废铁尾矿渣高效连续离心分离铁回收处理工艺与技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离心分离是回收铁尾矿渣中细粒铁的高效方法,具有快速、成本低、对环境无污染等优点。然而,国内传统间断式离心机应用时故障率很高和处理能力很低,使其不能有效应用于工业生产;国外工业应用离心机如Knelson和Falcon离心机适用于处理微量金属物料,故不能用于处理高铁物料铁尾渣。本文研究连续离心分离回收铁尾矿渣中的铁,对其技术关键连续离心分离设备,提出往复移动水束流冲击卸落富集层实现连续离心分离过程,并进行技术可行性理论分析;在此基础上,研制连续离心分离设备,进行连续离心分离回收铁尾矿渣中铁实验和工业生产应用研究。
     采用连续离心分离试验设备,对其实现连续分离过程的条件进行实验研究,结果表明:水束流冲击压力和能量同时满足最小门限值要求是实现连续离心分离过程的前提条件;水束流门限冲击压力随转鼓转速提高线性增大,转鼓转速为700 r/min时,冲击压力约0.55 MPa,表明水束流冲击卸落富集层实现连续离心分离要求的冲击压力不高;水束流门限冲击能量随转鼓转速提高和富集产物产量增大而增大;水束流冲击角影响其冲击效率。
     对磁分离预处理后的铁尾矿渣(铁含量52.42%)进行连续离心分离单因素条件实验,结果表明:最佳操作条件包括给料体积速率约25 L/min,给料固体浓度20%,转鼓转速450 r/min,转鼓半锥角5°和水束流往复速度36 mm/s;此条件下,得到富集产物的产量、铁含量和铁回收率分别为54.69%、62.32%和65.02%;试验设备处理量为0.3525吨铁尾矿渣/小时,电耗为2.57千瓦时/吨铁尾矿渣,水耗为1.30吨水/吨铁尾矿渣,表明铁尾矿渣连续离心分离具有分离效果好和成本低的优点。实验时,水束流往复速度由36 mm/s增加至60 mm/s时,富集产物铁含量由62.32%快速降低至59.16%,铁回收率仅由65.02%降低至64.75%,表明水束流往复速度适宜不会破坏薄流膜分离过程,且有利于提高富集产物质量。
     为深入了解铁尾矿渣连续离心分离的优越性,进行铁尾矿渣连续与间断离心分离对比实验。与铁尾矿渣渣间断离心分离比较,连续离心分离获得富集产物铁回收率提高,但铁含量有所下降,两者总体分离效能接近;但连续离心分离物料处理量大大提高、设备故障率和能耗明显降低,有利于克服间断离心分离设备故障率高和处理能力小难以推广应用的技术难题,容易与其它分离方法如高梯度磁分离法结合形成工业化生产工艺处理铁尾矿渣。
     高梯度磁分离处理铁尾矿渣效果好,处理量大,但难以得到铁含量很高的合格富集产物。因此,本研究进行磁分离预处理-连续离心分离法处理铁尾矿渣(铁含量28.76%)实验,获得合格铁精粉产品的产量、铁含量和铁回收率分别为11.05%、62.32%和23.94%,铁回收效果显著。
     为研究该技术的工业应用可行性,设计筹建连续离心分离工艺工业生产试验回收厂,进行从在排铁尾矿渣中回收铁工业生产性试验。三个月平均工业生产试验指标为:铁尾矿渣铁含量28.12%,获得铁精粉产品的产量、铁含量和铁回收率分别为10.42%、58.48%和21.66%;该技术的工业生产性试验,减少铁尾矿渣排放量10.42%,并实现重要的环境与经济效益。与实验铁回收结果比较,该技术工业生产获得铁精粉产品的铁含量较低,主要原因可能是由于连续离心分离工业设备应用时效能降低造成的。因此,该技术要得到有效工业应用,关键是提高连续离心分离工业应用的效能。
     上述研究表明,连续离心分离是回收铁尾矿渣中铁的有效方法,可实现重要的环境和经济效益,因此具有重要的工业应用价值。连续离心分离设备可有效用于处理高铁物料铁尾矿渣,可解决目前国内外工业应用离心机适用于处理微量金属物料的技术难题。
Centrifugal concentration, which can separate materials quickly at a low cost and in an environment friendly manner, is an effective method for recovering micro iron values from iron tailings residue. However, Chinese traditional intermittent centrifugal concentrator can not be efficiently applied to concentrate iron tailings residue, due to its incapability of working continuously and its very low processing capacity; and centrifugal concentrators available abroad, e.g., Knelson and Falcon concentrators, which are efficient in treating very lean metallic materials, can also not be used to concentrate rich metallic materials such as iron tailings residue. In view of this, continuous centrifugal concentration by reciprocating water sprays to remove the settled bed of heavy particles was theoretically analyzed, and studied for the recovery of iron values from iron tailings residue on the development of continuous centrifugal concentrators. The technology was tested for iron recovery from iron tailings residue both in experimental and in industrial conditions.
     Discharging experiments were carried out using the pilot continuous centrifugal concentrator developed in the study to treat iron tailings residue. It was found that continuous centrifugal concentration can be achieved only when the water sprays have both a high enough impacting pressure and adequate enough impacting energy. The threshold impacting pressure of water sprays increases with the increase in drum rotation speed proportionally, and it is around 0.55 MPa when the drum roates at the highest speed of 700 r/min; it is therefore concluded that a relatively low impacting pressure of water sprays is needed for achieving continuous concentration of the concentrator. The threshold impacting energy of water sprays increases with the increase in drum roation speed and in concentrate mass; the impacting angle of water sprays has a significant influence on the discharging efficiency of water sprays.
     The pilot continuous centrifugal concentrator was also used to concentrate iron tailings residue assaying 52.42% Fe from magnetic pretreatment to study the effect of the most important variables on performance of the pilot concentrator. The experimental results show that the optimum values of the variables are feed volume flow rate around 25 L/min, feed % solids 20%, drum rotation speed 450 r/min, drum inclination 5°and reciprocation of water sprays 36 mm/s. When all the variables were kept optimum, an iron concentrate assaying 62.32% Fe with 65.02% recovery at a solid recovery of 54.69% was achieved, with processing capacity, with electric and water consumptions of the concentrator being 0.3525 t/h, 2.57 Kwh and 1.30 t a ton of the residue, respectively; it is therefore concluded that the concentrator is effective and energysaiving in concentrating iron tailings residue. It was found during the experiments that the change in reciprocation of water sprays from 36 mm/s to 60 mm/s causes a drastic deterioration in concentrate grade from 62.32% Fe to 59.16% Fe but a neglectable drop in iron recovery from 65.02% to 64.75%; it is concluded that the impacting of water sprays at an optimum reciprocating velocity do not destroy the thin film flow, besides, it improves concentration performance of the concentrator.
     Continuous and intermittent centrifugal concentrations of the iron tailings residue were comparatively performed using the pilot concentrator to analyze superiority of the continuous centrifugal concentration over the intermittent one. The results of the comparison indicate that the continuous centrifugal concentration is capable of achieving a higher iron recovery but a lower concentrate grade, with the overall performance near to each other. However, the continuous centrifugal concentrator is much higher in processing capacity and much lower in failure rate and energy consumption in comparison with the intermittent one, which makes it easy to achieve industrialization in treating iron tailings residue combined with other methods such as high gradient magnetic separation.
     High gradient magnetic separation can be used to concentrate iron tailings residue efficiently at a very high processing capacity, but generally it cannot be used to produce a high grade qualified concentrate. Therefore, a high gradient magnetic pretreamtent-continuous centrifugal concentration method was used to treat iron tailings residue assaying 28.76% Fe; it obtained an efficient recovery of iron values, with a qualified concentrate assaying 62.32 % Fe with 23.94% recovery at a solid recovery of 11.05% achieved.
     To apply the technology in industry, a full-scale recovering plant by the technology was built and tested for recovering iron values from a currently discarding iron tailings residue. The results of the test of three months show that it can obtain a marketable concentrate assaying 58.48% Fe with 21.66% recovery at a solid recovery of 10.42% from the residue assaying 28.12% Fe; the test reduces 10.42% by weight of the residue and achieves significant environmental and economic benefits. However, the quality of concentrate achieved by the technology in industry is relatively inferior to that achievable in experimental condition; this may be mainly due to the lower efficiency of the full-scale concentrator in industry. It is therefore vitally important for the full-scale concentrator to improve efficiency if the technology is meant to achieve effective applications in industry.
     In summary, continuous centrifugal concentration is proven effective for recovery of iron values from iron tailings residue and can achieve significant environmental and economical benefits; it has an important industrial application worth. The continuous centrifugal concentrator, which can be used to concentrate iron tailings residue of high iron content, may be an important supplementary for the centrifugal concentrators available domestic and abroad, which are effective in the treatment of very lean metallic materials.
引文
1 J. H. P. Waston, P. A. Beharrell. Extracting values from mine dumps and tailings. Minerals Engineering. 2006, 19(15): 1580~1587
    2 S. K. Das, P. Sanjay Kumar, P. Ramachandrarao. Exploitation of iron ore tailing for the development of ceramic tiles. Waste Management. 2000, 20(8): 725~729
    3王湖坤,龚文琪,刘友章.有色金属矿山固体废物综合回收和利用分析.金属矿山. 2005, 12: 70~72
    4蔡霞.铁尾矿用作建筑材料的进展.金属矿山. 2000, 10: 45~48
    5徐凤平,周兴龙,胡天喜.国内尾矿资源综合利用的现状及建议.矿业快报. 2007, 3: 4~6
    6王应灿,那琼.铁尾矿制备轻质隔热保温建筑材料的研究.金属矿山. 2007, 5: 75~77
    7毛益平,黄礼富,赵福刚.我国铁矿山选矿技术成就与发展展望.金属矿山. 2005, 2: 1~5
    8张泾生,邓克,李维兵.磁选-阴离子反浮选工艺应用现状及展望.金属矿山. 2004, 5: 24~28
    9 D. H. Xiong. SLon magnetic separator promoting Chinese oxided iron ore processing industry. XXIII International Mineral Processing Congress. Istanbul. 2006, 1: 276~271
    10张淑会,薛向欣,刘然等.尾矿综合利用现状及其展望.矿冶工程. 2005, 25(8): 44~47
    11 J. Q. Zhu, J. Chen, C. Y. Li, et al. Centrifugal extraction for separation of ethylbenzene and octane using 1-buty1-3-methylimidazolium hexafluorophosphate ionic liquid as extractant. Separation and Purification Technology. 2007, 56(2): 237~240
    12 Satinder K. Brar, M. Verma, R. D. Tyagi, et al. Efficient centrifugal recovery of bacillus thuringiensis biopesticides from fermented wastewater and wastewater sludge. Water Research. 2006, 40(6): 1310~1320
    13 S. J. Lee, C. P. Chu, R. B. H. Tan, et al. Consolidation dewatering and centrifugal sedimentation of flocculated activated sludge. Chemical Engineering Science. 2003, 58(9): 1687~1701
    14卡洛里斯.沉降式卧螺离心机分离技术.中国给水排水. 2002, 18(8): 90~92
    15俞雷霖,奚立峰,俞如友.离心分离技术的国内现状国外进展及大规模定制设计.化学世界. 2006, 11: 694~699
    16 A. Gül, O. Kangal, G. ?nal. Gold recovery from different type of ores by gravity separation. XXIII International Mieral Processing Congress. Istanbul. 2006, 2: 1595~1599
    17孙玉波.重力选矿.冶金工业出版社. 1993
    18张家骏.霍旭红.物理选矿.煤炭工业出版社. 1992: 4
    19 R. Burt. The role of gravity concentration in modern processing plants. Minerals Engineering. 1999, 12(11): 1291~1300
    20 T. Coulter, G. K. N. Subasinghe. A mechanistic approach to modeling Knelson concentrators. Minerals Engineering. 2005, 18(4): 9~17
    21 J. R. Walklate, P. J. Fourie. A history of gravity separation at Richards Bat Minerals. The Journal of the Southern African Institute of Mining and Metallurgy. 2006, 106(7): 741~748
    22 M. Delfini, A. Manni, P. Massacci. Gold recovery from jewellery waste. Minerals Engineering. 2000, 13(6): 663~666
    23温雪峰,潘彦军,何亚群等. Falcon离心机的分选机理及其应用.中国矿业大学学报. 2006, 35(3): 341~346
    24李国彦.离心机流膜速度的理论计算.有色金属. 1998, 50(2): 31~35
    25张金钟,姜良友,吴振祥等.尼尔森离心机及其应用.有色矿山. 2003, 32(3): 28~31, 37
    26 R. Q. Honaker, N. Singh, B. Govindarajan. Application of dense-medium in an enhanced gravity separator for fine coal cleaning. Minerals Engineering. 2000, 13(4): 415~427
    27 J. W. G. Turner, M. P. Hallewell. Process improvements for fine cassiterite recovery at Wheal Jane. Minerals Engineering. 1993, 6(8-10): 817~829
    28 D. Clemente, P. Newling, A. Botelho de Sousa, et al. Reprocessing slimes tailings from a tungsten mine. Minerals Engineering. 1993, 6(8-10): 831~839
    29吕永信,罗醒民,杜懋德. SL型射流离心机应用研究.有色金属. 1990, 42(4): 25~31, 37
    30张淑会,薛向欣,金在峰.我国铁尾矿的资源现状及其综合利用.材料与冶金学报. 2004, 3(4): 241~245
    31王运敏,常前发.当前我国铁矿尾矿的资源状况利用现状及工作方向.金属矿山. 1999, 1: 1~6
    32李明立,原振雷,朱嘉伟.矿山固体废弃对环境的影响及综合利用探讨.矿产保护与利用. 2005, 4: 38~41
    33常前发.矿山固体废物的处理与处置.矿产保护与利用. 2003, 5: 38~42
    34艾德鸿,江启平.选矿尾砂综合利用的探讨.环境工程. 2002, 20(5): 74~75
    35 A. W. Mann and M. Lintern. Heavy metal dispertion patterns from tailings dumps, Northampton District, Western Australia. Environmental Pollution Series B: Chemical and Physical. 1983, 6(1): 33~49
    36李学金,钱显文,郑乐平等.某铁矿尾矿库酸性废水处理试验研究.金属矿山. 2006, 9: 73~77
    37 Luis Moreno, Ivars Neretnieks. Long-term environmental impact of tailings deposits. Hydrometallurgy. 2006, 83(1-4): 176~183
    38 I. Licskó, L. Lois and G. Szebényi. Tailings as a source of environmental pollution. Water Science and Technology. 1999, 39(10-11): 333~336
    39 D. Tao, S. Chen, B. K. Parekh, et al. An investigation of a thermochemical process for conversion of gypsum and pyrite wastes into useful products. Advances in Environmental Research. 2001, 5(3): 277~283
    40 M. P. Srivastava, S. K. Pan, N. Prasad, et al. Characterization and processing of iron ore fines of Kiriburu deposit of India. International Journal of Mineral Processing. 2001, 61(2): 93~107
    41 Michael R. Norland, David L. Veith. Revegetation of coarse taconite iron ore tailing using municipal solid waste compost. Journal of Hazardous Materials. 1995, 41(2-3): 123~134
    42孙达,李永聪,高志明.从某铁尾矿中回收铜的试验研究.金属矿山. 2007, 9: 119~122
    43管则皋.从弱磁选尾矿中回收铁的工艺探讨.矿产综合利用. 2000, 3: 20~23
    44贾清梅,张锦瑞,李凤久.高硅铁尾矿制取蒸压尾矿砖的研究.中国矿业. 2006, 15(4): 39~41
    45张锦瑞,倪文,王亚利.利用铁尾矿制取微晶玻璃的研究.金属矿山. 2005, 11: 72~74
    46史培阳,姜茂发,刘承军等.用铁尾矿、硼泥和粉煤灰制备微晶玻璃.钢铁研究学报. 2005, 17(5): 22~25, 30
    47余永富.我国铁矿山发展动向、选矿技术发展现状及存在的总题.矿冶工程. 2006, 26(1): 21~25
    48袁致涛,高太,印万忠等.我国难选铁矿石资源利用的现状及发展方向.金属矿山. 2007, 1: 1~6
    49韩跃新,袁致涛,李艳军等.我国金属矿山选矿技术进展及发展方向.金属矿山. 2006, 1: 34~40, 52
    50 Takeshi Ohara, Hiroaki Kumakura, Hitoshi Wada. Magnetic separation using superconducting magnets. Physica C: Superconductivity. 2001, 357-360: 1272~1280
    51陈凡植,颜幼平,康新宇.高梯度磁分离技术在环境保护中的应用.化工环保. 2000, 20(5): 11~15
    52张泾生,罗立群.细粒物料磁分离技术的现状.矿冶工程. 2005, 25(3): 25~29
    53 T. Y. Ying, S. Yiacoumi, C. Tsouris. High-gradient magnetically seeded filtration. Chemical Engineering Science. 2000, 55(6): 1101~1113
    54 Teymuraz Abbasov. Magnetic filtration with magnetized granular beds: Basic principles and filter performance. China Particuology. 2007, 5(1-2): 71~83
    55 Nuray Karapinar. Magnetic separation of ferrihydrite from wastewater by magnetic seeding and high-gradient magnetic separation. International Journal of Mineral Processing. 2003, 71(1-4): 45~54
    56 J. Svoboda, T. Fujita. Recent developments in magnetic methods of material separation. Minerals Engineering. 2003, 16(9): 785~792
    57 Dahe Xiong, Shuyi Liu, Jin Chen. New technology of pulsating high gradient magnetic separation. International Journal of Mineral Processing. 1998, 54(2): 111~127
    58熊大和,刘建平. SLon脉动和振动高梯度磁选机新进展.金属矿山. 2006, 7: 4~7, 47
    59熊大和. SLon磁选机在淮北煤系高岭土除铁中的应用.非金属矿. 2004, 27(5): 44~46
    60熊大和,刘树贻,刘永之等.脉动高梯度磁选中冲程冲次对分选指标的影响.中南矿冶学院学报. 1989, 20(5): 497~504
    61 W. Q. Zeng, D. H. Xiong. The latest application of SLon vertical ring and pulsating high-gradient magnetic separator. Minerals Engineering. 2003, 16(6): 563~565
    62 R. C. Richards, M. K. Palmer. High capacity gravity separators a review of current status. Minerals Engineering. 1997, 10(9): 973~982
    63 L. Ergün, S. Ersaym. Studies on pinched sluice concentration. Part I: The effects of operating variables and sluice geometry on the performance of pinched sluices. Minerals Engineering. 2002, 15(6): 423~435
    64 M. T. Carvalho, E. Agante, F. Dur?o. Recovery of PET from packaging plastics mixtures by wet shaking table. Waste Management. 2007, 27(12): 1747~1754
    65 P. C. Kapur, T. P. Meloy. Spirals observed. International Journal of Mineral Processing. 1998, 53(1-2): 15~28
    66 L. M. Falcon, D. I. C., M. I. M. M., et al. The gravity recovery of cassiterite. Journal of the South African Institute of Mining and Metallurgy. 1982, 4: 112~117
    67 B. K. Loveday, M. S. A. I. Ch. E., M. S. A. I. M. M., et al. Some considerations in the use of gravity concentration for the recovery of gold. Journal of the South African Institute of Mining and Metallurgy. 1982, 5: 121~124
    68 Huiting Shen, R. J. Pugh, E. Forssberg. Floatability, selectivity and flotation separation of plastics by using a surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2002, 196(1): 63~70
    69 Anping Liu, Wen Ni, Wei Wu. Mechanism of separating pyrite and dolomite by flotation. Journal of University of Science and Technology Beijing. 2007, 14(4): 291~296
    70 S. Montes, G. Montes Atenas. Hematite floatability mechanism utilizing tetradecylammonium chloride collector. Minerals Engineering. 2005, 18(10): 1032~1036
    71陈国栋,朱申红,夏荣华等.磁-重联合流程从铁矿尾矿中回收铁的试验研究.青岛理工大学学报. 2007, 28(3): 62~64, 104
    72 U. Andres, W. Oreilly. Selectivity in the magnetic separation of minerals. Powder Technology. 1994, 79(2): 147~158
    73魏镜弢,杨波.微细粒重选技术研究.昆明理工大学学报. 2001, 26(1): 46~47, 63
    74杨久流.尾矿中有价矿产资源的综合回收与利用.有色金属. 2002, 54(3): 86~89, 106
    75 S. Song, S. Lu, A. Lopez-Valdivieso. Magnetic separation of hematite andlimonite fines as hydrophobic floc from iron ores. Minerals Engineering. 2002, 15(6): 415~422
    76董风芝,宋振柏,马振吉等.硫铁矿烧渣回收铁精矿浮选工艺研究.金属矿山. 2005, 11: 68~71
    77张泾生.我国铁矿资源开发利用现状及发展趋势.钢铁. 2007, 42(2): 1~6
    78赫荣安,陈平,熊大和. SLon强磁选机选别鞍山式贫赤铁矿的试验及应用.金属矿山. 2003, 9: 19~24
    79熊大和. SLon磁选机分选东鞍山氧化铁矿石的应用.金属矿山. 2003, 6: 21~24, 66
    80 R. Houot. Beneficiation of iron ore by flotation-Review of industrial and potential applications. International Journal of Mineral Processing. 1983, 10(3): 183~204
    81 K. Hanumntha Rao, K. S. Narasimhan. Selective flocculation applied to Barsuan iron ore tailings. International Journal of Mineral Processing. 1985, 14(1): 67~75
    82 D. E. Spiller. Environmental applications of mineral processing technologies. Minerals Engineering. 1992, 5(10-12): 1433~1437
    83凌竞宏, A. Laplante,胡熙庚.国外离心机的发展与应用.国外金属矿选矿. 1985, (5): 2~4, 17
    84徐晓军,张文彬.国内外处理细粒矿物的离心选矿机的研究概况.国外金属矿选矿. 1996, 4: 1~4
    85龙伟,张文彬.细粒重选设备的发展概况及研究方向.国外金属矿选矿. 1996, 4: 5~8
    86 R. O. Burt.细粒重选技术评述.国外金属矿选矿. 1990, 2: 29~35
    87恒川昌美等.湿式重选技术的研究进展.国外金属矿选矿. 2006, 5: 4~10
    88 R. N. Guest, J. Svoboda, W. J. C. Venter. The use of gravity and magnetic separation to recover copper and lead from Tsumeb flotation tailings. Journal of the South African Institute of Mining and Metallurgy. 1988, 88(1): 21~26
    89 R. O. Burt, G. Korinek, S. R. Young, et al. Ultrafine tantalum recovery strategies. Minerals Engineering. 1996, 8(8): 859~870
    90 Y. Zhao, X. F. Wen, B. Li, et al. Recovery of copper from waste printed circuit board. Minerals and Metallurgical Processing. 2004, 21(2): 99~102
    91 Byron V. Knelson. The knelson concentrator metamorphosis crude beginning to sophisticated worldwide acceptance. Minerals Engineering. 1992, 5(10-12):1091~1097
    92 B. Knelson, R. Jones.“A new generation of Knelson concentrators”a totally secure system goes on line. Minerals Engineering. 1994, 7(2-3): 201~207
    93黄利明,安德烈·拉普朗特,波里·哈里斯.尼尔森离心机的工业应用.有色金属. 1999, 51(1): 35~39
    94黄利明,鲁尔勒·默吉阿,安得烈·罗伯特·拉帕兰德.用尼尔森离心机从克拉哈贝勒选厂磨矿回收中回收铂族金属和黄金.有色金属. 2006, 58(3): 99~105
    95 V·C·波姆比拉.秘鲁BHP Tintaya选厂铜回收中的金重选回收.国外金属矿选矿. 2003, 5: 24~27
    96刘玉雷,谢庆华,朱建伟等.全封闭耐磨离心机用于金选厂的生产实践.有色金属. 2002, 4: 22~24
    97 T. Chernet, J. Marmo, A. Nissinen. Significantly improved recovery of slightly heavy minerals from quaternary samples using GTK modified 3″Knelson preconcentrator. Minerals Engineering. 1999, 12(12): 1521~1526
    98 Xuesong Wang, Nick J. Miles, Sam Kingman. Numerical study of centrifugal fluidized bed separation. Minerals Engineering. 2006, 19(10): 1109~1114
    99 R. Q. Honaker, D. Wang, K. Ho. Application of the Falcon concentrator for fine coal cleaning. Minerals Engineering. 1996, 9(11): 1143~1156
    100杨润全,吕子虎,王怀法.细粒煤重力分选设备与技术发展现状.中国矿业. 2005, 14(12): 4~7, 73
    101 Q. Liu, Z. Cui, T. H. Etsell. Pre-concentration and residual bitumen removal from Athabasca oilsands froth treatment tailings by a Falcon centrifugal concentrator. International Journal of Mineral Processing. 2006, 78(4): 220~230
    102 R. Q. Honaker. High capacity fine coal cleaning using an enhanced gravity concentrator. Minerals Engineering. 1998, 11(12): 1191~1199
    103 K. Udaya Bhaskar, B. Govindarajan, J. P. Barnwal, et al. Performance and modeling studies of a MGS for graphite rejection in a lead concentrate. International Journal of Mineral Processing. 2002, 67(1-4): 59~70
    104 T. ?i?ek, I. C?cen. Applicability of Mozley multigravity separator (MGS) to fine chromite tailings of Turkish chromite concentrating plants. Minerals Engineering. 2002, 15(1-2): 91~93
    105周乐光.矿石学基础.冶金工业出版社. 2005: 112~191
    106 L. Ergün, S. Ersaym. Studies on pinched sluice concentration. Part II: Characterization of flow over a pinched sluice. Minerals Engineering. 2002, 15(6): 437~446
    107 A. K. Majumder, G. J. Lyman, M. Brennan, et al. Modeling of flowing film concentrators Part I: Water split behavior. International Journal of Mineral Processing. 2006, 80(1): 71~77
    108陈海员,阚晓平. WZY系列卧式振动离心机控制系统的研究.中国矿业. 2006, 15: 93~94
    109陈金仙,魏镜弢,杨君.变频调速在卧式离心机中的应用.矿山机械. 2007, 35(11): 93~95
    110 A. W. Momber. Synergetic effects of secondary liquid drop impact and solid particle impact during hydro-abrasive erosion of brittle materials. Wear. 2004, 256(11-12): 1190~1195
    111 X. G. Hu, A. W. Momber, Y. Yin, et al. High-speed hydrodynamic wear of steel-fibre reinforced hydraulic concrete. Wear. 2004, 257(5-6): 441~450
    112 A. W. Momber. The kinetic energy of wear particles generated by abrasive-water-jet erosion. Journal of Materials Processing Technology. 1998, 83(1-3): 121~126
    113 X. G. Hu, A. W. Momber, Y. G. Yin. Hydro-abrasive erosion of steel-fibre reinforced hydraulic concrete. Wear. 2002, 253(7-8): 848~854
    114褚良银,陈文梅.旋转流分离理论.冶金工业出版社. 2002
    115 Wallace Leung. Separation of dispersed suspension in rotating test tube. Separation and Purification Technology. 2004, 38(2): 99~119
    116 Wallace Leung. Separation of dispersed suspension in rotating test tube. Separation and Purification Technology. 2004, 41(2): 187~203
    117 Stefan Berres, Raimund Bürger. On gravity and centrifugal settling of polydisperse suspensions forming compressible sediments. International Journal of Solids and Structures. 2003, 40(19): 4965~4987
    118王卫星.流膜表面波及其细粒分选的影响.中国有色金属学报. 1993, 3(2): 13~16
    119 Tatsuya Oki, Mikio Kobayashi, Shuji Owaba, et al. Alteration of the equal settling ratio of fine particles by vertically-oscillating water. International Journal of Mineral Processing. 2007, 82(2): 69~79
    120 B.И索可罗夫.离心分离理论及设备.北京.机械工业出版社. 1985: 50~80
    121李国彦.颗粒群的分散压与流膜分选机理.有色金属. 1998, 50(3): 40~46
    122 A. K. Mukherjee, V. K. Dwivedi, B. K. Mishra. Analysis of a laboratory jigging system for improved performance. Minerals Engineering. 2005, 18(10): 1037~1044
    123 A. K. Mukherjee, D. Bhattacharjee, B. K. Mishra. Role of water velocity for efficient jigging of iron ore. Minerals Engineering. 2006, 19(9): 952~959
    124陶有俊,刘炯天,高敏.流膜分选技术研究与应用进展.选煤技术. 2006, 5: 42~46
    125李国彦,陈剑鸣.颗粒群分散压的试验研究.有色金属. 2000, 52(2): 32~35, 60
    126 X. X. Jiang, K. N. Han. The separation of magnetite from silica particles by centrifugation using two immiscrible liquids. International Journal of Mineral Processing. 1992, 35(1-2): 101~120
    127 A. K. Majumder, P. Yerriswamy, J. P. Barnwal. The“fish-hook”phenomenon in centrifugal separation of fine particles. Minerals Engineering. 2003, 16(10): 1005~1007
    128范强,孟坤云,梅云新等.旋转旋流离心机转鼓内流场分析.西南石油学院学报. 1997, 19(4): 80~84, 5~6
    129 Torsten Detloff, Titus Sobisch, Dietmar Lerche. Particle size distribution by space or time dependent extinction profiles obtained by analytical centrifugation (concentrated systems). Powder Technology. 2007, 174(1-2): 50~55
    130沈忠厚.水射流理论与技术.石油大学出版社. 1998
    131宋拥政,温故康,梁志强.高压磨料射流切割的力学特性与模型.锻压机械. 1995, 3: 37~39
    132付胜,段雄,张新民.高压水射流粉碎的压力释放效应.中国安全科学学报. 2004, 14(1): 7~10
    133王瑞和,倪红坚.高压水射流破岩机理研究.石油大学学报(自然科学版). 2002, 26(4): 118~122
    134鲁军波,陈杰.基于高压水射流分布特性的清洗参数选择.中国安全科学学报. 2004, 14(12): 67~70
    135宋胜伟,赵存友.磨料射流切割技术.煤矿机械. 2004, 6: 69~71
    136王习魁,张裕中.射流撞击粉碎原理及其关键技术.轻工机械. 2004, 4:32~34
    137廖华林,李根生,易灿.水射流作用下岩石破碎理论研究进展.金属矿山. 2005, 7: 1~6
    138 A. M. Momber. An SEM-study of high speed hydrodynamic erosion of cementitious composites. Composites Part B: engineering. 2003, 34(2): 135~142
    139 A. W. Momber. The efficiency of mechanical concrete comminution. Engineering Fracture Mechanics. 2003, 70(1): 81~91
    140 A. W. Momber, R. Kovacevic. Test parameter analysis in abrasive water jet cutting of rocklike materials. International Journal of Rock Mechanics and Mining Sciences. 1997, 34(1): 17~25
    141 Longlian Cui, Liqian An, Weili Gong. Effects of process parameters on the comminution capability of high pressure water jet mill. International Journal of Mineral Processing. 2006, 81(2): 113~121
    142易灿,李根生.喷嘴结构对高压射流特性影响研究.石油钻采工艺. 2005, 27(1): 16~19
    143王洪伦,龚烈航,姚笛.高压水切割喷嘴的研究.机床与液压. 2005, 4: 42~43, 55
    144庄蕾.高压水射流清洗用喷嘴及喷头.清洗世界. 2003, 19(12): 28~31
    145 A. W. Momber. Wear of rocks by water flow. International Journal of Rock Mechanics and Mining Sciences. 2004, 41(1): 51~68
    146 A. W. Momber. A transition index for rock failure due to liquid impact. Wear. 2006, 260(9-10): 996~1002
    147 A. I. Arol, A. Aydogan. Recovery enhancement of magnetic fines in magnetic separation. Colloids and Surfaces A. 2004, 232(2-3): 151~154
    148 A. K. Mukherjee, B. K. Mishra. Experimental and simulation studies on the role of fluid velocity during particle separation in a liquid-solid fluidized bed. International Journal of Mineral Processing. 2007, 82(4): 211~221
    149 R. Bürger, F. Concha. Settling velocities of particulate systems: 12. Batch centrifugation of flocculated suspensions. International Journal of Mineral Processing. 2001, 63(3): 115~145
    150 J. Zhou, K. Walton, D. Laskovski, et al. Enhanced separation of mineral sands using the Reflux Classifier. Minerals Engineering. 2006, 19(15): 1573~1579

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700