基于虚拟样机技术的分解炉数字化模拟关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国建材工业虽然规模大,但存在生产过程能耗高,资源消耗大,环境污染严重等问题。本博士学位文以2500t/d强化悬浮式分解炉(ReinforeedSuspension Precalciner,RSP)为研究对象,通过基于虚拟样机的技术对该分解炉炉内热工过程进行了数字化模拟。
     预分解新型干法水泥生产技术是目前水泥生产的最先进的技术,分解炉是新型干法水泥生产线上预分解技术的核心设备和关键技术装备之一,其性能优劣直接影响到系统能耗、环保排放以及整个系统的生产效率。
     虚拟样机(Virtual Prototyping,VP)技术是一种基于虚拟样机的数字化设计方法,通过搭建分解炉虚拟样机,可以对分解炉内部的热工过程进行全方位的模拟,为后继的分解炉优化设计提供一个便捷、直观的计算机辅助设计平台。
     分解炉系统内部的流场非常复杂,燃料燃烧和生料分解这两个反应是悬浮于气流中进行的,各过程相互制约。以计算流体力学(Computational FluidDynamies,CFD)为理论基础的数值模拟技术能对流动、传热、燃烧、化学反应、多相流等问题进行准确的预测,并在许多工程领域得到验证和推广。计算机流体力学的迅速发展及在工业领域的应用,为描述分解炉燃烧过程以及窑炉结构优化设计和应用提供了良好的手段。
     本文以2500t/d RSP型分解炉为例,通过冷模试验,测试出分解炉内部流场的基本数据和特征,采用k-ε双方程湍流模型对气相流场进行模拟。对炉内生料及煤粉颗粒的运动采用随机颗粒轨道模型进行模拟。对煤粉的燃烧模拟采用非预混燃烧模型,挥发模型采用Kobayashi模型,燃烧的辐射传热采用P-l模型,碳粒燃烧采用反应动力/有限扩散速率模型,煤粉燃烧化学反应模型采用混合分数/PDF(概率密度函数)模型。本文对分解炉内部速度场、温度场、组分浓度场进行了模拟,并在此基础上采用收缩圆柱体以及收缩球状模型对生料CaCO_3分解率进行了计算。
     模拟结果得到了炉内气体流动状态、颗粒运动规律、煤粉燃烧状态等多项参数,全面精细直观地反应了炉内的流动状态。模拟结果符合炉内的流动趋势,为分析强化悬浮式分解炉内的流动规律和化学反应提供了有效信息,亦为分解炉的结构优化和实际操作参数的选取提供了重要的理论依据。
     石油焦作为石化行业所生产的副产品,其含碳量高、含灰量少,具有较高的热值,用其作为一种替代燃料,可以缓解能源短缺的矛盾,在高耗能的水泥生产中采用石油焦为燃料具有很大的市场前景。本文在对石油焦燃烧物化特性进行了定量分析实验的基础上,通过数值模拟的方法,对石油焦在分解炉内燃烧过程进行了数字化模拟,结果表明,RSP型分解炉结构既有利于物料的继续加热分解又有利于延长物料及燃料在炉内的停留时间。因此,这种炉型适用于石油焦的完全燃烧。
     随着人们对环境保护的日益重视,国际上对水泥行业氮氧化物(NOx)的排放的规定越来越严格,本文对分解炉内氮氧化物生成的机理进行的深入的探讨,在对热力型NOx和燃料型NOx生成的模拟中考虑湍流的影响,时均湍流反应速率的求解采用随机密度函数(PDF)方法。模拟结果预测了分解炉内NOx分布的浓度情况,并根据模拟结果提出了针对RSP型分解炉降低NOx排放的措施。
According to the fact that although the building material manufacturing industry is large in scale, but it has problems of high energy consumption and pollution. In this thesis, a reinforced suspension precalciner of 2500t/d is taken as an example to simulate its internal working process based on virtual prototyping technology.
     Virtual prototyping technology is a digital design method base on virtual prototype. By build the virtual prototype of calciner, the internal working process can be simulated in all respects and provide a convenient and intuitionistic CAD plat for optimization of calciner design.
     The flow field in precalciner system is very complex as well as the reactions of fuel combustion and raw materials decomposing, which are influenced by each other and taken place in suspension of the air flow. The simulation technology based on computational fluid dynamics (CFD) can accurately predict the flow, heat transfer, combustion, chemical reaction and multiple phase flow. It is also a good method to predict the internal process in calcnier.
     In this thesis, a numerical model is presented of the flow and transport processes taking place in an industrial RSP calciner of 2500t/d. First, it's the feature of its internal flow field is measured by cold model test. According to the results of cold model test, the flow field is simulated by k-εtwo equation turbulence models. Movement of raw material and coal particle is simulated by the particle stochastic trajectory model. This model is capable in simulating particle with complicated experience. It also enables to simulate coupling interaction between gas phase and particle phase, turbulence diffusion of particle is also regarded in this model. Non-premixed combustion model is adopted in simulating coal combustion; the model of Kobayashi is used for devolatilization model; radiation of the combustion is expressed with the P-1 radiation model and kinetic/limited diffusion rate model is adopted for char combustion. The method of probability density function (mixture fraction/PDF) is used for the chemical reaction models in coal combustion. In this way, the distributions of fluid velocities, temperatures and concentrations of the reactants and products as well as the trajectories of particles and their interaction with the gas phase are calculated. On the base of these results the calcination rate can be determined by contractive cylinder and sphere model.
     The simulating result predicts the flow field, the particle movement and the coal combustion, which is coincident with the flow tendency. The result provides useful information for analyzing the kinetics regulation and reaction in precalciner, and also allow estimations to be made and conclusions to be drawn that help in the optimization of a given calciner.
     Petroleum coke is the main byproduct of the oil refining industry. It is regarded as an economical alternative fuel for the pulverized coal in high energy consumption cement production. The present article is devoted to introduce the research works on make use of petroleum coke as a substitutional fuel of calciner, which consists of two major parts. In the first part, the basic properties of the petroleum coke and its characteristics of grindability, devolatilization, ignition and combustion were investigated by serials of experiment. And in the second part, a numerical model was also presented to simulate the combustion processes taking place in an industrial reinforced suspension calciner. The results of study show that petroleum coke is a suitable fuel for RSP calciner.
     As the environment protection is held in high regard today, the regulation for the NOx emission for cement industry is much stricter. In this thesis, the mechanism of NOx generation is deeply discussed. In the simulation of thermal NOx and fuel NOx, the influence of turbulence is taken into consideration and time-mean reaction rate is solved by probability density function (PDF) method. The simulation result can predict the distribution of the NOx in the calciner and the measure to reduce the NOx emission is put forward for RSP calciner.
引文
[1]陈定方,罗亚波.虚拟设计(第2版).北京:机械工业出版社,2007
    [2]缪明烽,叶旭初等.RSP分解炉内燃烧分解的数学模拟研究.水泥·石灰,1995,(4):16-20
    [3]吴君棋,陆继东,胡芝娟等.圆柱坐标系下的非轴对称三维流动模拟中的极点处理.工程热物理学报,2003,24(6):1055-1057
    [4]熊光愣,李伯虎,柴旭东.虚拟样机技术.系统仿真学报,2001,13(1):114-117
    [5]陈曦.复杂产品虚拟样机技术及其应用研究.南京理工大学 博士论文,2005
    [6]李之光.热力设备模型实验研究基础.北京:国防工业出版社,1979
    [7]冯云.外循环式高固气比分解炉的冷模试验研究.西安建筑科技大学,硕士论文,2006
    [8]陈全德.水泥预分解技术与热工系统工程.北京:中国建材工业出版社,1997
    [9]陈思维.2500t/d五级旋风预热器冷模试验与数值模拟研究.博士论文.武汉理工大学,2004
    [10]任玉新,陈海昕.计算流体力学基础.北京:清华大学出版社,2006
    [11]周力行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社,1989
    [12]叶旭初,胡道和.CFD技术与工程应用技术与工程应用.中国水泥,2003,2:29-33.
    [13]谢峻林,梅书霞.煤粉在分解炉内燃烧机理的数值模拟研究.煤炭科学技术,2005,33(5):48-51.
    [14]岑可法,姚强.燃烧理论与污染控制.北京:机械工业出版社,2004
    [15]黄来.水泥分解炉内部物理化学过程模拟和优化设计研究.博士论文,华中科技大学,2006
    [16]刘涛,赵桂范,孙以泽.复杂机械的虚拟样机技术.机械设计,2004,21(8):58-59.
    [17]李伯虎,朱文海,刘杰.复杂产品虚拟样机技术的研究与实践.测控技术,2001(11):1-6.
    [18]包金宇,廖文和,薛善良虚拟样机技术初探.机械制造与自动化,2003(6):1-3.
    [19]吴南星,冯景华.虚拟样机技术及其在陶瓷机械工业中的应用研究.机床与液压.2005(12):63-64.
    [20]熊光楞,郭斌,陈晓波等.协同仿真与虚拟样机技术.北京:清华大学出版社.2004.
    [21]刘述祖.水泥悬浮预热器与窑外分解技.武汉:武汉工业大学出版社,1995.
    [22]赵蔚琳,李兆峰.FLS分解炉二维流场的数值模拟计算.工业炉,24卷2期,2002(5):44-48
    [23]吴君,陆继东,狄东仁,胡芝娟,黄来,罗海岩.旋喷结合分解炉的流场模拟.中国水泥,2002年8月号:34-38
    [24]岑可法,樊建人.工程气固多相流动的理论与计算,杭州:浙江大学出版社,1990
    [25]徐江荣.气固两相的湍流模型的研究与煤粉浓淡燃烧器两相流动的数值模拟.杭州:浙江大学,博士论文.1999,
    [26]嵇鹰,徐德龙,李兆锋.NS-A型分解炉系统冷模试验结果与分析.西安建筑科技大学学报(自然科学版)2004,36(4):470-475
    [27]冯云.外循环式高固气比分解炉的冷模试验研究.西安建筑科技大学,硕士论文,2006
    [28]李昌勇,金春强,胡道和.NKsv分解炉气固两相运动模式的研究.硅酸盐学报,2000,28(6):529-533
    [29]陆雷,考宏涛,金春强,胡道和,韩立发,刘浙.RFC分解炉的性能研究.南京化工大学学报,2001,23(1):45-49
    [30]李伯虎,柴旭东,杨明,王行仁,于正中等.现代建模与仿真技术的发展.北京:高等教育出版社.2003
    [31]胡芝娟,刘志江,王世杰.模拟分解炉中煤焦燃烧生成NO的特性.化工学报,2005,56(3):546-550
    [32]徐明厚,郑楚光.燃煤锅炉燃烧过科与NOx排放的模型与数值计算.工程热物理学报,2001,22(2):249-256
    [33]张大康.选择性非催化还原法降低NOx在水泥工业中的应用.环境保护科学,2006,32(5):23-27
    [34]刘剑英,王金平.DOMICEM泥厂以石油焦为燃料2500t/d生产线的调试.新世纪水泥导报,2006.1:14-16
    [35]万红根,张才生,孙嘉林.浅谈焦炉生产煅烧石油焦的优势,江苏冶金,2008,36(1):7-9
    [36]吴正舜,张春林,陈汉平,刘德昌.石油焦的燃烧特性.化工学报,2001,52(9):834-837
    [37]多米尼加项目预热器系统研发性能实验研究报告,武汉理工大学建材装备研发中心,2004
    [38]丁苏东,孙德群,蔡玉良.低NOX型分解炉内部过程的数值模拟研究.中国水泥,2007.4:46-50
    [39]Chen Quande,Cui Yuansheng.Causes to unsustainable development of traditional cement industry and countermeasures to sustainable development of China's cement industry.Cement Guide for New Epoch,2002(1):1-3
    [40]Bennett GR.The application of virtual prototyping in the development of complex aerospace products.Aircraft Engng Aerospace Technol,1997;69(1):19-25.
    [41]Rooks B.A shorter product development time with digital mock-up.Assembly Automat,1998,18(1):34-8.
    [42]Jayaram S,Connacher HI,Lyons KW.Virtual assembly using virtual reality techniques.Comput-Aided Des,1997,29(8):575-84.
    [43]Siddique Z,Rosen DW.A virtual prototyping approach to product disassembly reasoning.Comput-Aided Des,1997,29(12):847-60.
    [44]T.Y.Yan,J.H.Chung,Y.S.Choi.Design of the Driving System of an Automatic Vacuum Packer using Functional Virtual Prototyping.Biosystems Engineering,(2004) 89(1):37-46
    [45]Schultz J.Technology transfer through prototypes.Commun ACM,1996,39(9):26-27.
    [46]Bowyer A,Bayliss G,Taylor R,Willis P.A virtual factory.Int J Shape Model 1996,2(4):215-26.
    [47]Bickel D.3D real-time simulation and VR-tools in the manufacturing industry.Virtual Reality for Industrial Applications,Berlin:Springer,1988:123-138
    [48]R.Consul,I.Rodriguez,Virtual prototyping of storage tanks by means of three- dimensional CFD and heat transfer numerical simulations,Solar Energy,77(2004):179-191
    [49]Zajtchuk R,Satava R.Medical applications of virtual reality.Commun ACM 1997,40(9):63-4.
    [50]L.Huanpeng,L.Wentie,Z.Jianxiang,J.Ding,Z.Xiujian,L.Huilin.Numerical study of gas-solid flow in a precalciner using kinetic theory of granular flow,Chemical Engineering Journal 102(2004):151-160.
    [51]Z.Hu,J.Lu,L.Huang,S.Wang.Numerical simulation study on gas-solid two-phase flow in pre-calciner.Communications in Nonlinear Science & Numerical Simulation 11(3)(2006):440-451.
    [52]I.Iliuta,K.Dam-Johansen,A.Jensen,L.S.Jensen.Modelling of in-linelow- NOx calciners - a parametric study.Chemical Engineering Science,57(2002):789-903.
    [53]#12
    [54]S.A.Morsi,A.J.Alexander.An investigation of particle trajectories in two-phase flow systems.Journal of Fluid Mechanics 55(1972):193-208.
    [55]H.Kobayashi,J.B.Howard,A.F.Sarofim.Coal devolatilization at high temperatures.Proc.16th Intl Symposium on Combustion,The Combustion Institute,1976:411-425.
    [56]M.M.Baum,P.J.Street.Predicting the combustion behavior of coal particles.Combustion Science and Technology 3(1971):231-243.
    [57]M.A.Field.Rate of combustion of size-graded fractions of char from alow rank coal between 1200K-2000K.Combustion and Flame, 13 (1969):237-252.
    [58]S.S.Sazhin, E.M.Sazhina, O.Faltsi-Saravelou, P.Wild.The P-l model for thermal radiation transfer advantages and limitations.Fuel 75 (3) (1996) :289-294.
    [59]Y.R.Shivatahnu, G.M.Faeth.Generalized state relationships for scalar properties in non-premixed hydrocarbon/air flames.Combustion and Flame 82 (1990) :211—230.
    [60]W.P.Jones, J.H.Whitelaw.Calculations methods for reacting turbulent flows: a review.Combustion and Flame, 48 (1982): 1-26.
    [61]R.H.Essenhigh, M.A.Elliot.Chemistry of coal utilization.Second Supplementary Volume,Wiley, New York, 1981:1153-1178.
    [62]R.H.Borgwardt.Calcination Kinetics and Surface Area of Dispersed Limestone Particles.AIChE Journal 31(1)(1985): 103-111
    [63]ZORRIASSATINE F,WYKES.A survey of virtual prototyping techniques for mechanical product development.Engineering Manufacture,2003,217(1):513-530.
    [64]Mike Hudspeth.Virtual prototyping Is that part real or not?.MCAD MODELING METHODS, 2005(8):42-45.
    [65]F Zorriassatinel, C Wykes,R Parkin.A survey of virtual prototyping techniques for mechanical product development .Engineering Manufacture, Vol.217 Part B:514-533.
    [66]I.E.Sarris, O.Giannopoulos, D.Fidaros, N.S.Vlachos, Modelling coal combustion in a rotary cement kiln, 3rd National Congress on Computational Mechanics, Volos 24-26 (June 1999): 665-672.
    [67]F.Acke, I.Panas.Activation energy of calcination by means of a temperature programmed reaction technique.Therrnochimica Acta ,306 (1997) :73-76.
    [68]N.Hu, A.W.Scaroni, Calcination of pulverized limestone particles underfurnace injection conditions.Fuel, 75 (1996) -.177-186.
    [69]S.V.Krishnan, S.V.Sotirchos.Effective diffusivitty changes during calcination, carbonation,recalcination and sulfation of limestones.Chemical Engineering Science, 49 (1991):1195-1208.
    [70]T.Darroudi, A.W.Searcy.Effect of CO_2 pressure on the rate of decomposition of calcite.Journal of Physical Chemistry, 85 (26) (1981): 3971-3974.
    [71]E.Kolyfetis, C.G.Vagenas.Mathematical modeling of separate line precalciner.ZKG International 2 (1988) :559-563.
    [71]L.Huanpeng, L.Wentie, Z.Jianxiang, J.Ding, Z.Xiujian, L.Huilin.Numerical study of gas-solid flow in a precalciner using kinetic theory of granular flow.Chemical Engineering Journal 102 (2004): 151-160.
    [72]F.C.Lockwood, T.Mahmud, M.A.Yehia.Simulation of pulverized coal test furnace performance.Fuel, 77 (1998): 1329-1337.
    [73]C.A.Gurgel, J.Saastamoinen, J.A.Carvalho, M.Aho.Overlapping of the devolatilization and char combustion stages in the burning of the coal particles.Combustion and Flame ,116 (1999): 567-579.
    [74]J.Zhang, S.Nieh.Comprehensive modeling of pulverized coal combustion in a vortex combustor.Fuel ,76 (1997) :123—131.
    [75]Ka" ntee U, Zevenhoven R, Backman R, Hupa M.Cement manufacturingusing alternative fuels and the advantages of process modelling.Fuel Process Technol, 2004,85:293-301.
    [76]Mokrzycki E, Uliasz-Bochen'czyk A.Alternative fuels for the cement industry.Appl Energy,2003,74:95-100.
    [77]Akgun F.Investigation of energy saving and NOx reduction possibilities in a rotary cement kiln.Int J Energy Res, 2003,27:455-65.
    [78]Bowman CT.Control of combustion-generated nitrogen oxideemissions: technology driven by regulation.Proc Combust Inst, 1992;24:859-78.
    [79]Fehmi Akgunn.Investigation of energy saving and NOx reduction possibihtiesin a rotary cement kiln.INTERNATIONAL JOURNAL OF ENERGY RESEARCH,2003,27:455-465
    [80]Zhiwei Li , Qinggang Lu, Yongjie Na.N_2O and NO emissions from co-firing MSW withmcoals in pilot scale CFBC.Fuel Processing Technology, 85 (2004) .1539- 1549
    [81]Wen zuoreng.Technical Economic Evaluation of the Choice of Large Calciner Equipment for Petroleum Coke.Light Metal, 1995(8):45-49.
    [82]E.Kolyfetis, C.G.Vagenas.Mathematical Modeling of Separate Line Precalciner, ZKG International 2 (1988): 559-563.
    [83]L.Huanpeng, L.Wentie, Z.Jianxiang, J.Ding, Z.Xiujian, L.Huilin.Numerical Study of Gas-solid Flow in a Precalciner Using Kinetic Theory of Granular Flow.Chemical Engineering Journal 102 (2004): 151-160.
    [84]Z.Hu, J.Lu, L.Huang, S.Wang.Numerical Simulation Study on Gas-solid Two-phase Flow in Pre-calciner.Communications in Nonlinear Science &Numerical Simulation 11 (3) (2006): 440-451.
    [85]I.Uiuta, K.Dam-Johansen, A.Jensen, L.S.Jensen, Modelling of In-line Low-NOx Calciners — a Parametric Study, Chemical Engineering Science , 57 (2002) :789-903.
    [86]Shen boxiong, Lu jidong.Experimnetal Research on the Ignition and Burnout Characteristics of Petroleum Coke, PETROLEUM PROCESSING AND PETROCHEMICALS, 2000,31(10):60-64.
    [87]Lasse Hoist Sorensen.Determination of Reactivity Parameters of Model Carbons, Cokes and Flame-chars.Fuel, 1996,75(1 ):31-38.
    [88]Lasse Hoist Sorensen.Determination of Reactivity Parameters of Model Carbons.Cokes and Flame-chars.Fuel, 1996,75(1 ):31-38.
    [89]Temi M Linjewile.Measurement and Modeling of the Temperature of Burning Petroleum Coke Particles in an Incipiently Fluidized Bed.Fuel, 1993,72(6):813-819.
    [90]Blair D W,Wendt J O L,Bartok W.Evolution of Nitrogen and Other Species During Controlled Pyrolysis of Coal.Sixteenth Symposium(International)Combustion.Combustion Institute, Pittsburgh, 1977:475-489.
    [91]Eddinger R T, Friedman L D,Rau E.Devolatilization of Coal in a Transport Reactor.Fuel, 1966,45:245-252.
    [92]Mitchell, Reginald E, McLean,William J .On the Temperature and Reaction Rate of Burning Pulverized Fuels.19th Symposium(International)on Combustion, 1982 :1113-1122.
    [93]Liu G,Benyon P,Benfell K E,et al.The Porous Structure of Bituminous Coal Chars and its Influence on Combustion and Gasification under Chemically Controlled Conditions.Fuel,2000,79(6):617-626.
    [94]Lorenz H,Carrea E,Tamura M,et.Al.The Role of Char Surface Structure Development Combustion.Fuel, 2000,79:1161-1172.
    [95]HeRong, XuXuchang, ChengChanghe,et al .Evolution of Pore Fractal Dimensions for Burning Porous Chars.Fuel, 1998 77(12): 1291-1295
    [96]Aarna, Suuberg.A review of the kinetics of the nitric oxide-carbon reaction.Fuel, (1997)76: 475-491.
    [97]Borgwardt.Calcination kinetics and surface area of dispersed limestone particles.A.I.Ch.E.Journal, 31: 103-111.
    [98]Chan, L.K, & Beer, J.M.Kinetics of NO-carbon reaction at fluidizedbed combustion conditions.Combustion and Flame, 52:37-44.
    [99]Dam-Johansen, K., Hansen, P.F.B., & Rasmussen, S.Catalytic reduction of NO by CO over calcined limestone:Reversible deactivation in the presence of CO2.Applied Catalysis B,Environmental, 1995, 5:283-304.
    [98]Dernedde, Charette, Bourgeois.Kinetic phenomena of the volatiles in ring furnaces.Proceedings of the 115th AIME Annual Meeting - Light Metal, New Orleans, 1986:589-592.
    [99]Dryer, F.L.High temperature oxidation of CO and CH _4.14th International Symposium on Combustion.The Combustion Institute, Pittsburgh ,1973:987-992.
    [100]Liu, D.-C, Shen, B.-X., Feng, B., Lin, Z.-J., & Lu, J.-D.Infuence of coal properties on emissions of nitrous oxides and nitric oxides.Energy and Fuels, 1999,13:1111-1113.
    [101]Nieuwland, Delnoij, Kuipers.An engineering model for dilute riser flow.Powder Technology, 1997,90:115-123.
    [102]Van den Bleek.The difficulty of reducing nitrogen oxides in the presence of oxygen.Journal of Chemical Technology and Biotechnology, 1980,30: 467-475.
    [103]J.R.Ingraham, P.Marier.Kinetic studies of the thermal decomposition of calcium carbonate.Can.J.Chem.Eng, 41 (1963): 170-173.
    [104]A.W.D.Hill.The mechanism of the thermal decomposition of calcium carbonate., Chem.Eng.Sci,23(1968):297-320.
    [105]J.S.Dennis.A.N.Hayhurst, The effect of CO2 on the kinetics and extent of calcinations of limestone and dolomite particles in fluidized beds.Chem.Eng.Sci, 42 (1987) :2361-2372.
    [106]Y.H.Khraisha, D.R.Dugwell, Coal combustion and limestone calcination in a suspension reactor.Chem.Eng.Sci, 47 (1992): 993-1006.
    [107]L.H.Chen, K.F.Cen.New stochastic particle dispersion modeling of a turbulent particle-laden round jet.Chem.Eng.J.66 (1997) :207-215.
    [108]T.M.Linjewile, P.K.Agarwal.The influence of product CO/CO2 ratio on the ignition and temperature history of petroleum coke particles inincipiently gas-fluidized beds.Fuel, 74 (1995): 12-16.
    [109]S.Kulasekaran, T.M.Linjewile, P.K.Agarwal.Mathematical modeling of fluidized bed combustion simultaneous combustion of char and combustible Gases.Fuel,78 (1999) :403-417.
    [110]L.D.Smoot, P.J.Smith.Coal Combustion and Gasification., Plenum press, New York, 1985.
    [111]W.P.Jones, J.H.Whitelaw.Calculation methods for reacting turbulent flows: a review.Combust.Flame, 48 (1982) :l-26.
    [112]H.L.ZHANG, N.W.KO.Numerical Analysis of Incompressible Flow Over Smooth and Grooved Cylinders.Computer and Fluid, 1996, 25(3): 263-281
    [113]D.Lee, J.Y.Chen, I.Numerical simulation of flow fields in a tube with two branches, Journal of Biomechanics2000,3 : 1305-1312
    [114]D.Lee, J.M.Su, H.Y.Liang.A numerical simulation of steady flow fields in a bypass tube.Journal of Biomechanics ,2001,34 :1407-1416.
    [115]D.Lee, J.Y.Chen.Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches.Journal of Biomechanics 2002,35 :1115-1122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700