基于分形理论的陶瓷隔(蓄)热多孔材料传热特性研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,陶瓷隔热以及蓄热材料是在工业窑炉上应用较为广泛的一种新型节能材料。它具有廉价、耐高温、抗热冲击等优点。为掌握其热性能变化规律,本文提出了一种新的研究方法:根据耐火纤维材料和陶瓷蓄热体这两种隔(蓄)热多孔材料具有复杂微空间结构的物理特性,采用分形理论对它们的传热特性进行研究。
     本文根据耐火纤维材料微空间结构特点,利用分形理论,以分形维数和纤维体积分率为表征微空间结构的主要参数,对耐火纤维材料微空间结构进行描述。并用等效热阻法建立了高温条件下耐火纤维材料的导热模型,导出了其有效导热系数的分形计算式。将耐火纤维材料导热计算结果和一维稳态平板法测定的实验值进行比较,两者基本一致,最大相对误差小于15%。这表明了基于分形理论描述的耐火纤维材料有效导热系数的计算式具有较高的表达精度。计算结果表明:在纤维体积分率一定时,其有效导热系数随温度的升高而升高,且是绝对温度的三次方函数;在温度不变时,其有效导热系数会随着纤维体积分率和分形维数的增加而增加,且增加幅度越来越大。
     陶瓷蓄热体是蓄热式热交换器中的关键部件。本文选取陶瓷球蓄热体作为研究对象,它具有多孔介质材料的物理特性,传热的内部空间结构类似于耐火纤维材料。本文应用分形理论对陶瓷球蓄热体进行空间结构描述,进而在耐火纤维材料导热分形模型的基础上推导出蓄热体综合传热系数的分形计算式。并且利用该式对不同材质和几何结构参数的陶瓷球蓄热体进行传热系数的计算和比较,得到结论:正排列方式下的陶瓷球蓄热体的传热系数要远大于三角形排列方式的陶瓷球蓄热体;而且,陶瓷球直径越大,蓄热体的传热系数反而越小。另外结合蓄热体的材料特性计算分析得出了陶瓷球直径为10mm,材质取用Si_3N_4,正排列方式的陶瓷球蓄热体,其传热系数最优的结论。在此基础上,将蓄热体综合传热系数的分形计算式引入蓄热式换热器的设计中,建立了一套较为简便和完善的换向型蓄热式换热器的设计方案。
     本文提出了将分形理论应用于陶瓷隔(蓄)热多孔材料的传热特性研究的新方法,从而推导出了耐火纤维材料有效导热系数的分形计算式以及蓄热体的综合传热系数的分形计算式,为设计、使用及推广蓄热式换热器提供了理论基础和设计方法。文中得到的关于陶瓷隔(蓄)热多孔材料传热特性的结论和方法,不仅对其实际应用于工业窑炉能量回收具有一定的工程指导意义,还有利于进一步探索陶瓷隔(蓄)热多孔材料的其他特性,开发新型的陶瓷多孔材料,同时也对多孔介质传热传质的研究和分形理论的应用起到了重要的推动作用。
In recent years, heat insulating and retaining ceramic material is a new energy-saving material which is applied comparatively extensively to the industrial furnace. It has advantages of cheap, resisting high temperature, fighting thermal impact. In order to master how the thermal characteristics vary, a new research method is offered in this paper: fractal theory is used to research the heat transfer characteristics of refractory fiber material and ceramic regenerator the two types of heat insulating and retaining ceramic porous material based on their physical characteristics of complex microstructure.
     Fractal theory is used in this paper based on the microstructure characteristics of refractory fiber. The microstructure is described with fractal dimension and fiber volume fraction as the major parameters. The model of heat transfer has been established with the equivalent thermal resistance under high temperature. The formula for efficient thermal conductivity is given out in this paper. The efficient thermal conductivity has been compared between theoretical calculation and experimental results. It shows that theoretical calculation is almost in agreement with the experimental results. Its maximal relative error is smaller than 15 %. It has been shown that the theoretical calculative formula, which is based on fractal description, has higher precision. The calculative results show that the efficient thermal conductivity rises as temperature rises under a constant fiber volume fraction, and it is proportional to the third power of absolute temperature; it increases as fiber volume fraction and fractal dimension increase under a constant temperature and the increase rate is faster as the two parameters increase.
     The ceramic regenerator is the key unit of regenerative heat exchanger. The ceramic ball-packed regenerator is researched in the paper. It has characteristics of porous media, and its internal structure for heat transfer is similar to refractory fiber. The formula for comprehensive heat transfer coefficient of ceramic regenerator is given out based on the fractal heat transfer model of refractory fiber material in this paper. The formula is used to calculate and compare the heat transfer coefficient of ceramic ball-packed regenerator with different material and different parameters of geometric structure. The results are given out: the heat transfer coefficient of ceramic ball-packed regenerator is far greater when ceramic balls are in the foursquare arrangement than the ones in the triangular arrangement; it decreases as the diameter of ceramic ball increases. And combined with material characteristics of ceramic regenerator, the conclusion can be drawn through calculating and analyzing: the heat transfer coefficient is the maximum value when ceramic ball regenerator is in foursquare arrangement, the diameter of 10mm, and material of Si_3N_4. The formula for comprehensive heat transfer coefficient of ceramic regenerator is introduced to the design of regenerative heat exchanger based on the conclusion. A more convenient and complete design plan is made.
     A new method is introduced in the paper about that fractal theory is used to research the heat transfer characteristics of heat insulating and retaining ceramic porous material. The formula for efficient thermal conductivity of refractory fiber and the formula for comprehensive heat transfer coefficient of ceramic regenerator are given out. Theory foundation and design method are provided for design, using and extension of regenerative heat exchanger. Practical application of energy recycling of industrial furnace is guided by conclusions and methods drawn in the paper about the heat transfer characteristics of heat insulating and retaining ceramic porous material. And it is favorable to further explore other characteristics of heat insulating and retaining ceramic porous material, to develop new types ceramic porous material and to give research on heat and mass transfer in porous media and fractal theory application a push forward.
引文
[1] [日]植树益次,牧广编,贾丽霞,白淳岳译.高性能复合材料最新技术[M].北京:中国建筑工业出版社,1986
    [2] 顾立德.特种耐火材料[M].北京:冶金工业出版社,1988
    [3] Springer and Tsai. Thermal Conductivities of Unidirectional Materials[J]. Journal of Composite Materials, 1967, Vol. 1, pp. 166-173
    [4] 陈则昭,倪海涛,陈梅英.多孔介质等效导热系数的较高精度通用计算式[J].工程热物理学报,1999,Vol.1,No.3,pp.305-308
    [5] 林育炼,刘盛秋.耐火材料与能源[M].北京:冶金工业出版社,1993
    [6] 张盈森.耐火材料[M].北京:冶金工业出版社,1991
    [7] K.K.斯特列洛夫,马志春,刘景林.耐火材料结构与性能[M].北京:冶金工业出版社,1992
    [8] 侯长连等.陶瓷蓄热式热交换器的研制及应用[J].钢铁,1992,(7):64-67
    [9] 张先跃等.余热回收与蓄热式自身预热燃烧器[J].工业炉,1991,(1):46-52
    [10] 周怀春等.高温空气燃烧技术—21世纪关键技术之一[J].工业炉,1998,(1):19-27
    [11] 项钟庸等.蓄热式热风炉[M].北京:冶金工业出版社,1988
    [12] 沈君权,沈弘涛.蓄热燃烧与陶瓷球蓄热式换热器[J].陶瓷,2001(5):40-43
    [13] H. Klein and G. Eigenberger. Approximate solutions for metallic regenerative heat exchangers[J]. Int J. Heat and Mass Transfer, 2001, (44): 3553-3563
    [14] 陆钟武.火焰炉[M].北京:冶金工业出版社,1995
    [15] 王秉铨.工业炉设计手册(第二版)[K].北京:机械工业出版社,1996
    [16] 史美中,王中铮.热交换器原理与设计[M].南京:东南大学出版社,1996:281-317
    [17] 朱聘冠.换热器原理及计算[M].北京:清华大学出版社,1987:215-227
    [18] 郁伯铭.多孔介质输运性质的分形分析研究进展[J].力学进展,2003,8Vol.33,No.3:333-346
    [19] Yu B M, Lee L J. A simplified in-plane permeability model for textile fabrics[J]. Polymer Composites, 2000, 21 (5): 660-685
    [20] Hsu C T, Cheng P, Wong K W. A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media[J]. ASME J Heat Transfer, 1995, 117(2): 264-269
    [21] Yu B M. A fractal model for permeability of bi-dispersed porous media[J]. Int J. Heat and Mass Transfer, 2002, 45(14): 2983-2789
    [22] Yu B M, Lee L J, Cao H Q. Fractal characters of pore microstructures of textile fabrics[J]. Fractals, 2001, 9(2): 155-163
    [23] Yu B M, Li J H. Some fractal characters of porous media[J]. Fractals, 2001, 9(3): 365-372
    [24] Yu Boming, Cheng Ping. Fractal models for the effective thermal conductivity of bi-dispersed porous media[J]. Thermophysics and Heat Transfer, 2002, 16 (1): 22-29.
    [25] Yu B M, Li J H, Zhang D M. A fractal trans-plane permeability model for textile fabrics[J]. Int Common of Heat and Mass Transfer, 2003, 30(1): 127-138
    [26] J F Thovert, F Wary, P M Adler. Thermal conductivity of random media and regular fractals[J]. Journal of Applied Physics, 1990, 68(8):3872-3883
    [27] 张东晖等.分形多孔介质中的热传导[J].应用科学学报,2002,21(3):253-257
    [28] 张东晖等.多孔介质渗流随机模型[J].应用科学学报,2003,21(1):88-92
    [29] 张东晖等.分形多孔介质的粒子扩散特点(Ⅰ)[J].工程热物理学报,2004,25(5):522-524
    [30] 张东晖等.分形多孔介质的粒子扩散特点(Ⅱ)[J].工程热物理学报,2004,25(5):825-827
    [31] 赵晓通等.粒径均匀散体导热系数的分形描述[J].工程热物理学报,1999,20(4):477-481
    [32] 施明恒,陈永平.多孔介质传热传质分形理论初析[J].南京师大学报,2001,1(1):7-12
    [33] 施明恒,樊荟.多孔介质导热的分形模型[J].热科学与技术,2002,1(1):28-31
    [34] 施明恒等.离心力场作用下多孔介质中强制对流换热的研究[J].工程热物
    [37] Pitchumani R, Yao S C. Correlation of thermal conductivities of unidirectional fibrous composites using local fractal technique[J]. ASME J Heat Transfer, 1991, 113(4): 788-796
    [38] Pitchumani R. Evaluation of thermal conductivities of disordered composite media using a fractal model[J]. ASME J Heat Transfer, 1999, 121(4): 163-166
    [39] Mandelbrot B B. Self-affine Fractal Sets[J]. In: Pietronero L, Tosatti E, ed. Fractals in Physics. Amsterdam: North-Holland, 1986
    [43] Falconer K. The Hausdorff dimension of self-affine fractals[J]. Math Proc Camb Phil Soc, 1988, 103:339-350
    [48] Falconer K. Fractal Geometry—Mathematical Foundations and Applications[J]. New York: Wiley, 1990
    [52] 雷树业,包素锦,王维城,王补宣.松散介质孔隙率的测定[J].工程热物理学报,1992,13(4):408-411
    [53] Christos D T, Alkiviades C P. Pore-wall roughness as a fractal surface and theoretical simulation of mercury intrusion/ retraction in porous media[J]. J Colloid Interface Sci, 1993, 159:287-301.
    [54] Hsu C T , Cheng P , Wong K W. Modified Zehner-Schlunder Models for Stagnant thermal conductivity of Porous media[J]. Int J Heat Mass Transfer, 1994, 3, 7(17): 2751
    [55] 刘松玉,方磊,陈浩东.论我国特殊土粒度分布的分形结构[J].岩土工程学报,1993,15(1):23-30
    [57] Lin Ruitai, Weiyi and Feng Shihi. Thermal physical Properties[J]. Pro of 3rd ATPC, pp.534-539, 1992
    [58] Adrian S Sabau, G Lin. Effective thermal conductivity for anisotropic. Granular Porous Media Using Fractal Concepts[J]. Proc. Of National Heat Transfer, pp.121-128, 1997
    [59] Gouyet J E, Physics and Fractal Structure[M]. Soringer, 1996
    [60] Mandelbort B. B. The Fractal Geometry of Nature. New York: W H. freeman, 1983
    [61] Hashin Z. and Cosner, A. A. Effective thermal conductivities of fibrous composites[J]. ASME Journal of Heat Transfer, 1983, Vol.50, pp.481-505
    [62] Stanley, H. E., and Ostrowsky. Fractal and non-fractal patterns in physics[J]. Applied Sciences. 1986, No. 100
    [63] 陈则韶,钱军.关于非金属固体复合材料等效导热系数的理论计算[C].传热传质学学术会议论文集.1989
    [64] [美]J.P.霍尔曼,马庆芳,王兴国译.传热学[M].北京:人民教育出版社,1979
    [65] [英]F.A.霍兰,R.M.穆尔斯等.传热[M].北京:化学工业出版社,1980
    [66] 吴世见.新型碳化硅陶瓷材料的传热机理研究[D].硕士论文.成都科技大 学,1993
    [67] 程远贵,朱家骅,周勇,夏素兰.含锆高铝耐火纤维毡的导热性能研究[J].耐火材料.2002,36(5):268-269,275
    [68] 程远贵,周勇,朱家骅,董岱峰.耐火材料高温热导率的分形[J].化工学报.2002,11,Vol.53,No.11:1193-1197
    [69] 程远贵,董岱峰,周勇,朱家骅.耐火纤维毡的高温导热系数研究[J].化工设计.2001,11(2):22-23,41
    [70] 王蓉.高温空气燃烧系统中陶瓷蓄热体传热特性分析研究[C].硕士论文.同济大学,2002
    [71] 余际星等.蓄热体材料的定性分析及应用[J].工业加热.1997,(2):40-43
    [72] 余际星等.旋转型蓄热式换热器热体材料的选择[J].工业炉.1996,(2):37-40
    [73] Carlson C. Development of a high-temperature air-blown gasification system[J]. Bioresource technology. 2001, 79(3): 231-241
    [74] 刘芙蓉等.热工基础理论[M].中国建筑工业出版社,1997
    [75] Yuan, Jianwei. Effects of air dilution on highly preheated air combustion in a regenerative furnace[J]. Energy & Fuels. 1999, 13 (1): 99-104
    [76] Plessing. Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation[J]. Symposium (International) on Combustion. 1998, 2: 3197-3204
    [77] 李茂德,程惠尔.高温空气燃烧系统中陶瓷蓄热体传热特性分析研究[J].热科学与技术.2004,9,Vol.3,No.3:255-260
    [78] 宋希文等.工业窑炉蓄热式换热器用莫来石质蜂窝陶瓷的研制[J].耐火材料,2003,37(4):203-204,210
    [79] 蔡九菊,饶荣水等.填充球蓄热室阻力特性的实验研究[J].钢铁.1998,6,Vol.33,No.6
    [80] Ergun S, Orning A A. Fluid flow through randomly packed columns and fluidized beds[J].. Ind. Eng. Chem. 1949, 41(6): 1179-1184
    [81] 崔海亭,杨锋.蓄热技术及其应用[M].北京:化学工业出版社.2004:74-84
    [82] 吴道洪等.蓄热式高温空气燃烧技术的应用[J].工业加热,2000,(1):30-34
    [83] 祁海鹰,徐旭常,李伟等.蜂巢蓄热体传热特性的数值研究[J].工程热物理学报,2001,22(5):657-660
    [84] 赵静野,李建树.蓄热式热交换器数学模型的比较[J].北京建筑工程学院学报.2003,6,Vol.19,No.2:1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700