瓦里关地区气溶胶数谱观测与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒物的物理化学性质是认识颗粒物对环境质量、气候变化和人体健康影响的基础,它们在大气中的行为和影响受到颗粒物粒径大小及数谱分布的影响。颗粒物数谱分布的测定和研究,是理解不同模态颗粒物分布特点和演变过程的必要条件,也是探讨大气颗粒物其它物理性质和环境影响的基础。
     2005年8月至2007年5月,利用国际先进的实时在线测量颗粒物数谱分布测量系统,对瓦里关地区10~500nm颗粒物进行了为期22个月的观测。观测期间瓦里关地区颗粒物数浓度以爱根核模态为主,全年颗粒物数浓度2102cm~(-3),核模态456cm~(-3);爱根核模态1161cm~(-3);积聚模态474cm~(-3)。颗粒物数浓度水平较城市地区低一个数量级。
     颗粒物数浓度和数谱分布具有明显的季节特征,颗粒物平均数浓度最高值出现在夏季,最低值发生在秋季。冬季核模态颗粒物数浓度远远高于其他季节,主要受新粒子形成与增长过程的影响;夏季爱根核模态颗粒物数浓度远高于其他季节,主要受传输影响较大。颗粒物平均数浓度最低出现在秋季,因为秋季大雾降水天气较多,大雾的湿清除作用以及活化成云凝结核(CCN)使得积聚模态颗粒物数浓度急剧减少。
     气象条件对颗粒物数谱分布影响显著。沙尘和降水过程主要对爱根核模态和积聚模态颗粒物数浓度产生影响,对核模态颗粒物数浓度的影响不大。当风向为东北方向时,爱根核模态颗粒物数浓度增加,而当风向为西北和北时,核模态颗粒物数浓度增加。当相对湿度小于40%时,比较有利于新粒子的形成。研究发现大气中出现较高数浓度的爱根核模态颗粒物时,后向轨迹分析显示气团起源于瓦里关东北部地区或者途径东北部地区且传输速度较慢;而大气中含有较高浓度的核模态颗粒物时,气团来源于干净地区,且传输速度较快。
     瓦里关地区观测到新粒子形成和增长事件:新粒子形成事件占观测天数的23%。冬季新粒子发生频率最高,夏季发生频率最低,主要由于夏季大气湿度较高,平均相对湿度达70%。瓦里关地区新粒子的增长速率范围在0.05~4.07nm h~(-1),其形成速率为2.27~5.29cm~(-3)s~(-1)。夏季新粒子增长速度较快,冬季和春季新粒子形成速率较快。
Ambient particles are ubiquitous,influencing the global climate and causing adverse effects.Particle number size distributions are basis to understand the particle behavior and transformation as well as these effects in the atmosphere.
     From August 2005 to May 2007,particle number size distributions between 10nm and 500nm have been taken measurements for 22 months in Mt.Waliguan.During this period,the average particle number concentration are:total 2102cm~(-3);Nucleation mode 456cm~(-3); Aitken mode 1161cm~(-3);Accumulation mode 474cm~(-3).Particle number concentration is about one magnitude lower than that in urban area.
     Particle number concentration and particle number size distributions have seasonal variation.The highest particle number concentration was observed in summer,and the lowest in autumn.The particle number concentrations are dominated by Aitken mode.In winter nucleation mode particle concentration is higher than other season because of lower ambient temperature and relative humidity.For the transportation,Aitken mode particle concentration is highest in summer,which may results from the transportation.The average number concentration in autumn is the lowest as there are more foggy days in autumn.
     Meteorological factors strongly affect the particle number size distributions.Dust storm and precipitations strongly affect the Aitken and accumulation mode particle number concentration,but they have little influence on nucleation mode.If the wind blow from northeast,number concentration of Aiken mode will increase.If the wind blow from northwest or north,number concentration of nucleation mode will increase.Cluster analysis of backward trajectories shows that the higher Aitken mode particle number concentration observed when air parcels come from or pass by northeast of Mt.Waliguan,with short trajectory length.High number concentrations of nucleation mode are associated with air mass from clean regions,with long trajectory length.
     New particle formation and growth events were also observed in Mt.Waliguan.The frequency of new particle formation events were observed around 23%of measure days.The events occurred during all seasons,but with highest frequency in winter and lowest in summer. The formation rates varied from 2.27~5.29 cm~(-3)s~(-1)..The growth rate varied from 0.05~4.07 nm h~(-1).The growth rate in summer is higher than other seasons.It could be related to high condensable vapor transported from northeast and/or from enhanced photochemical product. Because of lower temperature and relative humidity,the formation rate in winter and spring are higher.
引文
[1]王明星,张仁健 大气气溶胶研究的前沿问题[J]气候与环境研究.2001,3(1):119-124
    [2]IPCC.Third Assessment Report,Climate Change 2007:The Scientific Basis[R].New York Cambridge University Press,2007.
    [3]Erome.O.Nriagu.Vanadium in the environment[M]Part1:Chemistry and Biochemistry.1998,A Wiley Interscience Publication,Canada.
    [4]王平利,戴春雷等 城市大气中颗粒物的研究现状及健康效应[J]中国环境监测.2005,2(1):83-87.
    [5]Whiteby,K.H.,The Physical characteristics of sulfur aerosol.[J]Atmospheric Environment,1978.12:p.135-159.
    [6]唐孝炎,张远航等.大气环境化学[M].北京:高等教育出版社,2006
    [7]Hussein,T.,Indoor and outdoor aerosol particle size characterization in Helsinki [R].Report series in Aerosol Science,2005
    [8]Kulmala,M.,How particles nucleate and grow.[J].Science,2003.302(5467):1000-1001
    [9]Dowd,C.D.O.,Biogenic costal aerosol production and its influence on aerosol radiative properties.[J]Journal of Geophysical Research-Atmospheres,2001.106(D2):1545-1549.
    [10]Kerminen,V.M.,Pirjola,L.,Kulmala,M.,How significantly does coagulational scavenging limit atmospheric paticle production[J]Journal of Geophysical Research-Atmospheres,2001.106(D20):119-125
    [11]Charles F.Clement,Liisa Pirjola,Miikka dal Maso,Analysis of particle formation bursts observed in Finland[J]Journal of Aerosol Science,Aerosol Science 32(2001)217-236
    [12]M.Kulmala,H.Vehkam.aki,T.Pet.aj.a,M.Dal Maso.Formation and growth rates of ultrafine atmospheric particles:a review of observations.[J]Journal of Aerosol Science,Aerosol Science 35(2004)143-176
    [13]Stanier,C.O.,Khlystov,A.Y.,Nucleation events during the Pittsburgh air quality study:Description and relation to key metrological,gas phase,and aerosol parameters.[J]Aerosol Science and Technology,2004.38:p.253-264
    [14]王明星.大气化学[M].北京:气象出版社,1999
    [15]Sheldon K.Friedlander,Emerging Issues in Nanoparticle Aerosol Science and Technology(NAST).[R]University of California,Los Angeles June 27-28,2003.
    [16]Heintzenberg,J.,Physical Characteristics of Atmospheric Aerosols.presentation.
    [17]McMurry,P.H.,A review of atmospheric aerosol measurements.Atmospheric En vironment,2000.34(12-14):p.1959-1999.
    [18]吴志军 北京城市大气细和超细粒子数谱分布特征及变化规律[D]北京大学博士论文.2007
    [19]Seinfeld,J.H.and Pandis S.N.,Atmospheric Chemistry and Physics.1998,New York: JOHN WILEY&SONS,INC.
    [20]Kulmala,Laakso L,Initial steps of aerosol growth.Atmospheric Chemistry and Physics,2004,4:2553-2560.
    [21]Weber.New particle formation in the remote troposphere:A comparison of observations at various sites.Geophysical Research Letter,1999,26:307-310.
    [22]Korhonen,P.,Kulmala,Ternary nucleation of H2SO4,NH3,and H2O in the atmosphere.[J]Journal of Geophysical Research-Atmospheres,1999.104(D21):p.26349-26353.
    [23]Yu F T,R P.Ultrafine aerosol formation via ion-mediated nucleation.Journal of Geophysical Letters,2000,27(6)883-886.
    [24]Turco R P,Yu F,A new source of tropospheric aerosols:Ion-ion recombination.Journal of Geophysical Letters,1998,25:635-638.
    [25]Laakso,L.,Anttila,Kinetic nucleation and ions in boreal forest particle formation events.[J]Atmospheric Chemistry and physics,2004.4:p.2353-2366.
    [26]汤洁,温玉璞等 中国西部大气清洁地区黑碳气溶胶的观测研究[J]应用气象学报.1999,5(2):160-169.
    [27]祁栋林,黄建青等 瓦里关山大气浑浊度的初步分析[J]青海环境.1999.3(1):18-21.
    [28]温玉璞,徐晓斌,汤洁等 青海瓦里关大气气溶胶元素福集特征及其来源[J]应用气象学报.2001,11(4)400-408.
    [29]薛虎圣,瓦里关山气溶胶化学特征与痕量气体HNO3、SO2的观测研究[D]北京大学在职申请硕士学位论文,2002
    [30]姜忠,石广玉等 北京市1998-2001年大气气溶胶粒子数浓度分析[J]气候与环境研究.2003,12(4)495-502.
    [31]鲁端峰,赵长遂等 南京城区可吸入颗粒物日变化特征及物理特性[J]燃烧科学与技术,2007,2(13):45-49.
    [32]王蓓,刘建国等 大气气溶胶粒子数密度和质量浓度的测量[J]环境科学与技术.2007,5(5):35-37.
    [33]王蓓,刘建国等 利用APS分析大气气溶胶数浓度和质量浓度[J]中国科学院研究生院学报.2007,9(5):710-713.
    [34]朱彬,马力等 重庆冬季大气气溶胶的物理化学特征[J]南京气象学院学报.2006,10(5):662-668.
    [35]杨军,朱彬等 则当、景洪大气气溶胶粒子的物理、化学特性[J]气象学报,2001,59(6):795-802.
    [36]Edgerton S A,Bian X.Particulate air pollution in Mexico City:A collaborative research project[J].J Air & Waste Manage Assoc,1999,49:1221-1229.
    [37]游荣高,洪钟祥,吕位秀,等.边界层大气气溶胶浓度和尺度谱分布特征[J]大气科学,1983,7(1):88-94.
    [38]陈金荣,周文贤 重庆市区大气气溶胶的时空分布和物理特性[J]气象科学,1992, 12(4):436-443.
    [39]张瑜,银燕等 石家庄地区夏季气溶胶飞机探测资料分析[J]内蒙古气象,2007,5:6-8.
    [40]周秀骥.中国大气本底基准观象台进展总结报告(1994-2004)[M].北京:气象出版社,2005.
    [41]Model 3010 Condensation particle Counter Instruction Manual,www.tsi.com
    [42]Jeong,C.H.,Ultrafine particle number size distributions in ROCHESTER:implication for nucleation events and application of advanced receptor modeling.Ph.D.Dissertation,2004:p.Clarkson University,U.S.A
    [43]Birmili,W.,Wiedensohler,Atmospheric particle number size distribution in central Europe:Statistical relations to air masses and meteorology.[J]Journal of Geophysical Research-Atmospheres,2001.106(D23):p.32005-32018.
    [44]颜鹏,房秀梅等 临安地区地面SO_2变化规律及其源地分析[J]应用气象学报,1999,8(3):267-275.
    [45]Draxler R R.Hybrid Single-Particle Lagrangian Integrated Trajectories(HY-SPL IT):Version 3.0-User′s Guide and Model Description,[M]NOAA Technical Memo ERL ARL-195.1992.
    [46]Birmili,W.and Wiedensohler,New particle formation in the continental boundary layer:Metrological and gas phase parameter influence.[J]Geophysical Research Letters,2000.27(20):p.3325-3328.
    [47]Kulmala,M.,Laakso,Initial steps of aerosol growth.[J]Atmosphere Chemistry and physics,2004.4:p.2553-2560.
    [48]Keil,,A.,Bursts of Aitken mode and ultrafine particles observed at the top of continental boundary layer clouds.[J]Journal of Aerosol Science,2001,106,24119-24125.
    [49]Leaitch,W.R.,A case study of gas-to-particle conversation in an eastern Canadian forest.[J]Journal of Geophysical Research D,104,8095-8111.
    [50]Zeromskiene,K.,Ulevicius Formation of new aerosol particles and hygroscopic growth in coastal environment.[J]Environmental and Chemical Physics,2004 22,54-58
    [51]Ulevicius,V.,Evolution of aerosol particle size distribution in the coastal environment:Effect of relative humidity,SO2 and NO2.[J]Environment and Chemical Physics,1997,24,13-17
    [52]Kavouras,I.G.Secondary organic aerosol formation vs primary organic aerosol emission:In situ evidence for the chemical coupling between monoterpene acidic photooxidation products and new particle formation over forest.[J]Environmental Science and Technology,1999,33,1028-1037
    [53]Weingartner,E.,Nyeki,Seasonal and diurnal variation of aerosol size distributions at a high-alpine site.[J]Journal of Geophysical Research D,1999,104,26809-26820

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700