等离子体制取富氢气体及其在四效催化技术中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车数量的迅速增长,汽车污染排放已成为很多大中城市空气污染的主要来源。柴油车与汽油车相比具有耐用性好、维护成本低、温室气体排量小等特点,在当前能源危机的形势下,推广应用柴油车是一项有效的应对措施。柴油车排放的主要污染物为氮氧化物(NOx)和颗粒物(PM),目前降低NOx排放的后处理措施主要包括NOx选择性还原技术(SCR)和NOx储存-还原技术(NSR),颗粒物排放则较多地采用过滤器来控制。
     四效催化技术能够将PM、HC、CO和NOx同时净化,是目前先进的柴油车尾气后处理技术。本文综述了四效催化技术的发展现状,在分析了整体式和组合式四效催化方法在实际应用中所存在的一些不足的基础之上,提出了一种新型的再生方法,以车用柴油为原料制取富氢气体,并以此种气体来对氮氧化物储存-还原催化剂和颗粒物过滤器进行再生,从而实现对柴油车尾气四效催化技术进一步的完善。
     本文首先通过模拟配气实验研究了NOx储存-还原(NSR)催化剂储存NOx的性能,并分析了NSR催化剂再生所需的最适反应条件。结果表明:300℃下催化剂的储存性能最佳,温度升高到600℃时催化剂能够完全脱附,O2能够极大地促进储存反应的进行;使用浓度为5%的H2对催化剂进行再生时,再生过程不受温度影响,仅2min左右就可将催化剂再生完全。
     根据模拟配气实验得出的NOx储存-还原催化剂再生所需的最适反应条件,开发了一套等离子体制氢系统。系统中等离子体反应器通过高电压、低电流的电弧放电将空气离解,引发柴油的部分氧化反应,产生富氢气体(H2浓度5.3%)。而后以排气代替空气来制氢,同样成功制取出富氢气体(H2浓度3.3%)。
     最后,在柴油发动机上考察了富氢气体在NOx储存-还原催化剂和颗粒过滤器再生中的应用。结果表明:富氢气体(H2浓度5%)能够对NOx储存-还原催化剂和颗粒过滤器在短时间内(分别为240s和165s左右)再生完全,等离子体制氢系统所制取的富氢气体完全能够满足再生要求。
Vehicular emissions have become the major source of air pollution in many cities with the rapid growth of vehicle population. Compared with gasoline vehicles, diesel vehicles have advantages such as high durability, lower cost of maintenance and less greenhouse gas emissions. Today, the promotion of diesel vehicles is considered an effective way to mitigate the energy crisis. The major pollutants in diesel emissions are nitrogen oxides (NOx) and particulate matters (PM). The aftertreatment technologies for NOx control mainly include selective catalytic reduction (SCR) and NOx storage-reduction (NSR), while PM is usually reduced by particulate filter.
     At present, four-way catalytic technology is considered an advanced diesel aftertreatment technology which can reduce HC, CO, NOx and PM at the same time. The development of four-way catalytic technology was reviewed in this thesis, and a new kind of regeneration method was proposed based on the analysis of shortages of combined and integrated four-way catalytic technologies in practice. The method uses hydrogen-rich gas produced with diesel fuel to regenerate the NOx storage-reduction catalyst and particulate filter, further improving the four-way catalytic technology of diesel exhaust aftertreatment.
     Firstly, the storage capability of NOx storage-reduction catalyst was investigated by simulating exhaust gases and the optimal conditions for NSR catalyst regeneration was analyzed in this thesis. Results show that 300℃is the optimal temperature for NOx storage and the presence of O2 significantly promotes the progress of NOx storage reaction, while at 600℃the NOx adsorbed by the catalyst will be completely released. The NSR catalyst can be regenerated in about two minutes whenφ(H2)=5% and it will not be affected by the temperature.
     According to the optimal conditions for NSR catalyst regeneration found in the simulation experiment, a system that can produce hydrogen with plasma technology was developed. In the system the plasma reactor can ionize air by arc discharge with high voltage and low current to arouse the partial oxidation reaction of diesel fuel to produce hydrogen-rich gas (φ(H2)=5.3%). When the air was replaced by engine exhaust, the hydrogen-rich gas (φ(H2)=3.3%) was also produced successfully.
     Finally, the use of hydrogen-rich gas for the regeneration of NOx storage-reduction catalyst and particulate filter was studied on a diesel engine. Results show that hydrogen-rich gas (φ(H2)=5%) can completely regenerate the devices mentioned above in a short time (about 240 and 165 seconds, respectively). Thus, the hydrogen-rich gas produced by plasma technology can meet the requirements of regeneration.
引文
[1]中国汽车技术研究中心.中国汽车工业年鉴,2008.
    [2]Lin Gan.Globalization of the automobile industry in China:dynamics and barriers in greening of the road transportation[J].Energy policy,2003,31(6):537-551.
    [3]崔玉静,张旭红,王丽明.机动车污染与防治对策[J].北京城市学院学报,2007(6):82-86.
    [4]国家环保局大气处.汽车对大气的污染及其控制[M].北京:气象出版社,1988.
    [5]周华祥,龙华,胡佳英,等.汽车尾气污染的净化处理技术[J].装备制造技术,2007(2):25-27.
    [6]马涛.汽车尾气排放与大气污染[J].油气田环境保护,2007,17(2):52-53.
    [7]Amanda Scoggins,Tord Kjellstrom,Gavin Fisher. Spatial analysis of annual air pollution exposure and mortality[J]. Science of the Total Environment,2004,321:71-85.
    [8]刘际芳.汽车排放污染物对人体的危害[J].天津科技,2003(5):49-50.
    [9]Szu-Chich Chen,Chung-Min Liao.Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources[J].Science of the Total Environment,2006,366(1):112-123.
    [10]Denise L.Mauzerall,Babar Sultan,Namsoug Kim.NOx emissions from large point sources:variability in ozone production,resulting health damages and economic costs[J].Atmospheric Environment,39(16):2851-2866.
    [11]J.W.Knebel,D Ritter,M.Aufderheide.Exposure of human lung cells to native diesel motor exhaust—development of an optimized in vitro test strategy[J].Toxicology in Vitro,2002(16):185-192.
    [12]卢晶,刘玉峰,胡俊巍,等.柴油机的颗粒物排放及其控制策略[J].柴油机,2002(3):25-27.
    [13]戴华茂.光化学烟雾研究综述[J].广东化工,2009,36(7):107-108.
    [14]单志强,陈建华.光化学烟雾的形成、危害及防治[J].地质灾害与环境保 护,2003,14(3):36-38.
    [15]司康.发展柴油车是当前汽车行业节能减排的重要选择[J].交通世界,2008(16):22-25.
    [16]胡成南,郝郑平.柴油车排放净化技术[J].中国环保产业,2002,5:26-28.
    [17]杜庆洋,杨振明,张劲松.S02对柴油车尾气中CO和HC在Pt/γ-Al2O3上催化氧化的影响[J].内燃机,2004(3):17-20.
    [18]何林华.车用柴油发动机的发展趋势[J].客车技术与研究,2006,24(3):1-3.
    [19]龚云卿,戴华,张昭良,等.柴油车氧化催化剂的研制[J].中国稀土学报,2003,21:76-78.
    [20]许允,刘忠长,姜伟,等.氧化催化转化器对降低柴油机微粒排放的影响[J].吉林大学学报,2007,31(1):65-68.
    [21]田柳青,叶代启.柴油车排气颗粒物的后处理技术[J].环境污染治理技术与设备,2003,4(10):74-77.
    [22]康守方,蒋政,於俊杰,等.用于轻型柴油车尾气排放的氧化催化剂研究进展[J].精细石油化工进展,2004,5(8):1-8.
    [23]Tim Johnson.Update on Diesel Exhaust Emissions Control Technology and Regulation[C]//DEER Conference,2004.
    [24]龚金科,王曙辉,伏军,等.柴油机颗粒捕集器通流式过滤体非线性动力研究[J].内燃机学报,2009,27(1):48-54.
    [25]吴修义.颗粒捕集器有效降低柴油车颗粒物污染[J].商用汽车,2007(8).
    [26]石锦云,孟金来.柴油机微粒捕集器及其再生技术研究[J].农业装备与车辆工程,2008(11):48-50.
    [27]王凤艳,吴海波.柴油车的颗粒捕集器[J].内燃机,2008(4):25-52.
    [28]贺泓,翁瑞,资新运.柴油车尾气排放污染控制技术综述[J].环境科学,2007,28(6):1169-1177.
    [29]Reiko Doumeki,Kenji Kodama,Satoshi Hiranuma,et al.Development of DPF System for Commercial Vehicles Pre-Catalyst Supporting to Active Regeneration(3rd Report).SAE 2006-01-0879.
    [30]袁守利,杜传进,颜伏伍.基于添加剂和电加热的柴油机DPF再生技术研究[J].车用发动机,2007(3):75-78.
    [31]资新运,张春润,周永林.微波技术在柴油机排气颗粒过滤体再生中的应用[J].世界汽车,1994(5):5-8.
    [32]王宪成,孙坦,高希彦.柴油机红外再生微粒捕集系统试验研究[J].大连理工大学学报,2007,47(2):180-184.
    [33]Paramjot Singh,AbishekM.Thalagavara,John H. Johnson,et al.Experimental Study of Active Regeneration of an Advanced Catalyzed Particulate Filter by Diesel Fuel Injection Upstream of an Oxidation Catalyst.SAE 2006-01-0819.
    [34]孙建萍,汤兆平.车用柴油机排放颗粒物捕集器再生技术研究[J].拖拉机与农用运输车,2007,34(4):51-56.
    [35]Ming Zheng,Dong Wang,Graham T.Reader.Boundary Layer Enhanced Thermal Recuperation for Diesel Particulate Filter Regeneration under a Periodic Flow Reversal Operation.SAE 2005-01-0951.
    [36]资新运,宁智,欧阳明高.柴油车微粒捕捉器逆向喷气再生的关键技术[J].内燃机工程,2002,23(6):70-73.
    [37]兰昌尧,郭猛超,韩国胜,等.柴油机颗粒捕集器再生技术研究综述[J].内燃机与动力装置,2008(2):36-39.
    [38]魏雄武.柴油机微粒捕捉器及其再生技术分析与研究[J].重型汽车,2005(2):30-32.
    [39]G.C.Koltsakis,O.A.Haralampous,C.K.Dardiots,et al.Performance of Catalyzed Particulate Filters without Upstream Oxidation Catalyst.SAE 2005-01-0952.
    [40]Antonio P.Triana,John H.Johnson,Song L.Yang.An Experimental and Numerical Study of the Performance Characteristics of the Diesel Oxidation Catalyst in a Continuously Regenerating Particulate Filter.SAE 2003-01-3176.
    [41]Antonio P.Triana,John H.Johnson,Song L.Yang.An Experimental and Computational Study of the Pressure Drop and Regeneration Characteristics of a Diesel Oxidation Catalyst and a Particulate Filter.SAE 2006-01-0266.
    [42]刘丙善Urea SCR排气后处理系统在重型柴油机中的应用[D].武汉:武汉理工大 学,2006.
    [43]林克衡.柴油引擎氮氧化物防治技术SCR(urea)系统之介绍[J].车辆研测资讯,2006(9):2-8.
    [44]Istvan Halasz,Alan Brenner.Selectivity-determining role of C3H8/NO ratio in the reduction of nitric oxide by propane in presence of oxygen over ZSM5 zeolites[J]. Catalysis Letters,1998,51:195-206.
    [45]黄鹏.采用SCR技术降低车用柴油机的NOx排放[J].交通环保,2004,25(6):40-42.
    [46]Giusweppe Maidia,Manfred Koebel.NH3-SCR of NO at low temperatures over sulphated vanadium on carbon coated monoliths:Effect of H2O and SO2 traces in the gas feed[J].Applied Catalysis B:Environmental,2006(66):281-287.
    [47]李岷.SCR脱NOx效率的主要影响因素浅析[J].黑龙江科技信息,2008(15):63.
    [48]许洪军,曹会智,刘伍权,等.柴油机尾气氮氧化物的机外净化技术研究(二)[J].内燃机,2005(1):38-40.
    [49]肖建华,李雪辉,徐建昌,等.NOx储存还原催化净化技术研究进展[J].现代化工,2005,25(8):15-19.
    [50]王林江,郭子峰,吴群英,等.柴油车尾气净化四效催化技术进展[J].工业催化,2009,17:3-6.
    [51]Rong-Fang Horng,Yuh-Ping Chang,Hui-Hui Huang,et al.A study of the hydrogen production from a small plasma converter [J].Fuel,2007,86:81-89.
    [52]吴涛涛,张会生.重整制氢技术及其研究进展[J].能源技术,2006,27(4):161-167.
    [53]张桂臻,韩丽艳,赵震,等.柴油车尾气四效催化净化技术研究进展[J].现代化工,2008,28(1):35-40.
    [54]Yoshida K,Makino S,Sumiya S,et al.Simultaneous Reduction of NOx and Particulate Emissions from Diesel Engine Exhaust[C]//SAE Paper 892046,1989.
    [55]Cooper Barry J,Thoss James E.Role of NO in Diesel Particulate Emission Control[C]//SAE Paper 890404,1989.
    [56]孙锦宜,林西平.环保催化材料及应用[M].北京:化学工业出社,2002:104-105.
    [57]恩格尔哈德公司.四元柴油尾气催化剂和应用方法[P].中国专 利,98806200,002-07-31.
    [58]TERAOKA Y,SHANGGUAN W F,KAGAWA S.Reaction Mechanism of Simultaneous Catalytic Removal of NOx and Diesel Soot Particulate[J].Chem Intermed,2000,26:201-206.
    [59]刘光辉.同时催化去除柴油机微粒和NOx的试验研究(1)[J].内燃机学报,2003(1):40-44.
    [60]刘光辉.同时催化去除柴油机微粒和NOx的试验研究(2)[J].内燃机学报,2003(2):111-114.
    [61]中国科学院生态环境研究中心.含硫富氧尾气中氮氧化物净化催化剂[P].中国专利,1631531A,2005-06-29.
    [62]Wang H,Zhao Z,Xu C,et al.The catalytic behavior of La2Mn2O3 Nano-particle perovskite-type oxide catalysts for the combustion of the soot particle from the diesel engine[J].Chinese Science Bulletin,2005,50(14):1440-1444.
    [63]许洁,赵震,段爱军,等.柴油机尾气净化四效担载Mn基钙钛矿复合氧化物催化剂的研究[C]//中国稀土学会专业委员会.第十四届全国稀土催化学术会议论文集,无锡,2007:152-155.
    [64]徐翔,杜传进.柴油机四效催化器技术研究[J].拖拉机与农用运输车,2006,33(1):64-70.
    [65]Walker A P,Chandler G R,Cooper B J.An integrated SCR and contin-uously regenerating trap system to meet future NOx and PM legislation[C]//Society of Automotive Engineeres Inc.Diesel exhaust aftertreatment. Warrendale:SAE Inc,2000-01-0188.
    [66]BJ Cooper,AC McDonald,AP Walker,et al.Proceedings of DEER:9th Diesel Engine Emissions reduction Conference[C]//Rhode island:2003.
    [67]Kawashima Y.Future prospects of hybrid vehicles development technology.JSAE,2004,58(1).
    [68]Baba E,Ishikawa T,Kawase Y,et al.Reactor Vibration analysis inconsideration of coupling between the magnetic field and vibration.2004 IEEE Industry Applications Society Annual Meeting,04 Oct-07 Oct 2004.
    [69]Shigeru Itabashi,Kuniaki Niimi,Shinji Kamoshita,等.关于颗粒-NOx减排系统改善NOx排放的研究[J].国外内燃机,2008(3):36-47.
    [70]杨妙梁.柴油颗粒捕集器(DPF)的最新技术进展(二)-DPNR问世[J].汽车与配件,2002,27:24-25.
    [71]许伯彦,张勇,齐运亮.适用于高含硫柴油的车用柴油机尾气净化装置(DPF,DPNR)的开发研究[C]//中国环境科学学会学术年会优秀论文集,2008:1014-1016
    [72]Page D,Edqar B L,MacDonald R J.The Quadcat four-way catalytic Converter:An integrated aftertreatment system for diesel engine [C]//Society of Automotive Engineeres Inc.Combustion and controls for advanced engines.Warrendale:SAE Inc,1999.
    [73]Timothy V.Johnson.Diesel Emission Control in Review[C]//SAE Paper 010030,2006.
    [74]机动车NOx控制技术和产业发展[R].中国环保产业协会机动车污染防治委员会,中国汽车技术研究中心.
    [75]S.S.Mulla,S.S.chaugule,A.Yezerets,et al.Regeneration mechanism of Pt/BaO/Al2O3 lean NOx Trap catalyst with H2[J].Catalysis Today,2008,136:136-145.
    [76]L.Bromberg,D.R.Cohn,V.Wong.Regeneration Of Diesel Particulate Filter With Hydrogen Rich Gas,PSFC/RR-05-2.
    [77]L.Bromberg,D.R.Cohn,A.Rabinovich.Aftertreatment of Diesel Vehicle Emissions Using Compact Plasmatron Fuel Converter-Catalyst Systems,PSFC/RR-00-1.
    [78]宋卫林,蒋毅,程极源,等.甲醇催化分解研究进展[J].合成化学,2001,9(4):315-325.
    [79]王婷婷,姚志彪,熊源泉.甲烷催化制氢气的研究进展[J].能源研究与利用,2005(2):11-14.
    [80]杨修春,韦亚南.甲烷重整制氢用催化剂的研究进展[J].材料导报,2007,21(5):49-64.
    [81]吴川,张华民,衣宝廉.化学制氢技术研究进展[J].化学进展,2005,17(3):423-429.
    [82]李慧青,邹吉军,刘昌俊,等.离子体法制氢的研究进展[J].化学进 展,2005,17(1):69-77.
    [83]陈专.燃料电池电动汽车商业化存在的问题[J].上海汽车,2009(2):7-9.
    [84]江茂修,左丽华.用于车用燃料电池的车载制氢技术[J].汽车工艺与材料,2001(4):1-37.
    [85]Bromberg L,Cohn D R,Rabunovich A,et al.Compact plasmatron-boosted hydrogen technology for vehicular applications[J].Hydrogen Energy,1999,24(4):341-350.
    [86]Bromberg L,RabinovichA,AlexeevN,etal.http://www.psfc.mit.edu/library/99ja/99jaO 04/99ja004-full.pdf.
    [87]Bromberg,D.R.Cohn,A.Rabinovich,et al.Onboard Plasmatron Hydrogen Production for Improved Vehicles,PSFC/JA-06-3.
    [88]李新刚,孟明,林培琰,等.NOx储存催化剂Pt/Ba-Al-O的结构与性能研究[J].分子催化,2001,15(3):165-169.
    [89]李新刚,孟明,林培琰,等Pt/Ba-Al-O催化剂储存NOx的性能和机理研究[J].化学物理学报,2001,14(4):501-506.
    [90]何俊,陈英,李雪辉,等Pd/Mg(Al)O催化剂上NOx的储存-还原[J].燃料化学学报,2006,34(3):348-352.
    [91]肖建华,李雪辉,王芙蓉,等Mn-Mg-Al-O催化剂上NOx的氧化-储存性能[J].燃料化学学报,2009,37(1):82-86.
    [92]王春安,闫俊虎.新型低温等离子体技术及应用[J].广东技术师范学院学报,2010(1):22-25.
    [93]付娟娟,蔡忆昔,孙平.处理柴油机氮氧化物和颗粒的低温等离子体法[J].农机化研究,2004(4):231-233.
    [94]吕保和,蔡忆昔,马利等.低温等离子体净化柴油机尾气中氮氧化物的试验研究[J].内燃机工程,2010,31(2):22-26.
    [95]孟淮玉,芮延年,查焱等.低温等离子体技术在汽车尾气净化中的应用[J].环境保护科学,2008,34(2):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700