测和计算土压力[J].岩土工程学报,2000,22(1):55~60.
    [28]胡敏云,夏永承,高渠清.无锚撑桩排式支护护壁桩侧土压力计算方法[J].岩石力学与工程学报,2000,19(4):517~521.
    [29]陆培毅,严驰,刘润.粘性土基于室内模型土压力分布形式的研究[J].建筑结构学报,2002,23(2):83-86.
    [30]郭竞宇,赵其华,张建刚.围护结构上土压力实例分析[J].岩土工程学报,2003,25(2):246-248.
    [31]梅国雄,宰金双.现场监测实时分析中的土压力计算公式[J].土木工程学报,2000,33(5):79-82
    [32]李飞.深基坑围护体的土压力及位移分析[J].福建建筑,1999,(65):36-37
    [33]应宏伟,谢永利,潘秋元等.深基坑挡土结构土压力数值研究[J].西安公路交通大学学报,1998,18(4):26-31.
    [34]俞建霖,龚晓南.深基坑工程的空间性状分析[J].岩土工程学报,1999,21(1): 21-25.
    [35]邢肖鹏.挡土墙土压力有限元模拟分析[J].山西水利科技,2002,(4):1-3.
    [36]邹文平.不同位移下刚性挡土墙的土压力变化[J].河北工程技术高等专科学校学报,2004,(4):15-19
    [37]姚海明,张雷,王凤武.挡土墙主动极限位移的确定[J].工程勘察.2005,(4): 13-15
    [38]张波.砂卵石基坑喷锚网支护数值模拟研究[D].重庆大学硕士学位论文,2002
    [39]张欣,刘东燕,廖心北,孙文.砂卵石基坑工程应用喷锚网支护技术的试验研究[J].2001,(5):15-18,67
    [40]刘彦忠.土钉墙在砂卵石层基坑支护中的应用[J].岩土工程技术.2002,(6):341-345
    [41]杨卓文.成都地铁一号线小天竺车站深基坑稳定性分析.西南交通大学硕士学位论文,2008
    [42]廖心北,陈勇,朱明.喷锚支护结构设计及其在成都地区深基坑护壁工程中的应用[J].中国地质灾害与防治学报,1998,9(1):108-113
    [43]杨群.成都市群光大陆广场大厦深基坑支护研究.西南交通大学硕士学位论文,2006
    [44]李国杰.成都地铁天府广场深基坑施工力学分析.西南交通大学硕士学位论文,2006
    [45]裴洪军,孙树林,吴绍明.隧道盾构法施工开挖面稳定性研究方法评析[J].下空间与工程学报,2005,1(1):117-119
    [46]裴洪军.城市隧道盾构法施工开挖面稳定性研究[D].南京:河海大学硕士学位论文,2005
    [47]秦建设,尤爱菊.盾构隧道开挖面稳定数值模拟研究[J].矿山压力与顶板管理,2005,(1):27-30
    [48]袁小会,韩月旺,郭涛.盾构施工中开挖面失稳数值分析[J].山西建筑,2007,33(9):336-337
    [49]Mair R J, Taylor R N. Theme lecture:Bored tunneling in the urban environment [A]. In:Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering Rotterdam,1997:2353-2358.
    [50]Mair RJ.Centrifuge modelling of tunnel construction in soft clay[D]. Cambridge University,1979.
    [51]黄俊.无水砂卵石地层盾构隧道推进施工效应的数值模拟[J].市政技术,2004,22(I):157-162
    [52]孔恒,张沉,汪波.砂卵石地层盾构隧道关键施工技术[J].市政技术,2005,23(I).99-103,109
    [53]郭家庆,陈馈.成都地铁砂卵石地层盾构带压进舱技术[J].隧道建设,2008.10,28(5):586-589
    [54]刘树山.砂卵石地层盾构隧道刀具更换方案研究[J].隧道建设,2008,28(3):268-270,276
    [55]G. Anagnostou, K. Kovarl. Face stability in slurry and EPB shield tunnelling [J]. Tuneling and Underground Space Technology,1996,11(2):165-173.
    [56]黄正荣,朱伟,梁精华等.盾构法隧道开挖面极限支护压力研究[J].土木工程学报,2006,39(10):112-116
    [57]Li Y. et al. Stability analysis of large slurry shield-driven tunnel in soft clay. Tunnelling and Underground Space Technology.2008, (10):1-10
    [58]In-Mo Lee, Jae-Sung Lee, Seok-Woo Nam. Effect of seepage force on tunnel face stability reinforced with multi-step pipe grouting. Tunnelling and Underground Space Technology.2004, (19):551-565
    [59]宫秀滨,徐永杰,韩静玉.隧道盾构法施工土压力的计算与选择[J].隧道机械与施工技术,2007,46-48
    [60]叶康慨,王延民.土压平衡盾构施工土压力的确定[J].隧道建设,2003,23(2):47-51
    [61]H Mashimo,T Ishimura.Evaluation of the load on shield tunnel lining in gravel [J].Tunnelling and Underground Space Technology.2003,18(2-3):233-241
    [62]Borms B B, Bennermark H. Stability of clay at vertical openings[J]. Journal of the soil Mechanics and Foundations Division,1967,93(1):71-94.
    [63]Maidl B, Herrenknetcht M, Anheuser L.Mechanised Shield Tunnelling [M]. Berlin:Ernst&Sohn verlag furArchitektur und techn,1996
    [64]尹旅超,朱振宏,李玉珍等编译.日本隧道盾构新技术[M],1999
    [65]Davis E H, Gunn M J, Mair R J, et al. The stability of shallow tunnel sand underground openings in cohesive material[J].Geotechnique,1980, Vol.30(4): 397-416.
    [66]李昀,张子新.泥浆渗透对盾构开挖面稳定性的影响研究[J],岩土力学,2006,27(Supp.2)
    [67]李昀,张子新,张冠军.泥水平衡盾构开挖面稳定模型试验研究[J].岩土工程学报,2007,29(7):1074-1079.
    [68]刘庆伟,王旭光.采取综合措施使隧道通过砂夹卵石不稳定地层[J],铁道建筑,2002,(3):36-37
    [69]李源潮.闸上隧道出口软弱地层浅埋段的设计与施工[J],铁道标准设计,2004,(4):85-87
    [70]肖中平,何川,晏启祥.城市富水砂卵石地层浅埋暗挖电力隧道的设计技术[J],铁道建筑,2007,46-48
    [71]郭永军.砂卵石富水地层浅埋暗挖隧道施工技术[J],科技情报开发与经济,2006,16(3):293-295
    [72]陈晓婷.富水砂卵石地层条件下浅埋暗挖法隧道设计与施工对策.西南交通大学硕士学位论文,2006
    [73]汪洋,何川,唐志成.富水砂卵石条件下大断面市政隧道浅埋暗挖法研究[J],现代隧道技术,2007,44(1):21-26
    [74]崔颖哲,党红章,戴训学. 富水密实砂卵石地层中的浅埋暗挖施工[J],隧道建设,2007,27(3):92-96
    [75]党红章.成都地铁密实砂卵石地层工程地质特性及施工方法浅析[J],现代隧道技术,2007,44(5):7-10
    [76]Cundall P. A. PFC2D Users'Manual(version 2.0). Minnesota:Itasca Consulting Group Inc.1999
    [77]Cundall, P A & Strack ODL. A Discrete numerical model for granular assemblies [J]. Geotechnique,1979,29(1):47-65
    [78]Potyond D. O, Cundall P.A. A bonded-particle model for rock [J]. Int. J. Rock Mech. Mtn, Sci.2004,41 (8):1329-1364
    [79]Cundall. P.A & Strack ODL. A Discrete numerical model for granular assemblies [J]. Geotechnique,1979,29(1):47-65
    [80]Orianne Jenck, Daniel Dias, Richard Kastner. Discrete element modelling of a granular platform supported by piles in soft soil-Validation on a small scale model test and comparison to a numerical analysis in a continuum, Computers and Geotechnics 2009, (36).917-927
    [81]T SaKakibara, M Ujihira & K Suzuki. Numerical study on the cause of a slope failure at a gravel pit using pfc and flac[A]. in:Numerical Modeling in Micromechnics Via particle Methods [C]. London,2004:51-55
    [82]Koyama, Yukinori. Present status and technology of shield tunneling method in JaPan[J]. Tuunelling and Underground Space Teehnology,2003,18(2-3): 145-159
    [83]Manuel J. Melis Maynar, Luis E. Medina Rodriguez. Discrete Numerical Model for Analysis of Earth Pressure Balance Tunnel Excavation, JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING,2005, 31(10):1234-1242
    [84]T. Funatsu, T. Hoshino, H. Sawae, N. Shimizu. Numerical analysis to better understand the mechanism of the effects of ground supports and reinforcements on the stability of tunnels using the distinct element method. Tunnelling and Underground Space Technology,2008,(23):561-573
    [85]周健,池永等.砂土双轴试验的颗粒流模拟[J].岩土工程学报,2000,22(6):701-704.
    [86]周健,廖雄华,池永等.土的室内平面应变试验试验的颗粒流模拟[J].同济大学学报,2002,30(9):1044-1050
    [87]曾远.土体破坏细观机理及颗粒流数值模拟[D].上海:同济大学博士论文,2006
    [88]尹小涛.岩土材料工程性质数值试验研究[D].武汉:中国科学院研究生院博士学位论文,2008
    [89]罗勇.土工问题的颗粒流数值模拟及应用研究[D].浙江大学博士论文,2007
    [90]朱伟,钟小春,加瑞.盾构隧道垂直土压力松动效应的颗粒流模拟[J].岩土工程学报,2008,30(5):750-754
    [91]田桥.上拔桩一桶基础的土体细观结构分析[D].上海海事大学硕士论文,2006
    [92]柴贺军,孟云伟,贾学明.柔性石笼挡墙土压力的PFC2D数值模拟[J].公路交通科技,2007,24(5):483-51
    [93]孟云伟,肖世洪,柴贺军. 隧道开挖中破碎带支护的颗粒离散元模拟研究[J].地下空间与工程学报,2007,3(4):673-677
    [94]张志刚.节理岩体强度确定方法及其各向异性特征研究[D].北京交通大学博士学位论文,2007
    [95]王来贵,黄润秋,张淖元.岩石工程失稳破坏及其研究思路与方法[J].岩石力学与工程学报.1998,17(5):599-601.
    [96]Cundall P.A. A computer model for simulating progressive large scale movements in blocky system[A]. In:Muller Led, ed. Proc Symp Int Soc Rock Mechanics. Rotterdam:Balkama A. A,1971, (1):8-12
    [97]Cundall P.A. Distinct element methods of rock and soil structure[J]. Analytical & Computational Methods in Engineering Rock Mechaniacs,1987,129-163
    [98]Cundall P.A, Strack O D L. A The distinct element method as a tool for research in granular media, Part2. Report to the national Science Foundation, Minnesota:University of Minnesota,1979
    [99]Cundall, P.A & Strack O D L. A Discrete numerical model for granular assemblies [J]. Geotechnique,1979,29(1):47-65
    [100]魏龙海,王明年.碎石土隧道自稳性的三维离散元分析[J],岩土力学.2008,29(7):1853-1860
    [101]魏龙海,王明年,陈春光.三维离散元模型及计算参数选取研究[J],重庆交通大学学报.2008,27(4):618-621
    [102]周健,池永.砂土力学性质的细观模拟[J].岩土力学,2003,24(6):901-906
    [103]Martin P. J. Schopfer, Steffen Abe, Conrad Childs. The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials:Insights from DEM modelling. International Journal of Rock Mechanics & Mining Sciences.2009, (46):250-261
    [104]N.Belheine, J.P. Plassiard, F. V. Donze', F. Darve, A. Seridi. Numerical simulation of drained triaxial test using 3D discrete element modeling[J]. Computers and Geotechnics.2009, (36)320-331
    [105]Z. Asaf, D. Rubinstein, I.Shmulevich. Determination of discrete element model parameters required for soil tillage. Soil & Tillage Research.2007,(92): 227-242
    [106]汤连生,杜赢中,王洋.深基坑支护结构上土压力研究及新进展[A].中国土木工程学会第九届土力学及岩土工程学术会议论文集,2003
    [107]刘成宇.土力学[M].成都:西南交通大学出版社,2002
    [108]胡小刚.基坑主动土压力与支护结构位移的关系研究[D].南京:南京航空航天大学硕士学位论文,2006
    [109]陈页开.挡土墙上土压力的试验研究与数值分析[D].浙江大学.2001.5
    [110]周应英,任美龙. 刚性挡土墙主动土压力的试验研究[J],岩土工程学报,1990
    [111]周应英. 刚性挡土墙主动土压力的试验研究[J],岩土工程学报,1990
    [112]四川省建筑科学研究所.重力式挡土墙的试验研究[J],(1982)
    [113]龚慈,俞建霖,徐日庆.绕墙底向外转动刚性挡土墙的土压力计算[J],浙江大学学报,2005,39(11):1690-1694
    [114]蒋波.挡土结构土拱效应及土压力理论研究[D].杭州:浙江大学博士学位论文,2005
    [115]徐日庆.刚性挡墙被动土压力模型试验研究[J].岩土工程学报,2002,24(5):569-575.
    [116]曾庆有,周健.不同墙体位移方式下被动土压力的颗粒流模拟[J].岩土力学,2005,26(I):43-47
    [117]蔡奇鹏.刚性与柔性挡墙的土压力研究[D].杭州:浙江大学硕士学位论文,2007
    [118]葛帆.基坑支护土压力和变形的试验研究[D].武汉:武汉大学硕士学位论文,2005
    [119]刘之葵.深基坑支护设计土压力计算方法中的几个问题[J].广西地质,2000,13(3),61-65
    [120]马平,秦四清,张勇. 深基坑桩锚支护体系主动区土压力试验研究[J],工程地质学报,2006,14(2):245-248
    [121]许锡昌.土压力问题与基坑变形分析[D].武汉:中国科学院武汉岩土力学研究所博士论文,2004
    [122]彭述权.砂土挡墙破坏机理宏细观研究[D].上海:同济大学博士论文,2007
    [123]中华人民共和国行业标准.混凝土结构设计规范(GB50010-2002),中国建筑工业出版社,2002
    [124]叶旭洪.砂卵石地层泥水盾构泥浆特性对开挖面稳定性影响研究[D].北京:北京交通大学硕士学位论文,2008
    [125]周小文,濮家骝,包承纲. 隧洞拱冠砂土位移与破坏的离心模型试验研 究[J].岩土力学,1999,20(2):32-36
    [126]张洪武,秦建敏.基于非线性接触本构的颗粒材料离散元数值模拟[J].岩土工程学报,2006,28(11):1964-1969
    [127]王贵君.节理裂隙岩体中不同埋深无支护暗挖隧洞稳定性的离散元法数值分析[J].岩石力学与工程学报,2004,23(7):1154-1157
    [128]王明年,魏龙海等.成都地铁卵石层中盾构施工开挖面稳定性研究[J],岩土力学.(已录用)
    [129]韦良文. 泥水盾构隧道施工土体稳定性分析与试验研究[D].上海:同济大学博士学位论文,2007
    [130]高立群.大直径盾构正面稳定性研究[D].上海:同济大学硕士学位论文,2006
    [131]韦良文,张庆贺,孙统立等. 盾构隧道开挖面稳定研究进展[J].重庆交通大学学报(自然科学版),2007,26(6):67-72
    [132]程展林,吴忠明,徐言勇.砂基中泥浆盾构法隧道施工开挖面稳定性试验研究[J].长江科学院院报,2001,18(5):53-5
    [133]刘建航,候学渊,盾构法隧道[M],中国铁道出版社,1991
    [134]魏建华,丁书福.土压平衡式盾构开挖面稳定机理与压力舱土压的控制[J].工程机械,2005,(1):18-19,59
    [135]程展林.南水北调穿黄工程开挖面稳定性试验研究[R].武汉:长江科学院,1997.
    [136]周秀普.盾构法施工技术在无水砂卵石地层中的应用[J].市政技术,2003,21(4): 195-199
    [137]张凤祥,朱合华等.盾构隧道[M].北京:人民交通出版社,2004
    [138]Y. Li, F. Emeriault, R. Kastner, Z.X.Zhang. Stability analysis of large slurry shield-driven tunnel in soft clay, Tunnelling and Underground Space Technology 24 (2009) 472-481
    [139]Keiichi Fujita, Osamu Kusakabe. Proceeding of The International Symposium on Underground Construction in Soft Ground[M], NEW DEILHI INDIA.1994,1-3
    [140]International Tunnelling and Underground Space Association. Guidelines for the design of shield tunnel lining[J]. Tunnelling Technol.2000,15(3):303-331
    [141]O. Y Ezzeldine. Estimation of the surface displacement field due to contraction of Cairo Metro Line EI Khalafawy-St. Therses. Tunnelin} and underground space technology,1999,14(3)
    [142]Tokuhisa Ishiwata, Shinichi Suzuki, Takuya Matsunaga. Earth pressure balance shield driven tunneling for super-shallow earth covering. Tunnelling and Underground Space Technology 19 (2004) 394
    [143]郑小雪.砂卵石地层盾构施工对邻近建筑物稳定性影响研究[D].成都:西南交通大学硕士学位论文,2008
    [144]朱伟,秦建设,卢廷浩.砂土中盾构开挖面变形与破坏数值模拟研究[J].岩土工程学报,2005,27(8).897-902
    [145]方勇.土压平衡式盾构掘进过程对环境的影响与控制[D].西南交通大学,2007.
    [146]魏纲.顶管工程土与结构的性状及理论研究[D].博士学位论文.杭州:浙江大学,2007
    [147]杨洪,傅德明,葛修润.盾构周围土压力的试验研究与数值模拟[J].岩石力学与工程学报,2006,25(8).1652-1657
    [148]M Pulsfort & B Walz. Application of the PFC3d for determination of soil properties and the simulation of the excavation process in front of sheet pile wall constructions [A]. in:Numerical Modeling in Micromechnics Via particle Methods [C]. London,2004:35-44
    [149]Pierce M E, P A Cundall G J van Hout and L Lorig. PFC3D Modeling of Caved Rock Under Draw [A]. in:Numerical Modeling in Micromechanics via Particle Methods [C].2003:211-217
    [150]Ftom Woerden, M Ujihira & K Abdel-Rahman. Finite element and discrete element modeling for the solution of spatial active pressure problems [A]. in: Numerical Modeling in Micromechnics Via particle Methods [C]. London, ISBN 90 5809 673 3,2004:45-50
    [151]魏纲,贺峰.砂性土中顶管开挖面最小支护压力的计算[J].地下空间与工程学报,2007,3(5):903-908
    [152]钟小春.盾构隧道管片土压力的研究[D].南京:河海大学博士论文,2005
    [153]周小文,濮家骝,包承钢.砂土中隧洞开挖稳定机理及松动土压力研究[J].长江科学院学报,1999,16(14):9-14
    [154]秦建设,吕国君.太沙基隧道松动土压力研究[J].施工技术,2007,36(I): 390-392
    [155]张国京.适用于砂卵石地层的土压平衡盾构研究[J].市政技术,2004,22(I).117-121
    [156]胡茜.成都地铁区间隧道盾构法可行性分析[D].成都:西南交通大学硕士学位论文,2006
    [157]刘树山.砂卵石地层盾构施工对建筑物的影响分析及技术措施[J].城市轨道交通研究,2008:39-42,46
    [158]何川,晏启祥.加泥式土压平衡盾构机在成都砂卵石地层中应用的几个关键性问题[J].隧道建设,2007,27(6).4-6,29
    [159]徐润,宋天田.成都地铁土压平衡盾构隧道工程风险识别与评价[J],隧道建设,2007,27(6):98-104
    [160]曹宏亮.泥水平衡盾构机的快速换刀技术[J].隧道建设,2004,24(6):18-1
    [161]宋天田,周顺华,黄胜.富水砂卵石地层土压平衡盾构的适应性研究[J],现代隧道技术,2007(I),145-150
    [162]许燕峰,苏钧.浅埋暗挖法隧道施工引起地面沉降的原因及控制措施[J].世界隧道,1998,(2):49-52
    [163]罗小明.成都地铁浅埋暗挖隧道衬砌混凝土施工技术[J],山西建筑,2009,35(1): 331-332
    [164]M. Karakus, R. J. Fowell. Effects of different tunnel face advance excavation on the settlement by FEM. Tunnelling and Underground Space Technology, 2003,(18):513-523
    [165]Denise Bernaud, Samir Maghous, Patrick de Buhan, Eduardo Couto. A numerical approach for design of bolt-supported tunnels regarded as homogenized structures. Tunnelling and Underground Space Technology, 2009,(24):533-546
    [166]C. W. W. Ng, G. T. K. Lee. A three-dimensional parametric study of the use of soil nails for stabilising tunnel faces. Computers and Geotechnics,2002, (29):673-697
    [167]Buhan P, Cuvillier A, Dormieux L, et al. Face stability of shallow circular tunnels driven under the water table:A numerical analysis [J]. Intenational Journal for Numerical and Analytical Mehtods in Geomechanies,1999,(23): 79-95
    [168]DLTNCAN J M. State of the art:Limit equilibrium and finite element analysis of slopes[J]. Journal of Geotechnical Engineering, ASCE,1996,122(7): 577-596
    [169]武建伟,宋卫东.浅埋暗挖管棚超前预支护的受力分析[J].岩土工程技术,2007,21(3):116-121.
    [170]朱国保.软弱破碎围岩隧道中管棚超前预支护技术研究[D].西南交通大学,2005.
    [171]赵建平.浅埋暗挖隧道管棚预支护机理及其效用研究[D].中南大学,2005.
    [172]李河玉.小导管注浆技术及在隧道和地下工程中的应用[D].西南交通大学,2002.
    [173]李政钧.锚杆加固围岩的作用机理研究[J].西部探矿工程,2006,(8):182-183.
    [174]孔宪宾,佘跃心,李炜等.土-锚杆相互作用机理的研究[J].工程力学,2000,17(3):80-86.
    [175]关宝树.隧道力学概论[M].成都,西南交通大学出版社,1993
    [176]朱焕春.PFC及其在矿山崩落开采研究中的应用[J].岩土工程学报,2006,25(9):1927-1931
    [177]Jong-Ho Shin, Yong-Ki Choi, Oh-Yeob Kwon, Sang-Duk Lee. Model testing for pipe-reinforced tunnel heading in a granular soil. Tunnelling and Underground Space Technology,2008, (23):241-250
    [178]Orianne Jenck, Daniel Dias, Richard Kastner. Discrete element modelling of a granular platform supported by piles in soft soil-Validation on a small scale model test and comparison to a numerical analysis in a continuum, Computers and Geotechnics,2009,(36):917-927
    [179]M. Hisatake, S. Ohno. Effects of pipe roof supports and the excavation method on the displacements above a tunnel face, Tunnelling and Underground Space Technology,2008, (23):120-127
    [180]M. Hisatake, S.Ohno, T. Katayama, Y. Ohmae, S.Sano. Effects of the ring-cut excavation method on the restraint of displacements ahead of a tunnel face. Tunnelling and Underground Space Technology,2009,(24):547-554
    [181]S.Konishi, T. Nishiyama, H. Iida. Face stabilizing method for shallow tunnels in loose sandy ground. Tunnelling and Underground Space Technology,2004 (19):507
    [182]In-Mo Lee, Seok-WooNam. The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels. Tunnelling and Underground Space Technology,2001, (16):31-40
    [183]John Hadjigeorgiou, Kamran Esmaieli, Martin Grenon. Stability analysis of vertical excavations in hard rock by integrating a fracture system into a PFC model. Tunnelling and Underground Space Technology,2009, (24):296-30
    [184]Takehiro OHTA, Dr. Sci el at. Experimental Study and Numerical Analysis on Stability of Tunnel Face in Sandy Ground[J]. QR of RTRI,2001,42(3).
    [185]Chungsik Yoo. Performance of multi-faced tunneling-A 3D numerical investigation.Tunnelling and Underground Space Technology 2009 (24):562-573
    [186]Young-Zoo Lee, Wulf Schubert. Determination of the round length for tunnel excavation in weak rock, Tunnelling and Underground Space Technology, 2008,(23):221-231
    [187]Rui Zhang, Jianqiao Li. Simulation on mechanical behavior of cohesive soil by Distinct Element Method. Journal of Terramechanics,2006, (43):303-316

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700