扩建垃圾填埋场中间衬垫变形与稳定性状及其工程控制措施
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于原址扩建是解决城市垃圾填埋场容量不足的最经济和有效手段之一,目前我国许多城市垃圾填埋场正在进行扩建。由于老填埋场采用了垂直防渗系统或其它原因,扩建时在新老填埋场之间需设置一层包含多种土工合成材料的中间衬垫系统作为扩建堆体的防渗屏障。然而由于垃圾的高压缩性、高度不均匀性及衬垫材料之间较低的界面强度,中间衬垫系统的以下变形和稳定问题成为其主要工程问题:老填埋场的整体沉降和侧向变形对中间衬垫系统产生附加应变、中间衬垫系统下卧垃圾体的局部沉陷破坏中间衬垫系统防渗材料、刚性构筑物周边的不均匀沉降拉裂土工膜、扩建垃圾堆体沿中间衬垫系统薄弱界面失稳破坏。
     能有效反映垃圾应变硬化特性的应力应变模型及中间衬垫系统的材料和界面特性是研究上述问题的基础。本文通过模型试验、解析方法和数值模拟等手段,围绕上述工程问题开展研究,所做工作和主要结论如下:
     (1)基于国内外垃圾三轴压缩试验结果,提出了垃圾的复合指数应力-应变模型,能较好地反映垃圾在小应变情况下的非线性变形特性及其在应变较大情况下(20%以内)的明显应变硬化特征,并建立了国内外垃圾的复合指数应力-应变模型参数数据库和建议值;同时系统总结了中间衬垫系统的材料特性和界面特性,并建议中间衬垫系统中土工合成材料的容许应变值取为8%。
     (2)基于所提出的垃圾复合指数应力-应变模型,针对山谷型扩建填埋场整体沉降和侧向变形对中间衬垫系统应变的影响开展数值模拟,考虑了中间衬垫系统刚度及界面特性、填埋场宽度、填埋场前坡坡度、填埋场背坡坡度、填埋场扩建高度及垃圾体模量参数对中间衬垫系统应变分布的影响。分析结果表明:老填埋场整体变形情况下的中间衬垫系统应变主要由老填埋场的侧向变形控制,最大拉应变发生在老填埋场背坡锚固沟处;老填埋场的整体沉降和侧向变形通常不会导致中间衬垫系统产生拉伸破坏,但当其背坡坡度较陡或扩建堆高较大时需值得关注。
     (3)分别针对砂土材料、压实粘土缓冲层和应变硬化材料开展了局部沉陷1g模型试验,考虑了堆体高度、加筋体刚度及缓冲层对土拱效应及加筋体变形的影响。试验结果表明:沉陷区加筋体的上覆土压力与加筋体挠曲变形大小密切相关,当扩建堆高较大时加筋体挠度不足以使土拱效应充分发挥,已有土拱理论可能低估沉陷区加筋体的实际上覆土压力;中间衬垫系统不宜仅采用压实粘土层缓冲层作为抗局部沉陷措施,但一定厚度的缓冲层结合土工格栅加筋可有效控制中间衬垫系统中防渗材料的变形;下卧土体局部沉陷条件下应变硬化材料的土拱规律及变形特性与砂土材料有明显差异,应变硬化材料自身具有良好的抵抗局部沉陷能力,附加加筋措施可进一步减小其变形量。
     (4)分别基于所提出的复合指数应力-应变模型及常规摩尔-库仑模型,首先针对所开展的局部沉陷1g模型试验开展了数值模拟,验证了数值模拟不同材料土拱效应及土工加筋抗局部沉陷问题的可靠性。进一步把研究对象拓展到扩建垃圾填埋场,提出了中间衬垫系统的抗局部沉陷加筋设计新方法并给出了相关设计曲线。该设计方法基于应变硬化垃圾材料的土拱规律,综合考虑了扩建堆体高度、垃圾体模量、加筋体刚度、中间衬垫系统坡度、缓冲层厚度等因素的影响,设计过程简单,具有良好的工程适用性。
     (5)首先基于传统薄膜理论建立了下卧土体沉降作用下圆形构筑物周边土工膜受力变形的分析模型,从理论上揭示了下卧土体沉降作用下圆形构筑物周边土工膜的褶皱产生机理。进一步通过引入“可变泊松比”概念并基于褶皱薄膜理论建立了褶皱区与张拉区土工膜受力变形的分析模型。与无限长构筑物相比,圆形构筑物周边土工膜在下卧土体沉降作用下将产生更大的变形和张力。减小下卧土体沉降、采用柔性土工膜及增大界面强度和圆形构筑物半径等措施可一定程度上降低褶皱的程度,而减小下卧土体沉降则是降低土工膜的内力和变形最直接有效工程措施。
     (6)针对含垃圾坝的山谷型新建或扩建填埋场沿衬垫界面的稳定性,提出了三楔体极限平衡分析方法,并给出了安全系数及屈服加速度系数的近似解。采用Newmark法对不同场地、不同高度垃圾填埋场沿衬垫界面的地震永久位移进行了分析。系统获得了填埋场衬垫界面强度、填埋场各坡坡度、填埋高度和宽度、垃圾坝高度和地震系数等参数对扩建堆体稳定性的影响规律。建议我国填埋场衬垫系统地震容许永久位移控制在15 cm内。
     (7)结合苏州七子山大型垃圾填埋场扩建工程,对中间衬垫系统的受力变形及扩建堆体沿其界面的静动力稳定性进行了综合评价。发现老填埋场整体不均匀沉降和侧向变形引起的中间衬垫系统的最大拉应变为2.8%~4.15%,建议采用LLDPE土工膜和GCL作为防渗材料。针对局部沉陷问题,建议水平区中间衬垫系统选用一层抗拉强度为90 kN/m(ε=8%)的双向HDPE土工格栅进行加筋并设置压实粘土垫层(厚0.6 m),斜坡区中间衬垫系统则选用一层抗拉强度为130kN/m(ε=8%)的双向HDPE土工格栅进行加筋并设置压实筛选垃圾缓冲层(厚1m)。土工膜与竖向导气井连接部位需采取措施进行处理,以控制土工膜的褶皱变形和最大应变。同时建议在老场垃圾坝上部设置反压平台,以有效控制扩建垃圾堆体沿中间衬垫界面的稳定性。
Expansion over the old landfill site is one of the most economic and effective ways to overcome the shortage of landfill capacity,and the way is presently being undertaken in many cities of China.For some reasons such as the liner system of the old landfill is under-standard,an intermediate liner system involving kinds of geosynthetics should be installed between the old landfill and the expanded waste, which acts as a barrier system of the expanded waste.However,due to the high compressibility and non-homogeneity of the waste in old landfill and the weak strength of geosynthetic interfaces,the deformation and stability of the intermediate liner system has become its main engineering problems.This thesis addresses in following four main deformation and stability problems of the intermediate liner system,which includes additional liner strain caused by global settlements and lateral movements of the old landfill,.damage of liner components caused by local subsidence under the liner,crack of geomembrane caused by differential settlements around the circular structure and sliding of the expanded waste along the weak geosynthetic interfaces.
     Studies of above mentioned problems should be based on an effective stress-strain model which can behave the stain hardening characteristic of the waste as well as the material and interface properties of the intermediate liner system.To solve these fundamental and engineering problems,model tests,analytical methods and numerical modeling were carried out in this thesis.The main contents and conclusions are as follows:
     (1) A composite exponential stress-strain model for Municipal Solid Waste (MSW) was proposed based on the available triaxial compression testing results.It can not only behave the non-linear characteristic of the waste within small strains,but also reflect the strain-hardening characteristic of the waste within larger strains (maximum 20%).Further,its parameter database for the foreign and domestic waste was built respectively and parameters for engineering design were also suggested.The material and interface properties of the intermediate liner system were summarized systematically based on these available data.The allowable strain of geoysnthetics in the intermediate liner system was recommended as 8%.
     (2) Based on the proposed composite exponential stress-strain model,global settlements and lateral movements of a valley landfill expansion were numerical analyzed.Effects of the stiffness and the interface strength of the intermediate liner stiffness,the landfill width,the front-slope gradient,the back-slope gradient,the expansion height,the expansion mode and the waste modulus on the intermediate liner strains were studied.The calculated results show the intermediate liner strains are mainly controlled by the lateral movements of the old landfill subjected to the vertical stress by the weight of expanded waste.The maximum tensile strain of the intermediate liner appears near the anchor trench in the back-slope of the old landfill. In general,the global deformations of the old landfill will not cause damage of the intermediate liner,however,special attentions should be paid to if the back-slope of the old landfill is steep and the landfill expansion height is large.
     (3) 1g model tests of local subsidence were carried out for sand,compacted clay buffer layer,and the strain hardening soil.These tests were design to study influences of the filling height,the reinforcement stiffness and the buffer layer thickness on the soil arching and the reinforcement deformation.It was found that the vertical soil pressure acted on the deflected reinforcement is related to its deflection amplitude.If the reinforcement deflection is not enough to form a complete soil arching,the existing design methods will underestimate the actual vertical pressure acting on the deflected reinforcement.The compacted clay buffer layer will not be functional well if it is singly used as the anti-subsidence measure,however,the compacted clay buffer layer combined with the reinforcement will reduce the deformations of the sealing material and the reinforcement effectively.The arching laws and the deformation characteristics of the strain hardening soil are significantly different from that of sand. The strain hardening soil can resist the underlying subsidence in some degree by itself, and the additional geosynthetic reinforcement will further reduce its deformation.
     (4) Based on the proposed composite exponential stress-strain model and the conventional Mohr-Coulomb model,numerical modeling was carried out for the 1g model tests mentioned above,which proves the effectivity of numerical modeling the geosynthetic reinforcement resisting the local underlying subsidence for different soils. Then the numerical model was extended to the landfill expansion,and based on which a new design method and associated design curves of intermediate liner reinforcement were proposed.This design method is presented on the basis of the soil-arching laws of the strain hardening waste,and it has considered the effects of the landfill expansion height,the waste modulus,the reinforcement stiffness,the slope gradient of intermediate liner and the thickness of the buffer layer.Additionally with a simple using way,it is an attractive method for the engineering application.
     (5) A simplified model to analysis tensions and strains of the geomembrane around circular structures subjected to differential settlements was presented based on the conventional membrane theory.It is found that wrinkles will be induced in the geomembrane around the circular structure and its mechanism is investigated theoretically.Further,the analysis model is given by introducing the concept of "variable Possion's ratio" and based on the wrinkled membrane theory so that the tension and strain of the geomembrane considering induced wrinkles can be analyzed. The calculated results show that larger tensions and strains will be induced in the geomembrane around the circular structure subjected to a differential settlement than those for the infinite long structure.The behaved degree of wrinkles can be reduced by decreasing differential settlements,using flexible geomembrane,increasing interface shear strength and radius of the circular structure.The maximum tension and strain of the geomembrane can be controlled by decreasing differential settlements effectively.
     (6) A three-part wedge limit equilibrium method for stability analysis of the valley landfill along liners was presented.The analytical solutions of the factor of safety and the yield acceleration coefficient were obtained.Based on Newmark method,the permanent displacement of the expanded waste along the intermediate liner system was investigated.The influence of the interface shear strength,the angle of slopes,the height and the width of the landfill,the height of the retaining wall and the horizontal seismic coefficient on the expanded waste's stability along the liner were obtained systematically.The allowable permanent displacement of the landfill along liners in China is suggested to be 15 cm.
     (7) The deformation and stability of the intermediate liner system for expansion of Suzhou Qizhishan landfill were integrated evaluated.It is founded that the maximum tensile strain in the intermediate liner is between 2.8%and 4.15%due to the global deformation of the old landfill.Linear low density polyethylene(LLDPE) geomembrane and geosynthetic clay liner(GCL) are recommended as the sealing materials in the intermediate liner.To resist the local underlying subsidence,a layer of biaxial geogrid reinforcement(with tensile strength 90 kN/m at a strain of 8%) combined with a underlying compacted clay layer(with 0.6 m thickness) is recommended for the horizontal intermediate liner,but a layer of biaxial geogrid reinforcement(with tensile strength 130 kN/m at a strain of 8%) combined with a compacted waste buffer layer(with 1 m thickness) are recommended for the intermediate liner located on the slope.The connecting area between the geomembrane and the vertical gas venting well should be dealt with by some practical measures,so that the wrinkles and the maximum strain in the geomembrane can be controlled.It is suggested that a back-pressure waste platform be set above the old retaining wall to guarantee the stability of the expanded waste along the intermediate liner.
引文
[1] Adachi T, Kimura M, Kishida K. Experimental study on the distribution of earth pressure and surface settlement through three-dimensional trapdoor tests. Tunnelling and Underground Space Technology. 2003, 18: 171-183.
    [2] ASTM D4595-2005. Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method. West Conshohocken, Pa, 2005.
    [3] Aubertin M, Li L, Arnoldi S, Simon R. Interaction between backfill and rock mass in narrow stopes. Soil and Rock mechanics America, 2003,1157-1164.
    [4] Aupicon M, Villard P, Gourc J P, et al. Bending experimentation of a composite clay geosynthetic liner. Proceeding of the 7th international conference on Geosynthetic, Nice,2002.
    [5] Bergado D T, Ramana G V, Sia H I. Evaluation of interface shear strength of composite liner system and stability analysis for a landfill lining system in Thailand. Geotextiles and Geomembranes, 2006, 24(6), 371-393.
    
    [6] Bierbaumer, A. Die Dimensionerung des Tunnelmauerwerks, Engelmann, Leipzig, 1913.
    [7] Bjarngard A B, Edgers L. Settlement of municipal solid waste landfills. Proceedings of the 13th annual Madison waste conference, University of Wisconsin, 1990,192-205.
    [8] Bouthot M, Blond E, Quesnel P et al. Landfill extension using the piggy-back technique:discussion and case study in quebec. http: //www.infogeos.com/files/news/document/Sardinia2003.pdf
    [9] Bray J D, Augello A J, Leonards G A, et al. Seismic stability procedures for solid-waste landfills. Journal of Geotechnical Engineering, 1995, 121(2): 139-151.
    [10] Bray J D, Rathje E M. Earthquake-induced displacement of solid-waste landfills. Journal of Geotechnical and Geoenvironmental Engineering, 1998,124(3): 242-253.
    [11] Byrne J R. Design issues with displacement-softening interfaces in landfill liners. Proc.Waste Tech'94. Charleston, S.C, 1994.
    [12] Chai J C, Miura N. Comparing the performance of landfill liner system. Journal of Material Cycles and Waste Management, 2000,4:135:142
    
    [13] Chelapati C V. Arching in soil due to the deflection of a rigid horizontal strip. Proceeding of the symposium on soil-structure interaction. University of Arizona, Tucson, Arizona, 1964,356-377.
    [14] Chen Y M, Gao D, Zhu B. Geotechnical issues on geosynthetics in liner systems of expanded landfill. Geosynthetics 2008. Shanghai, China. 119-129.
    [15] Chen Y M, Zhan L T Z, Wei H Y, Ke H. Aging and compressibility of municipal solid wastes.Waste Management, 2009,29(1):86-95.
    [16] Chevalier B, Combe G, Villard P. Experimental and numerical studies of load transfer and arching effect in the trap-door problem. http://geo.hmg.inpg.fr/~frederic/articles/GED_2007/Article-E.pdf.
    [17] Cowland J W, Tang K Y, Gabay J. Density and strength properties of Hong Kong refuse.Proceedings Sardinia'93, Fourth International Landfill Symposium, Cagliari, Italy, 1993,1433-1446.
    [18] De A, Zimmie T F. Frictional behavior of landfill liner interfaces with geonets. Proceeding of 6~(th) International Conference on Geosynthetics, 1998, Altanta, Georgia, USA:443-446.
    [19] Dickinson S, Brachman R W I. Deformations of a geosynthetic clay liner beneath a geomembrane wrinkle and coarse gravel. Geotextiles and Geomembranes, 2006,24:285-298
    [20] Dixon N, Ngambi S, Jones D R V. Structural performance of a steep slope landfill lining system. Proceeding of the institution of civil engineers, Geotechnical Engineering, 2004, 157,115-125.
    [21] Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundation Division, ASCE, 1970,96(SM5):1629-1653.
    [22] Edger S L, Noble E J J. A biological model for long term settlement in landfills.Environmental Geotechnology. Rotterdam: Balkema, 1992: 177-184.
    [23] Edil T B, Ranguette V J, Wuellner W W. Settlement of municipal refuse. Geotechnics of waste fills-theory and practice, 1990, ASTM STP 1070, Arvid Landva and G David Knowles Eds, Philadelphia, pp: 225-239.
    
    [24] Evans, C. H. An Examination of Arching in Granular Soils, M.S. Thesis, MIT, 1983.
    [25] Filz G M, Esterhuizen J B, Duncan J M. Progressive failure of lined waste impoundments.Journal of Geotechnical Engineering, 2001,127(10):841-848.
    
    [26] Finley C A, Holtz R D. Investigation and modeling of two composite landfill covers. Geosynthetics International. 2001, 8(2):97-112.
    [27] Finn W D L. Boundary Value Problems of Soil Mechanics, Journal of the Soil Mechanics and Foundation Division, ASCE, 1963, 89(SM5):39-72.
    [28] Fowmes G J, Dixon N, Jones D R V. Validation of a numerical modelling technique for multilayered geosynthetic landfill lining systems. Geotextiles and Geomembranes, 2008, 26(2):109-121.
    [29] Gabr M A, Hunter T J. Stress-strain analysis of geogrid-supported liners over subsurface cavities. Geotechnical and geological engineering, 1994,12:65-86.
    [30] Getzler, Z, Komornik A, Mazurik A. Model Study on Arching Above Buried Structures.Journal of the Soil Mechanics and Foundations Division, ASCE, 1968, 94(SM5):1123-1141.
    [31] Giroud J P, Beech J F. Stability of soil layer on geosynthetic lining systems. Proc Geosysthetic'89 Conf, Industrial Fabric Assn Int, St paul. 35-46.
    [32] Giroud J P, Bonaparte R, Beech J F, Gross, B A. Design of soil layer-geosynthetic systems overlying voids. Geotextiles and Geomembranes, 1990, 9:11-50.
    [33] Giroud J P, Morel N. Analysis of geomembrane wrinkles. Geotextiles and Geomembranes,1992,11:255-276
    [34] Giroud J P, Soderman K L. Comparision of geomembranes subjected to differential settlement. Geosynthetic International, 1995a, 2(6):953-968
    [35] Giroud J P, Soderman K L. Design of structure connected to geomembranes. Geosynthetic International, 1995b, 2(2): 379-428
    [36] Giroud J P. Determination of geosynthetic strain due to deflection. Geosynthetic International,1995c,2(3):635-641
    [37] Giroud J P. Possion's ratio of unreinforced geomembranes and nonwoven geotextiles subjectd to large strains. Geotextiles and Geomembranes, 2004, 22:297-305.
    [38] Grisolia M, Napoleoni Q. Deformability of waste and settlements of sanitary landfills.Proceeding of world congress on waste management ISWA'95, Wien, 1995.
    [39] Gunturi V R, Elgamal A W M.A class of inhomogeneous shear models for seismic analysis of landfills, Soil Dynamics and Earthquake Engineering, 1998,17(3): 197-209.
    [40] Han J, Gabr M A. Numerical analysis of Geosynthetic-reinforced and pile-supported earth platforms over soft soil. Journal of Geotechnical and Geoenvironmental Engineering, 2002. 128(1): 44-53.
    [41] Han J, Huang J, Poraba A. 2D numerical modelling of a constructed geosythetic-reinforced embankment over deep mixed columns. 2005, ASCE GSP131.
    [42] Handy R L. The arch in soil arching. Journal of Geotechnical Engineering, 1985, 111(3):302-318.
    [43] Hebeler G L, Frost J D, Myers A T. Quantifying hook and loop interaction in textured geomembrane-geotextile systems. Geotextiles and Geomembranes, 2005,23: 77-105.
    [44] Hewlett W J, Randolph M F. Analysis of Piled embankments. Ground Engineering, 1988,21(3): 12-18.
    [45] Houston W N, Houston S L, Liu J W, et.al. In situ testing methods for dynamic properties of MSW landfills. Earthquake design and performance of solid waste landfills. ASCE GSP,1995, 54:73-82
    [46] Hsuan Y G Data base of field incidents used to establish HDPE geomembrane stress crack resistance specifications. Geotextiles and Geomembranes, 2000,1-22.
    [47] Idriss I M, Fiegel G, Hudson M B, et al. In: Yegian M K, Finn W D L, eds. Seismic Response of Operating Industries Landfill. Earthquake design and performance of solid waste landfills.New York: ASCE Geotechnical Special Publication, 1995. 83-118.
    [48] Iglesia G R. Trapdoor experiments on the centrifuge, a study of arching in geomaterials and similitude in geotechnical models. Massachusetts Institute of Technology. 1991.
    [49] Itasca Consulting Group, Inc. FLAC (Version 5.00) Users' Guide. Minneapolis, Minnesota,USA, 2005
    [50] Jaky J. The coefficient of earth pressure at rest. Journal of the society of Hungarian architects and engineers, Budapest, 1944, 355-358.
    [51] Jamei M, Villard P, Zaghouani K, et al. Prevention of risk due to karstic cavities detected in a recent motorway in Tunisia using geotextiles. Proceeding 8ICG, Geosynthetics. 2006,809-812.
    [52] Jang D.J., Montero C. Design of liner systems under vertical expansions: an alternative a geogrids. Proceeding of geosynthetics, 1993, 3:1487-1510.
    [53] Janssen, H.A. Versuche fiber Getreidedruck in Silozellen, Zeitschrift Verein Deutscher Ingenieure, 1895, pp. 1045-1049.
    [54] Jessberger H L, Kockel R. Determination and assessment of the mechanical properties of waste materials. Proc Sardinia 93 4th hit Landfill Symp, San Margherita di Pula, CISA,Cagliari, Italy, 1993,1383-1392
    [55] Jessberger H L, Stone K J L. Subsidence effects on clay barriers. Geotechnique, 1991,41(2):185-195.
    [56] Jessberger H L. Geotechnical aspects of landfill design and construction, Part 2: materials parameters and test methods, Institution of Civil Engineers Geotechnical Engineering Journal,1994,105-113.
    [57] Jones D R V, Dixon N. Landfill lining stability and integrity: the role of waste settlement.Geotextiles and Geomembranes, 2005,23:27-53
    [58] Jones R H, Dixon N. Shear strength properties of geomembrane/geotextile interfaces.Geotextiles and Geomembranes, 1998,16: 45-71.
    [59] Kavazanjian E J, Matasovic N, Bonaparte R, et al. In: Yalcin B A, David E D, eds. Evaluation of MSW properties for seismic analysis. Proceedings of Geoenvironment 2000, New York:ASCE Geotechnical Special Publication, 1995.1126-1141.
    [60] Kavazanjian E J, Matasovic N, Stokoe K H, et al. In: Kamon eds. In situ shear wave velocity of solid waste from surface wave measurements. Proc. 2nd International Congregation on Environmental Geotechnics. Osaka, Japan: Balkema, 1996. 97-102.
    [61] Kavazanjian E. Mechanical properties of municipal solid waste. Proceedings Sardinia' 01,Eighth International Waste Management and Landfill Symposium, Cagliari, Italy, 2001.415-424.
    [62] Kavazanjian E. Waste mechanics: recent findings and unanswered questions. Proceedings of Sessions of GeoShanghai 2006, Shanghai, China. 2006,33-54.
    [63] Kezdi A. Lateral earth pressure. Foundation Engineering Handbook. Van Nostrand Reinhold.New York, 1975,197-220.
    [64] Kockel R. Scherfestigkeit von mischabfall im hinblick auf die standsicherheit von deponien. Schriftenreihe des institutes fur frundbau, heft24, Ruhr University Bochum, 1995.
    [65] Koerner R M, Hwu B L. Stability and tension considerations regarding cover soil on geomembrane lined slopes. Geotextiles and Geomembranes, 1991, 10:335-355.
    [66] Koerner R M. Designing with geosynthetics(4~(th) Edition). Prentice-Hall Inc. Englewood Cliffs. NJ, 1998.
    [67] Kolsch F. Material values for some mechanical properties of domestic waste. Proceedings Sardinia'95, Fifth International Landfill Symposium, Sardinia, 1995.
    [68] Koutsabeloulis N C, Griffiths D V. Numerical modelling of the trap door problem.Geotechnique. 1989, 39(1): 77-89.
    [69] Koutsourais M M, Sprague C J, Pucetas R C. Interfacial friction study of cap and liner components for landfill design. Geotextiles and Geomembranes, 1991,10(5-6): 531-548.
    [70] Krinitzsky E L, Hynes M E, Franklin A G Earthquake safety evaluation of sanitary landfills. Engineering Geology, 1997(4): 143-156.
    [71] Krynine D P. Discussion of 'Stability and stiffness of cellular cofferdams' by Karl Terzaghi.Trans. Am. Soc. Civ. Eng., 1945,110,1175-1178.
    [72] Kuo S S, Desai K, Rivera L. Design method for municipal solid waste landfill liner system subjected to sinkhole cavity under landfill site. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2005, 9(4):281-291.
    [73] Ladanyi B, Hoyaux B. A Study of the Trap-Door Problem in a Granular Mass. Canadian Geotechnical Journal, 1969,6(1):1-15.
    [74] LaGatta M D, Boardman B T, Cooley B H, et al. Geosynthetic clay liners subjected to differential settlement. Journal of Geotechnical and Geoenvironmental Engineering, 1997,123(5):402-410
    [75] Landva A O, Clark J I. Geotechnical testing of waste fill. Proceeding of Canadian Geotechnical Conference, Ottawa, Ontario, 1986, 371-385.
    [76] Landva A O, Valsangkar A J, Pelkey S G. Lateral earth pressure at rest and compressibility of municipal solid waste. Canadian Geotechnical Journal, 2000, 37:1157-1165.
    [77] Li L, Aubertin M, Belem T. Formulation of a three dimensional analytical solution to evaluate stresses in backfilled vertical narrow openings. Canadian Geotechnical Journal.2005,42(6): 1705-1717.
    [78] Li L, Aubertin M. An improved analytical solution to estimate the stress state in subvertical backfilled stopes. Canadian Geotechnical Journal. 2008,45:1487-1496.
    [79] Ling H I, Leshchinsky D, Mohri Y, et al. Estimation of municipal solid waste landfill settlement. Journal of Geotechnical and Geoenviromental Engineering, 1998,124(1):21-28.
    [80] Ling H I, Leshchinsky D. Seismic Stability and permanent displacement of landfill covers systems. Journal of Geotechnical and Geoenvironmental Engineering, 1997,123(2): 113-122.
    [81] Lydick L D, Zagorski G A.. Interface friction of geonets: a literature survey. Geotextiles and Geomembranes, 1991,10:549-558.
    [82] Machado S L, Carvalho F M., Vilar O M. Constitutive model for municipal solid waste. Journal of Geotechnical Engineering, 2002, 128(11): 940 -951
    [83] Machado S L, Vilar O M, Carvalho F M. Constitutive model for long term municipal solid waste mechanical behavior. Computers and Geotechnics. 2008, 35:775-790.
    [84] Manassero M, Van Impe, W.F. & Bouazza, A. 1996. Waste disposal and containment.Proceedings 2nd International Congress Environmental Geotechnics, Osaka 3: 1425-1474.
    [85] Marques A C M. Filz G M. Vilar O M. Composite compressibility model for municipal solid waste. Journal of Geotechnical and Geoenviromental Engineering, 2003, 129(4):327-378.
    [86] Marston A, Anderson A O. The theory of loads on pipes in ditches and tests of cement and clay drain tile and sewer pipe. Iowa Engrg. Experiment Station Bull, Iowa State Coll., Ames,Iowa, 1913.
    [87] Martin J P, Koerner R M, Whitty J E. Experimental friction evaluation of slippage between geomembrane, geotextiles and soils. Proceeding of International Conference on Geomembranes, IFAI, Denven, 1984,191-196.
    [88] Matasovic N, Kavazanjian E J. Cyclic characterization of OII landfill solid waste. Journal of Geotechnical and Geoenvironmental Engineering, 1998,124(3): 197-210.
    [89] Mateos T. Dynamic compaction improvement in a MSW and in an inser waste landfills.Proceedings of 5th International Congress on Environmental Geotechnics, 2006, 1:585-592.
    [90] McCartney J S, Zornberg J G, Swan R H. Analysis of a large database of GCL-Geomembrane interface shear strenghth results. Journal of Geotechnical and Geoenvironmental Engineering,2009, 135(2):209-223.
    [91] McNulty, J.W. An Experimental Study of Arching in Sand, Ph.D. Thesis in Civil Engineering,University of Illinois, 1965.
    [92] Mitchell J K, Seed R B. Kettleman Hills Waste Landfill Slope Failure. I: Liner-System Properties. Journal of Geotechnical Engineering, 1990, 116(4):647-668.
    
    [93] Morris D V, Woods C E. Settlement and engineering consideration in landfill final cover design. Geotechnics of Waste fills-Theory and Practice, ASTM, Philadelphia, 1990,86-103.
    [94] Muir Wood D. Geotechnical modelling. Spon Press, 2004.
    [95] Newmark N M. Effects of earthquakes on dams and embankments. Geotechnique, 1965,15(2): 139-159.
    [96] Papamichos E, Vardoulakis I, Heil L K. Overburden Modeling Above a Compacting Reservoir Using a Trap Door Apparatus. Phys. Chem. Earth. 2001,26:69-74.
    [97] Park H I, LEE S R. Long-term settlement behavior of landfills with refuse decomposition.Journal of solid waste technology and management, 1997,24 (4):159-165.
    [98] Park H I, LEE S R. Long-term settlement behavior of landfills with various fills ages. Waste Management and Research, 2002,20,259-268.
    [99] Peggs I D, Schmucker B, Carey P. Assessment of maximum allowable strains in polyethylene and polypropylene geomembranes. In: Proceedings of the Geo-Frontiers 2005 Congress,Austin, TX, 2005, January, 24-26.
    [100] Pirapakaran K, Sivakugan N. Arching within hydraulic fill stopes. Geotechnical and Geological Engineering, 2007,25:25-35.
    [101] Potts V J, Zdravkovic L. Finite Element Analysis of Arching Behaviour in Soils. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics. Goa, India, 2008.
    [102] Qian X D, Koerner R M, Gray D H. Geotechnical aspects of landfill design and construction. New Jersey: Prientice-Hall Inc, 2001
    [103] Qian X D, Koerner R M, Gray D H. Translational failure analysis of landfills. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(6): 506-519.
    [104] Qian X D, Koerner R M. Effect of apparent cohesion on translational failure. Journal of Geotechnical and Geoenvironmental Engineering, 2004,130(1): 71-80
    [105] Rathje E M, Bray J D. One- and two-dimensional seismic analysis of solid-waste landfills.Canadian Geotechnical Journal, 2001, 38: 850-862.
    [106] Reddy K R, Kosgi S, Motan E S. Interface shear behaviour of landfill composite liner systems: a finite element analysis. Geosynthetic International, 1996, 3(2): 247-275.
    [107] Sakai T, Tanaka T. Experimental and Numerical Study of Uplift Behavior of Shallow Circular Anchor in Two-Layered Sand. Journal of Geotechnical and Geoenvironmental Engineering. 2007, 133(4):469-477.
    [108] Seed H B, Martin G R. The seismic coefficient in earth dam design. Journal of Soil Mechanics and Foundation Division, 1966, 92(3): 25-58.
    [109] Seed R B, Mitchell J K, Seed H B. Kettleman Hills Waste Landfill Slope Failure. II: Stability analyses. Journal ofGeotechnical Engineering, 1990, 116(4):669-690
    [110] Shama H D, Dukes M T, Olsen D M. Field measurements of dynamic moduli and poission's ratios of rufuse and underling soils at a landfillsite. Geotechnics of waste fills-theory and practice, ASTM STP 1070, Philadelphia, 57-70.
    [111] Shewbridge S E. Yield acceleration of lined landfills, Journal of Geotechnical and Geoenvironmental Engineering, 1996, 122(2):156-158.
    [112] Singh M K. Characterization of stress-deformation behaviour of municipal solid waste. Ph.D.Thesis, University of Saskatchewan, Canada. 2008.
    [113] Singh S, Murphy B. Evaluation of the stability of sanitary landfills. Geotechnics of waste fills-theory and Practice. ASTM STP 1070, Philadelphia, 1990.
    [114] Soong T Y, Koemer R M. Behavior of waves in high density polyethylene geomembranes: a laboratory study. Geotextiles and Geomembranes, 1999,17: 81-104
    [115] Sowers G F. Settlement of waste disposal fills. Proceeding of 8th international conf. Soil mechanical and found engineering. Moscow. 1973, part 2:207-210.
    [116] Stark T D, Eid H T. Shear behaviour of reinforced geosynthetic clay liners. Geosynthetics International, 1996, 3(6): 771-786.
    [117] Stark T D, Poeppel A R. Landfill liner interface shear strengths from torsional-ring-shear tests.Journal of Geotechnical Engineering, 1994, 120 (3): 597-615.
    [118] Stein M, Hedgepeth J M. Analysis of partly wrinkle membranes. Tech. Rep. NASA TN D~813,1961.
    [119] Stulgis R P, Soydemir C, Telgener R J, et al.Use of geosynthetic in 'piggyback landfills': a case study. Geotextiles and Geomembranes, 1996,14:341-364.
    [120] Tanaka T, Sakai T. Progressive failure and scale effect of trap-door problems with granular materials. Soils and foundations, 1993, 33(1): 11-22.
    [121] Terzaghi K. Stress Distribution in Dry and in Saturated Sand Above a Yielding Trap-Door. Proceedings. First International Conference on Soil Mechanics and Foundation Engineering. Cambridge, Massachusetts, 1936, pp:307-311.
    
    [122] Terzaghi K. Theoretical soil mechanics. John Wiley and Sons, Inc, New York, 1943:37-42.
    [123] Thusyanthan N I, Madabhushi S P G., Singh S. Centrifuge modeling of solid waste landfill systems—part 1: development of a model municipal solid waste. ASTM Geotechnical Testing Journal, 2006,29(3):217-222.
    [124] Tony L T Zhan, Y M Chen, W A Lin. Shear Strength Characterization of Municipal Solid Waste at the Suzhou Landfill, China. Engineering Geology, 2008, 97(4):97-111.
    [125] Towhata I, Kawano Y, Yonai Y, et al. Laboratory tests on dynamic properties of municipal wastes. Proceeding of the 11~(th) conference in soil dynamics and earthquake engineering and 3~(rd) international conference on earthquake geotechnical engineer, 2004,1:688-693.
    [126] Triplett E J, Fox P J. Shear strength of HDPE geomembrane/geosynthetic clay liner interfaces. Journal of Geotechnical and Geoenvironmental Engineering, 2001,127(6):543-552.
    [127] Van impe W F, Bouazza A.. Densification of domestic waste fills by dynamic compaction.Canadian Geotechnical Journal, 1996,33:879-887.
    [128] Vardoulakis 1, Graf B, Gudehus. Trap-Door Problem with Dry Sand: A Statical Approach Based Upon Model Test Kinematics. International Journal for Numerical and Analytical Methods in Geomechanics, 1981, 5:57-78.
    [129] Vilar O M, Carvalho M F. Mechanical properties of municipal solid waste. Journal of Testing and Evaluation, ASTM, 2004, 32(6): 1-12.
    [130] Villard P, Briancon. Design of geosynthetic reinforcements for platforms subjects to localized sinkholes. Canadian Geotechnical Journal. 2008,45:196-209.
    [131] Villard P, Gourc J P, Feki N. Analysis of geosynthetic lining systems (GLS) undergoing large deformations. Geotextiles and Geomembranes, 1999,17:17-32.
    [132] Viswanadham B V S, Jessberger H L. Centrifuge modeling of geosynthetic reinforced clay liners of landfills. Journal of Geotechnical and Geoenvironmental Engineering, 2005,131(5):564-574.
    [133] Viswanadham B V S, Konig D. Centrifuge modeling of geotextile-reinforced slopes subjected to differential settlements. Geotextiles and Geomembranes, 2008,27:77-88.
    [134] Viswanadham B V S, Mahajan R R. Centrifuge model tests on geotextile- reinforced slopes. Geosynthetic International, 2007, 14(6): 365-378.
    [135]Viswanadham B V S,Mahesh K V.Modeling deformation behaviour of clay liners in a small centrifuge.Canadian Geotechnical Journal,2002,39:1406-1418.
    [136]Vucetic M K,Dobry R.Effect of soil plasticity on cyclic response.Journal of Geotechnical Engineering,1991,117(1):89-107
    [137]Vukelic A,Szavits-Nossanb A,Kvasnicka P.The influence of bentonite extrusion on shear strength of GCL/Geomembrane interface.Geotextiles and Geomembranes,2008,26(1):82-90.
    [138]Wall D K,Zeiss C,Municipal landfill biodegradation and settlement.Journal of Environmental Engineering,1995,121(3):14-224.
    [139]Wasti Y,Ozduzgun Z B.Geomembrane-geotextile interface shear properties as determined by inclined board and direct shear box tests.Geotextiles and Geomembranes,2001,19:45-57.
    [140]Watts K S,Charles J A,Settlement of recently placed domestic refuse landfill,Proceeding of the Institution of Civil Engineers,Part 1:Design and Constrution,1990,971-993
    [141]Whitman R V,Bailey W A.Use of computers for slope stability analysis.Journal of Soil Mechanics and Foundation Division,1966,93(4):475-498.
    [142]Williams K H.Arch in soil arching.Journal of Geotechnical Engineering.1989,115(3):415-419.
    [143]Yen B C,Scanlon B.Sanitary landfill settlement rates.Journal of Geotechnical Engineering,ASCE,1975,101(5):475-487.
    [144]Zekkos.Evaluation of static and dynamics properties of municipal solid waste.Dissertation submitted in partial fulfillment of the requirement for the degree of doctor of philosophy,Department of civil and environmental engineering,University of California,Berkeley,2006.
    [145]Zhou S J,Stormant J,Chen Z.Simulation of geomembrane response to settlement in landfills by using material point method.International Journal for Numerical and Analytical Methods in Geomechanics.1999,23:1977-1994.
    [146]Zornberg J G,Arriaga F.Strain distribution within geosynthetic-reinforced slopes.Journal of Geotechnieal and Geoenvironmental Engineering,2003,129(1):32-45.
    [147]Zornberg J,Kavazanjian E.Prediction of the performance of a geogrid-reinforced slope founded on solid waste.Soils and Foundations,2001,41(66):1-16.
    [148]包承纲,铙锡保,李玫等.离心模拟试验及若干应用特例.中国水利学会2007学术年会 论文集:物理模拟技术在岩土工程中的应用,苏州,2007,pp 41-51.
    [149]包承纲.土工合成材料应用原理与工程实践.北京:中国水利水电出版社.2008.
    [150]曹卫平.桩承试路堤土拱效应及基于性能的设计方法研究.博士学位论文.杭州:浙江大学,2007.
    [151]陈春红,刘素锦,王钊.土压力金的标定.中国农村水利水电.2007,2:29-32.
    [152]陈继东,施建勇,方云飞.垃圾土降解规律及填埋场沉降计算分析.河海大学学报(自然科学版),2006(6):680-682.
    [153]陈景涛.岩土工程的数值方法.科技创业月刊.2007,12:190-192.
    [154]陈若曦.垃圾填埋场衬垫系统沉陷机理及抗沉陷设计.硕士学位论文.杭州:浙江大学,2008.
    [155]陈云敏,陈若曦,朱斌,高登.下卧土体局部沉陷条件下复合衬垫系统的受力变形性能及设计.岩土工程学报,2008,30(1):21-27.
    [156]陈云敏,柯瀚,凌道盛.城市垃圾填埋体的动力特性及地震响应.土木工程学报,2002,35(3):66-72.
    [157]陈云敏,叶肖伟,张名强等.多场耦合作用下重金属离子在粘土中的迁移性状研究.岩土工程学报,2005,27(12):1371-1375.
    [158]陈云敏,陈仁朋,詹良通等.岩土工程的多尺度试验.第25届全国土工测试学术研讨会论文集.2008,43-56.
    [159]城市生活垃圾卫生填埋技术规范(CJJ 17-2004).北京:中国建筑工业出版社,2004.
    [160]旦增顿珠,介玉新,魏弋峰,等.MSW的强度特性试验研究.清华大学学报(自然科学版),2006,46(9):1538-1541。
    [161]邓学晶,孔宪京,刘君.城市垃圾填埋场的地震响应及稳定性分析.岩土力学,2007,10(28):2096-2100.
    [162]邓学晶,孔宪京,邹德高.复杂荷载作用下填埋场HDPE土工膜受拉计算.岩土工程学报,2007,29(3):447-450.
    [163]杜星文,王长国,万志敏.空间薄膜结构的褶皱研究进展.力学进展.2006,36(2):187-199.
    [164]冯世进.城市固体废弃物静动力特性及填埋场的稳定性分析.博士学位论文.杭州:浙江大学,2005.
    [165]高登,朱斌,陈云敏,林伟岸.竖向扩建垃圾填埋场中间衬垫系统的应交分析.浙大学 报工学版.2009,4(4):760-765.
    [166]果迎先,李坚等.城市生活垃圾的几种处理方法.环境保护科学.1996,22(2):14-16.
    [167]黄克智.板壳理论.北京:清华大学出版社,1987.
    [168]黄文熙.土的工程性质,北京:水利电力出版社,1983.
    [169]加瑞,朱伟,钟小春.砂土拱效应的挡板下落试验及机理研究[J].岩土力学,2006,12(27):687-692.
    [170]贾海莉,王成华,李江洪.关于土拱效应的几个问题.西南交通大学学报,2003,38(4):398-402.
    [171]建筑抗震设计规范(GB 50011-2001).北京:中国建筑工业出版社,2001.
    [172]柯翰,陈云敏.填埋场封场后的次沉降计算.岩土工程学报,2003(6),742-746.
    [173]柯瀚,陈云敏,谢焰,詹良通.适宜降解条件下填埋场沉降模型及案例分析.岩土工程学报,2009,31(6):929-938.
    [174]孔宪京,孙秀丽.城市固体废弃物沉降模型研究现状及其进展.大连理工大学学报,.2006,46(4):615-624.
    [175]李广信.高等土力学.北京:清华大学出版社,2004.
    [176]林伟岸.复合衬垫系统界面剪力传递、强度特性及安全控制.博士学位论文.杭州:浙江大学,2009.
    [177]刘爱军.土工复合排水网渠道排水的应用.南水北调与水利科技,2007,5(4):83:84.
    [178]刘波,韩彦辉.FLAC原理、实例与应用指南,北京:人民交通出版社,2005.
    [179]刘君,孔宪京.卫生填埋场复合边坡地震稳定性和永久变形分析.岩土力学,2004,25(5):778-782.
    [180]聂永丰.三废处理工程技术手册-固体废物卷(第一版).北京:化学工业出版社,2000.
    [181]彭功勋,施建勇,刘荣.卫生填埋场生物降解沉降的热力学机理及其估算.岩土力学,2003,23(3),401-404.
    [182]钱学德,郭志平,施建勇等.现代卫生填埋场的设计与施工.北京:中国建筑工业出版社,2001.
    [183]生活垃圾填埋污染控制标准(GB 16889-2008).中华人民共和国国家标准,2008.
    [184]生活垃圾卫生填埋场防渗系统工程技术规范(CJJ 113-2007).北京:中国建筑工业出版社,2007.
    [185]苏州市七子山垃圾填埋场扩建工程初步设计文字说明.上海市政工程设计研究总院, 2006.
    [186]孙秀丽.城市固体废弃物变形及强度特性研究.博士学位论文.大连:大连理工大学,2007.
    [187]孙英杰,宫殿松.渗滤液回灌加速填埋场稳定化的机理与影响因素.青岛建筑工程学院学报.2003,24(1):18-21.
    [188]屠兴.模型实验的基本理论与方法.西北工业大学出版社,1989.
    [189]土工合成材料测试规程(SL/T235-1999).南京水利科学研究院,中国土工合成材料协会.北京:水利电力出版社,1999.
    [190]王艳明,方建民,兰吉武.现代垃圾填埋技术设计理念及其工程应用.环境工程:2005,23(3):49-51.
    [191]魏瑞.压实粘土拉伸特性试验研究.硕士学位论文.北京:清华大学,2007.
    [192]吴世明,陈龙珠.饱和土的泊松比及含气量对它的影响.水利学报,1989,1:37-43.
    [193]谢强.城市生活垃圾卫生填埋场沉降特性研究.博士学位论文.重庆:重庆大学,2004.
    [194]谢焰.城市生活垃圾固气液耦合压缩试验与理论研究.博士学位论文.杭州:浙江大学,2007.
    [195]袁文忠.相似理论与静力学模型试验.西南交通大学出版社,1998.
    [196]曾辉,余尚江.岩土应力传感器设计和使用原则.岩土工程学报.1994,16(1):93-98.
    [197]张丙印,介玉新.垃圾土的强度与变形特性.工程力学,2006,23(增2):14-22
    [198]张乾飞,王艳明,徐永福等.老填埋场改扩建的关键环境岩土技术问题.土木工程学报,2007,40(4):73-81.
    [199]张振营,陈云敏.城市垃圾填埋场有机物降解沉降模型的研究.岩土力学,2004,(2):238-241.
    [200]张振营,吴世明,陈云敏.城市生活垃圾土性参数的室内试验研究.岩土工程学报,2000,22(1):35-39
    [201]张振营.城市生活垃圾的压缩性及填埋场的沉降研究.博士学位论文.杭州:浙江大学,2005.
    [202]浙江大学岩土工程研究所.苏州七子山垃圾填埋场污泥坑及周边垃圾堆体稳定性评估及安全控制措施研究报告,2009.
    [203]浙江大学岩土工程研究所.苏州七子山垃圾填埋场一期垃圾堆体渗透性能现场测试报告,2007.
    [204]浙江大学岩土工程研究所.苏州市七子山垃圾填埋场二期工程特殊土工测试报告,2006.
    [205]浙江大学岩土工程研究所.苏州市七子山垃圾填埋场扩建工程关键岩土工程问题研究报告,2009.
    [206]周健,池勇,廖雄华.颗粒流理论及其工程应用简介.岩土工程师,2001,13(4):1-4.
    [207]周小文,濮家骝,包承纲.砂土中隧洞开挖稳定机理及松动土压力研究[J].长江科学院院报.1999,16(4):9-14.
    [208]朱碧堂,刘一亮.基坑开挖和支护中的土拱效应.岩土工程师,2001,13(1):1-4.
    [209]朱斌,陈云敏,柯翰.扩建城市垃圾填埋场的地震稳定性分析.岩土力学,2008,29(6):1483-488.
    [210]朱俊高,施建勇,严蕴.垃圾填埋场固体废弃物的强度特性试验研究.第一届全国环境岩土工程与土工合成材料技术研讨会论文集合.杭州:浙江大学出版设,2002,192-196
    [211]朱伟,钟小春,加瑞.盾构隧道垂直土压力松动效应的颗粒流模拟.岩土工程学报,2008,30(5):750-754.
    [212]祝龙根,吴晓峰.低幅剪应变条件下砂土的动力特性的研究.大坝观测与土工测试,1988,12(1):27-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700