颗粒层过滤器的实验研究及性能模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代工业生产中常产生含尘气体其中大部分是高温含尘气体。这些气体的直接排放不仅会造成环境的严重污染,而且还会对人体健康构成严重的威胁,因此必须在排放前进行处理。颗粒层除尘技术采用具有耐高温、耐磨、耐腐蚀的固体颗粒进行除尘,被认为是最具发展前途的高温除尘技术之一。
     颗粒层过滤器特点是具有良好的耐高温和耐高压性能,过滤介质不存在腐蚀问题,对气体和灰尘性质不敏感,过滤效率较高。它存在的问题是过滤风速不能太高,在处理相同烟气量时阻力大,过滤面积也比袋式除尘器大,其对细微尘粒的除尘效率不高。
     国内外对颗粒层过滤除尘技术的研究均处于试验阶段,其系统的理论研究和运行实践尚存在不足。针对以上问题,本文首先搭建固定床颗粒层过滤除尘性能测试实验台,在常温条件下从实验上分析各因素单独变化时过滤效率的变化趋势。在此基础上,采用正交实验设计方法对含尘过滤条件下进行了过滤效率和过滤压降的实验研究。分析实验数据,利用公式拟合和回归的方法得出颗粒过滤层的过滤效率和压力降与过滤速度、过滤时间、颗粒层滤料平均粒径、含尘气体浓度和颗粒层厚度之间的无量纲多元关联式。并与实验数据、理论公式计算值进行比较,结果证明在本实验条件范围内,该回归式可以用来对过滤效率进行预测,为过滤层性能优化选择提供参考。对含尘过滤效率进行理论推导:以经典过滤理论为基础,结合含尘滤料过滤阶段自身特点,建立数学模型,推导得出一套含尘颗粒层过滤效率计算式。该公式与经典过滤效率公式对比,发现都和实验测量值误差较大,需进一步改进。
     为了优化颗粒层过滤器内部流场,利用目前较流行的CFD模拟软件FLUENT,通过DPM离散相模型进行数值模拟来讨论颗粒层过滤效率及总成压降与其结构参数、过滤特性参数的相关关系。在模拟结果与实验测量值相吻合的基础上,提出优化颗粒层内部流场的方法。最后引用颗粒层过滤总成的渗透率和压降的联合关系式作为其综合性能评价指标,使指标值最高即代表过滤性能最佳。用MATLAB优化工具包对指标表达式进行优化计算,得出指标值最高时对应的过滤系统各参数的最优值。
     本文的研究结果,尤其是回归的无量纲的多元关联式可以给颗粒层过滤器的设计者提供数据参考,减少重复性劳动。另外,本文探讨的模拟方法可以在过滤器的设计研究中使用,用模拟来简化部分实验环节,从而可以节省大量的人力和物力,提出进一步优化颗粒层过滤技术的方案。
In the field of industry production, it always makes waste gas that most is high temperature. If these waste gases that contain dust are direct emitted into environment, it will be harmful for human being and make environment pollution. So it must be disposed by dust remover. The granular bed filtration using the materials which are wearable, acid-resistant and high temperature- resistant is considered as the most promising developmental technique.
     The characteristic of granular bed filter are wearable, geostatic and high temperature- resistant, its filtrate granule will not be eroded and sensitive to gas and dust. But there are some problem for the filter such as low filtration velocity, high resistance in same dust-gas quantity, more area than bag filter and low filtration efficiency to imperceptibility granule.
     Internal and overseas, the research for granular bed filtration is in experiment phase now. Its systemic theoretical research is also incomplete. In order to resolve these problems mentioned above, firstly the author set up the testing set of fixed granular bed filter. Then the experiment has been done under normal temperature. From the result the author analyzed the change law of filtration efficiency and pressure drop when each factor which effects filtration efficiency changed solely. In the base of this, the author using orthogonal test to experiment the filtration efficiency and pressure drop. Analyzing the experiment result, a dimensionless efficiency and pressure drop model of filtration velocity, granular bed thickness, fill ratio, granular diameter of filter bed, gas thickness and bed thickness has been obtained by multianalysis and regression method. After comparing this formula with the test data and theoretical calculation, the author draws a conclusion that this formula could be used to predict the filtration efficiency in this experiment condition. At last the author made a theoretical derivation of filtration efficiency under non-stationary condition. Based on classical filtration theory, according the characteristic of non-stationary filtration the author set up the mathematical model and obtained an efficiency formula through deduction. Compared with experiment result, the improvement of the formula should be done in future.
     To optimizing the inner fluid-field of granular bed filter, this thesis makes use of CFD (FLUENT numerical simulation method) numerical simulation technology, through DPM model to discuss the correlativity between filtration efficiency, the pressure drop and their each structural parameter, granular bed characteristic parameter. On the basis of the simulation conforming to the experiment result, the suggestion to optimizing the inner fluid-field of granular bed is brought forward. Associated relationship model of infiltration rate and pressure drop is advanced to be a general optimization estimate target, the higher that is, the better performance the granular bed filtration has. Optimal parameter values are obtained by adopting the optimization toolbox of MATLAB 6.5.
     The conclusion of this thesis, especially the dimensionless multiple-factor regression equations can offer instruction to the designers to reduce the repetitious work and enhance the performance of research. The numerical simulation method discussed in this thesis can be used in the design and research of filters, which partly replaces the experiments, largely saves the manpower and material resources, and optimizes the evaluation of bag filter's performance
引文
[1]GB13223-1996,火电厂大气污染物排放标准[S].
    [2]马广大主编.大气污染控制工程[M].中国环境科学出版社,北京,2004.194-218.
    [3]林肇信主编.大气污染控制工程[M].高等教育出版社,北京,1991.202-221.
    [4]Kvetoslav R.Spurny.Aerosol Filtration Science at the End of the 20th Century[M].Advance in aerosol filtration,2000,chapter2.
    [5]陈明绍,吴光兴,张大中等.除尘技术的基本理论与应用[M].北京:中国建筑工业出版社.1981.558-576.
    [6]Tassicker O J,Drenker S.Pilot scale gas filtration at extreme temperature and pressure[A].Proceeding of the International Conference on Advanced Coal Power Technology and Hot Gas Cleaning[C].Dusseldorf:Energy Power Research Institute,1987:350-400.
    [7]Andries J,Scarlett B.Closed loop controlled integrated hot gas clean up[R].Delft:Delft University of Technology,1991.
    [8]Yang W C,Newby R A,Lippert T E,Keairns D L,Cicero D C.A moving granular bed filter concept for particulate removal at high temperatures and high pressures.In Fluidization Ⅶ,Potter O E,Nicklin D J.(eds),Engineering Foundation,New York,1992,p.703-712.
    [9]Yang W C,Newby R A,Smeltzer E E,Lippert T E.An innovative moving granular bed filter for high-temperature and high-pressure application.In Circulating Fluidized Bed Technology V,Kwauk M.,Li J(eds.),Science Press,Bejing,1997,p.609-614.
    [10]J Smid,SS Hsiau,CY Peng and HT Lee.Hot gas cleanup:new designs for moving bed filters[J].Filtration & Separation,Volume 42,Issue 10,December 2005,Pages 36-39.
    [11]J Smid,SS Hsiau,CY Peng and HT Lee.Moving bed filters for hot gas cleanup[J].Filtration & Separation,Volume 42,Issue 6,July-August 2005,Pages 34-37.
    [12]S.S.Hsiau,J.Smid,F.H.Tsai,J.T.Kuo,C.S.Chou.Placement of flow-corrective elements in a moving granular bed with louvered-walls[J].Chemical Engineering and Processing,43(2004):1037-1045.
    [13]C.S.Chou,T.L.Yang,J.C.Chang.Flow patterns and wall stresses in a moving granular filter bed with an asymmetric louvered-wall and obstacles[J].Chemical Engineering and Processing 45(2006):79-89.
    [14]J.T.Kuo,J.Smid,S.S.Hsiau,C.Y.Wang,and C.S.Chou.Stagnant Zones in Granular Moving Bed Filters for Flue Gas Cleanup[J].Filtration & Separation,Volume 35,Issue 6,July-August 1998,Pages 529-534.
    [15]吴晋沪,房倚天,张建民等.颗粒移动床高温除尘工艺与设备的研究开发(Ⅰ)冷试结果及其理论分析[J].煤炭转化,1998,21(1):63-67.
    [16]吴晋护,房倚天,张建民等.颗粒移动床高温除尘工艺与设备的研究开发(Ⅱ)用冷试模型对热试的预测及讨论[J].煤炭转化,1998,21(2):56-59.
    [17]吴晋沪.移动床高温煤气除尘基础研究[D].山西,中国科学院山西煤炭化学研究所,1998.
    [18]张克,王振伟,颗粒移动床除尘装置高效粉尘回收器[J].环境保护,1995(8),13-15.
    [19]张立平,林爱光等.移动颗粒层除尘器除尘效率研究[J].环境科学,1993,14(6):34-37.
    [20]林爱光,张立平,阴金香等.颗粒移动床除尘装置[J].实验技术与管理,2001,18(1):47-48,51.
    [21]王助良,颜学升等.新型固定床颗粒层过滤规律的分析[J].江苏大学学报(自然科学版),2006,27(4):332-336.
    [22]王助良,钟秦,吉恒松等.新型固定床颗粒层除尘器的研究[J].洁净煤技术,2006,2:85-88.
    [23]陈万金.移动式颗粒床除尘器的除尘机理及其影响因素[J].江苏理工大学学报,1996,17(2):43-49.
    [24]吕保和.LX型移动式颗粒床除尘器研究与应用[J].通风除尘,1998,3:46-48.
    [25]吕保和.移动式颗粒床除尘器的除尘效率理论计算及其优化设计[J].江苏理工大学学报,1998,19(6):45-49.
    [26]金鑫,宋波,郭占成等.折流移动床用于除尘的研究[J].北京科技大学学 报,2001,23(6):505-507.
    [27]唐惠庆,郭占成,于宪溥等.折流式移动床中不同分布板倾角下气相流动行为的数值模拟[J].过程工程学报,2001,1(2):117-121.
    [28]秦红霞,何鹏.常温下固体颗粒层过滤除尘技术[J].北京科技大学学报,2006,28(8):770-772.
    [29]李翔,白皓,苍大强,等.固体颗粒床高温除尘器的等温实验研究[J].北京科技大学学报,2004,26(1):18-21.
    [30]许世森.移动颗粒层过滤及旋风分离的高温除尘研究[D].西安:西安交通大学,1996.
    [31]夏军仓,许世森,郜时旺.移动颗粒层过滤高温高压煤气除尘技术的试验研究[J].动力工程,2003,23(2):2237-2241.
    [32]许世森.移动颗粒层过滤高温除尘过程结构和参数优化实验研究[J].中国电机工程学报,1999,19(5):13-17.
    [33]陶继业.带静电促进的颗粒层过滤器高温煤气除尘研究[D].武汉,武汉大学,2005.
    [34]郜时旺.移动床颗粒层过滤系统高温高压除尘研究[D].西安,西安交通大学,2002.
    [35]袁竹林,许世森.颗粒层过滤除尘和分级过滤特性的数值模拟及实验对比[J].中国电机工程学报,2002,22(4):41-45.
    [36]袁竹林,许世森.移动颗粒层过滤除尘的数值模拟及实验对比[J].南京师大学报(工程技术版),2001,1(1):19-23.
    [37]许世森.静电场对移动颗粒层过滤高温除尘效率促进作用的探讨[J].中国电机工程学报,2000,20(1):60-64
    [38]C.N戴维斯.空气过滤[M],北京,原子能出版社,1979:7-91.
    [39][美]克莱德·奥尔编,邵启祥译.过滤理论与实践[M].北京,国防工业出版社,1982:5.
    [40]孙熙.袋式除尘技术及应用.机械工业出版社[M].2004.
    [41]Kirsch,A.A.and Fuchs,A.A.Ann.Occup.Hyg,10,23-30,1967.
    [42]D'Ottavio,T.and Goren,L,S,Aerosol capture in granular beds in the impaction dominated regime[M],Aerosol Sci.Technol,2,91,1983.
    [43]Schmidt,E.W.et al,.Filtration of aerosols in a granular bed[J].J,APCA,28(2),143,1978.
    [44]Li H,Kwauk M.Vertical pneumatic moving-bed transport-Ⅱ[J].Experimental findings.Chem.Eng.Sci.,44(2),261-271(1989).
    [45]Tien C.Granular Filtration of Aerosols and Hydrosols[M].Butterworths:USA,1989.365-379.
    [46]Chi Tien.Final Performance Report on Particle Deposition in Granular Media[M].DOE/ER/13930-2DE 93011612.1992.
    [47]Yoshida H,Tien C.A new correlation of the initial collection efficiency of granular aerosol filtration[J].A I Ch E J,1985,31(10):1752-1754.
    [48]Ushiki K,Tien C.Powder Technology[M],1989,58:243.
    [49]Takahashi T,Walata S A,Chi Tien.Transient Behavior of Granular Filtration of Aerosols-Effect of Aerosol Deposition on Filter Perfofinance[J].AIChE J,1986,32(4):684-690.
    [50]谭振祥,王金波.表面非稳态过滤的理论分析与实践研究[J].通风除尘,9(1),1990:1-4.
    [51]荣伟东,张国权.纤维层非稳态过滤的理论分析与实验研究[J].通风除尘,199011(3):8-12.
    [52]向晓东,刘君侠等.纤维层表面非稳态过滤研究[J].环境工程,2002,20(6):31-34.
    [53]J Smid,SS Hsiau,CY Peng and HT Lee.Hot gas cleanup:new designs for moving bed filters[J].Filtration & Separation,Volume 42,Issue 10,December 2005,Pages 36-39.
    [54]J Smid,SS Hsiau,CY Peng and HT Lee.Moving bed filters for hot gas clean up[J].Filtration & Separation,Volume 42,Issue 6,July-August 2005,Pages 34-37.
    [55]张殿印,张学义.除尘技术手册[M].北京:冶金工业出版社,2002.258-269.
    [56]刘克勤.实验用标准粉尘系列品类之四[M].劳动保护科学技术,1993,5.
    [57]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005.
    [58]付海明,张吉光.实验技术[M].北京:中国建筑工业出版社,2007.
    [59]伍悦滨,朱蒙生,工程流体力学泵与风机[M],北京,化学工业出版社,2006:86-90.
    [60]陈懋章,粘性流体动力学基础[M],北京,高等教育出版社,2004:60-62.
    [61]吴晋沪,房倚天等.颗粒移动床过滤过程的数学模型[J].燃料化学学报,1999,27(4):364-369.
    [62]吴晋沪,王洋.移动床除尘过程数学模型建立及机理讨论[J].燃料化学学报,2002,30(3):218-223.
    [63]赵建涛,黄戒介等.气固错流移动颗粒床过滤器除尘效率[J].化工学报,2004,55(5):721-726.
    [64]许世森.温度对移动颗粒层过滤高温除尘性能影响的研究[J].中国电机工程学报,1999,19(10):68-71.
    [65]许世森.移动颗粒层过滤高温除尘性能的研究[J].热力发电,2000(4):29-32,41
    [66]Ergun S.Fluid flow through packed columns[M].Che.Eng.Prog,48,89-94(1952).
    [67]Lewis W K,Gilliland E R,Bauer W C.Characteristics of fluidized particles[M],Ind,Eng.Chem.,41,1104(1949).
    [68]Kwauk M.Generalized fluidization[J].Scientia Sinica,12(4),587-612(1963).
    [69]向晓东,幸福堂等.颗粒层除尘器过滤状态压力损失的研究[J].环境科学学报,1997,17(1):100-105.
    [70]向晓东,朱东升等.非稳态过滤除尘压力损失的研究[J].工业安与环境,2002,28(9):5-7.
    [71]蒋德明,高等内燃机原理[M].西安,西安交通大学出版社,2002:107-130.
    [72]郭烈锦,两相与多相流动力学[M].西安,西安交通大学出版社,2002:594-595.
    [73]周力行,湍流两相流动与燃烧的数值模拟[M].北京,清华大学出版社,1991:81-151.
    [74]谢峻石.应用FLUENT进行射流流场的数值模拟[J].应用计算流体力学通讯.2001.
    [75]李勇等.介绍计算流体力学通用软件-FLUENT[J].水动力学研究与进展2001,2:254-258.
    [76]J 贝尔著,李京生,陈崇希译.多孔介质流体动力学[M].北京,中国建筑工业出版 社,1983:10.
    [77]刘培生著,多孔材料引论[M],北京,清华大学出版社,2004.1:299-315.
    [78]FLUENT6.1,User's Manual,FLUENT Inc.,2003.
    [79]吕志勇.空气滤清器结构与进气阻力的关系[J],滤清器技术选编,1998,7:410-417.
    [80]杨国华,周江华等.双层滤料颗粒床过滤除尘新方法的研究[J].动力工程,2005,25(6):891-894.
    [81]顾正萌,郭烈锦,高晖.沉流式滤筒除尘器气固两相流动的数值模拟与分析[J].化工机械,2002,29(4):197-202.
    [82]姜健飞,胡良剑.数值分析及其MATLAB实验[M].上海,科学出版社,2004:208-210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700