用户名: 密码: 验证码:
全氟磺酸离子交换膜成膜机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统研究了全氟磺酸离子聚合物(PFSI)/N,N-二甲基甲酰胺(DMF)体系的成膜过程和机理,取得了创新性研究结果。
     本文首次对全氟磺酸离子聚合物/DMF溶剂体系中的PFSI分子聚集形态及其变化进行了详细研究。研究发现,PFSI/DMF二元体系在不同的PFSI浓度下表现为溶液、溶液/分散液、分散液、分散液/凝胶、凝胶状态,并详细研究了其转变过程。对于典型交换容量(IEC)值为0.95meq/g的PFSI/DMF二元体系, PFSI浓度高于0.5mg/g后发生聚合物溶液向分散液的转变,PFSI浓度为208-336mg/g时发生分散液向宏观凝胶的逐渐转变,为进一步的研究提供了重要参考依据。
     研究证明,在PFSI浓度增大的过程中,离子聚合物分子的聚集是通过主链段之间的相互作用进行的,并且PFSI分子在收缩和聚集的过程中会形成类似聚四氟乙烯中的晶体结构。
     对成膜过程和膜的结构形态研究表明,PFSI/DMF体系制得的流延膜与熔融挤出膜的微观结构具有较大的差异,流延膜体系更接近各向同性,晶粒无规地分布在无定形区中,晶粒之间较少存在长程有序的排列,离子区由磺酸基团形成的较小的离子点和细小的离子通道组成,而不是类似熔融挤出膜中形成的较大的离子团簇,从而解释了熔融挤出膜力学性能较高,而流延膜含水率和电导率较高的原因。在由PFSI分散液向离子膜演变的初期,随着溶剂分子不断逸出体系,PFSI分子收缩形成直径为20nm左右的颗粒,随着溶剂的减少,这些颗粒再形成200-1000nm左右的聚集体。在热、颗粒之间毛细管力和范德华力等的共同作用下,通过具有相似特征的链段和基团之间的作用,体系内部形成结晶区、离子聚集区和无定形区。
     系统考察了成膜温度和温度变化对离子膜结构和性能的影响,证实温度不但是分子链段的运动能力和溶剂挥发的驱动力,而且是离子聚合物颗粒融合的驱动力。研究发现,不同温度制备的膜的微观结构差异主要是结晶度和晶体尺寸的变化,而对离子簇的影响较小。随着成膜温度的升高,PFSI膜的密度增大、晶体颗粒增大并且更加完善,从而使膜在极性溶剂中的溶解度下降,断裂拉伸强度升高,含水率和甲醇透过率都下降。
Solution-casting is an important method to prepare perfluorosulfonic membranes, yet fabrication process and mechanism of solution-cast perfluorosulfonic membranes is not clear. In this paper, we made systematic study on morphological evolution of perfluorosulfonic ionomer (PFSI) molecules in N,N-dimethylformamide (DMF) at different concentrations. Process of membrane fabrication, microstructure and properties of perfluorosulfonic membranes were studied to find out the fabrication mechanism of solution-cast PFSI membranes.
     Morphological evolution of PFSI molecules in DMF was studied in detail. It was found that PFSI molecules shrink and aggregate in DMF gradually with increasing concentration, accordingly, mixture of PFSI and DMF changes from solutions to dispersions and gels. For the typical perfluorosulfonic ionomer with ion exchange capacity of 0.95meq/g, the prepared PFSI/DMF mixture changes from solutions to dispersions at PFSI concentration of 0.5mg/g, and the mixture changes to be gels from dispersions gradually at PFSI concentrations of 208-336mg/g. Understanding of properties of the PFSI/DMF mixture provided important reference for further study on membrane fabrication mechanism.
     It was found that aggregation of the PFSI particles in the dispersions and gels is due to the interaction of backbones of the PFSI molecules. With shrinkage and interaction of the PFSI backbones, the segments of the main chains may arrange regularly to form crystals similar with the ones in polytetrafluoroethylene.
     Morphology of the DMF-based solution-cast PFSI membranes is different from that of thermo-extruded membranes. The solution-cast membranes are more isotropic. Crystallites in the solution-cast membranes seem to be randomly distributed over the amorphous phase. Hydrophilic zone in the membranes is composed of continuous ionic thin channels and nanoparticles that are smaller than the clusters in the thermo-extruded membranes. The different microstructure of the two kinds of membranes is the reason that the thermo-extruded PFSI membranes are stronger and conductivity of the solution-cast membranes is bigger. The solution-cast PFSI membrane is assembled by the PFSI aggregates formed in the dispersion. The PFSI molecules shrink to form about 20nm particles in dilute dispersions, and the particles aggregate to form bigger PFSI aggregates in the concentrated dispersions. The PFSI particles and aggregates fuse into each other with heat, capillary force and Van der Waals' force to form membranes.
     Effect of casting temperature, casting time and change of temperature on morphology and properties of PFSI membranes was studied. It is proved that casting temperature has important effect on the membranes. Increasing casting temperature may increase movement ability of the PFSI segments, volatilization of the solvent and driving force of fusion of the aggregates, so morphology and property of the membranes are different when prepared at different temperatures. With increasing casting temperature, the perfluorosulfonic aggregates fuse into each other deeper to form denser membranes, so density of the membranes increases and crystals in the membranes turns bigger and more perfect. Accordingly, proton conductivity, water uptake, methanol permeability and solubility in organic solvents of the membranes decrease with increasing casting temperature, whereas tensile stress at break of the solution-cast membranes increases.
引文
1. Heitner-Wirguin C., Recent advances in perfluorinated ionomer membranes: structure, properties and applications. Journal of Membrane Science, 1996. 120: p. 1-33.
    2. Mauritz K.A., Moore R.B., State of understanding of Nafion. Chemical Reviews, 2004. 104(10): p. 4535-4585.
    3. Polymer Data Handbook ed. J.E. Mark. 1999, New York: Oxford University Press.
    4.方度,杨维驿,全氟离子交换膜——制法、性能和应用. 1993:化学工业出版社.
    5. England D.C., Alpha-sulfopolyfluoromonocarboxylic acids and derivatives hydrolyzable thereto. 1958. US2852554.
    6. Robert E.P., William D.N., Flruorocarbon ethers containing sulfonyl groups. 1963. US 3301893.
    7. Charles Gerhard Fritz E.P.M., Jr., Fluorinated vinyl ethers and their preparation. 1961. US 3114778.
    8. Harris J.F., Jr., McCane D.I., Fluorocarbon ethers. 1965. US 3180895.
    9. Donald J. C., William F. G.,., Fluorocarbon Vinyl Ether Polymers. 1966. US 3282875.
    10. Ezzell B. R., Carl W. P., Low equivalent weight sulfonic fluoropolymers. 1990. US4940525.
    11. Arcella V G.A., Tommasi G., High performance perfluropolymer films for membranes. Ann NY Acad Sci, 2003. 984: p. 226-44.
    12. Yamabe M. Miyake.H., Arai K., Fluoropolymer cation-exchange membranes. 1977. Japanese Patent 5228588.
    13. Haruhisa M., Yoshio S., Masaaki Y., Synthesis and properties of perfluorocarboxylated polymers. Journal of Fluorine Chemistry, 1998. 92: p. 137-140.
    14. Brubaker M.M., Polymerizing tetrafluoroethylene. 1946. US 2393967.
    15. Berry K.L., Aqueous colloidal dispersions of polymers. 1951. US 2559752.
    16. Lontz J.F., Coagulating aqueous dispersions of polytetrafluoroethylene. 1952. US 2593583.
    17. Asawa T.M., Haruhisa; Yamashita, Masami., Fluorinated polymer having ion-exchange groups. 1981. US 4320205.
    18. Kimoto K., Miyauchi K., Oomura S., Ebisawa M., Hane S., Novel Fluorinated Copolymer and Production thereof. 1980. JP55160007.
    19. Walther G.G., Derivatives and polymers thereof. 1973. US 3718627.
    20. Hsu W.Y., Gierke T.D., Ion transport and clustering in Nafion perfluorinated membranes. Journal of Membrane Science, 1983. 13(3): p. 307-26.
    21. Fujimura M., Hashimoto T., Kawai H., Small-Angle X-ray Scattering Study of Perfluorinated Ionomer Membranes. 1. Origin of Two Scattering Maxima. Macromolecules 1981. 14: p. 1309-1315.
    22. Fujimura M., Hashimoto R., Kawai H., Small-Angle X-ray Scattering Study of Perfluorinated Ionomer Membranes. 2. Models for Ionic Scattering Maximum. Macromolecules, 1982. 15: p. 136.
    23. Dreyfus B., Gebel G., Aldebert P., Pineri M., Escoubes M., Thomas M.J., Distribution of the "micelles" in hydrated perfluorinated ionomer membranes from SANS experiments. Journal de Physique (Paris), 1990. 51(12): p. 1341.
    24. Litt M.H., A reevaluation of Nafion morphology. Polymer Preprints, 1997. 38(1): p. 80.
    25. Haubold H.G., Vad T., Jungbluth H., Hiller P., Nano structure of NAFION: a SAXS study. Electrochimica Acta, 2001. 46(10-11): p. 1559-1563.
    26. Rubatat L., Rollet A.L., Gebel G., Diat O., Evidence of elongated polymeric aggregates in Nafion. Macromolecules, 2002. 35(10): p. 4050-4055.
    27. Schmidt-Rohr K., Chen Q., Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat Mater, 2008. 7(1): p. 75-83.
    28. Gierke T.D., Hsu W.Y., The cluster-network model of ion clustering in perfluorosulfonated membranes. Perfluorinated Ionomer Membranes, ed. A. Eisenberg, H.L. Yeager. Vol. ACS SYMPOSIUM SERIES180. 1982, Washington,D.C. 283-307.
    29. Gierke T.D., Munn G.E., Wilson F.C., The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies. J. Polym. Sci., Polym.Phys. , 1981. 19(11): p. 1687.
    30. Hsu W.Y., Gierke T.D., Elastic theory for ionic clustering in perfluorinated ionomers. Macromolecules, 1982. 15(1): p. 101.
    31. Gebel G., Moore R.B., Small-angle scattering study of short pendant chain perfluorosulfonatedionomer membranes. Macromolecules, 2000. 33(13): p. 4850-4855.
    32. Young S.K., Trevino S.F., Beck Tan N.C., Small-angle neutron scattering investigation of structural changes in Nafion membranes induced by swelling with various solvents. Journal of Polymer Science Part B-Polymer Physics, 2002. 40(4): p. 387-400.
    33. Gebel G., Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer, 2000. 41(15): p. 5829-5838.
    34. Ceynowa J., Electron microscopy investigation of ion exchange membranes. Polymer, 1978. 19(1): p. 73-76.
    35. Xue T., Trent J.S., Osseo-Asare K., Characterization of Nafion membranes by transmission electron microscopy. Journal of Membrane Science, 1989. 45(3): p. 261-271.
    36. Yeager H.L., Steck A.J., Cation and water diffusion in Nafion ion exchange membranes: influence of polymer structure. Journal of the Electrochemical Society, 1981. 128(9): p. 1880.
    37. Rieberer S., Norian K.H., Analytical electron microscopy of Nafion ion exchange membranes Ultramicroscopy 1992. 41(1-3): p. 225-233
    38. Porat Z., Fryer J.R., Huxham M., Rubinstein I., Electron Microscopy Investigation of the Microstructure of Nafion Films. Journal of Physical Chemistry, 1995. 99(13): p. 4667-4671.
    39. Lehmani A., Durand-Vidal S., Turq P., Surface morphology of Nafion 117 membrane by tapping mode atomic force microscope. Journal of Applied Polymer Science, 1998. 68(3): p. 503-508.
    40. McLean R.S., Doyle M., Sauer B.B., High-resolution imaging of ionic domains and crystal morphology in ionomers using AFM techniques. Macromolecules, 2000. 33(17): p. 6541-6550.
    41. Moore R.B., Martin C.R., Procedure for preparing solution-cast perfluorosulfonate ionomer films and membranes. Analytical Chemistry, 1986. 58(12): p. 2569-2570.
    42. Gebel G., Aldebert P., Pineri M., Structure and related properties of solution-cast perfluorosulfonated ionomer films. Macromolecules, 1987. 20(6): p. 1425-1428.
    43. Zook L.A., Leddy J., Density and Solubility of Nafion: Recast, Annealed, and Commercial Films.Analytical Chemistry, 1996. 68(21): p. 3793-3796.
    44. Broka K., Ekdunge P., Oxygen and hydrogen permeation properties and water uptake of Nafion(R) 117 membrane and recast film for PEM fuel cell. Journal of Applied Electrochemistry, 1997. 27(2): p. 117-123.
    45. Feng C.D., Sun S.L., Wang H., Segre C.U., Stetter J.R., Humidity sensing properties of nafion and sol-gel derived SiO2/Nafion composite thin films. Sensors and Actuators B-Chemical, 1997. 40(2-3): p. 217-222.
    46. Chen T.Y., Leddy J., Ion exchange capacity of nafion and nafion composites. Langmuir, 2000. 16(6): p. 2866-2871.
    47. Cirkel P.A., Okada T., A comparison of mechanical and electrical percolation during the gelling of Nafion solutions. Macromolecules, 2000. 33(13): p. 4921-4925.
    48. Laporta M., Pegoraro M., Zanderighi L., Recast Nafion-117 thin film from water solution. Macromolecular Materials and Engineering, 2000. 282(9): p. 22-29.
    49. Ludvigsson M., Lindgren J., Tegenfeldt J., FTIR study of water in cast Nafion films. Electrochimica Acta, 2000. 45(14): p. 2267-2271.
    50. Ludvigsson M., Lindgren J., Tegenfeldt J., Crystallinity in cast Nafion. Journal of the Electrochemical Society, 2000. 147(4): p. 1303-1305.
    51. Lee K., Ishihara A., Mitsushima S., Kamiya N., Ota K., Effect of recast temperature on diffusion and dissolution of oxygen and morphological properties in recast Nafion. Journal of the Electrochemical Society, 2004. 151(4): p. A639-a645.
    52. Silva R.F., De Francesco M., Pozio A., Solution-cast Nafion? ionomer membranes: preparation and characterization. Electrochimica Acta, 2004. 49(19): p. 3211-3219.
    53. Siroma Z., Fujiwara N., Ioroi T., Yamazaki S., Yasuda K., Miyazaki Y., Dissolution of Nafion? membrane and recast Nafion? film in mixtures of methanol and water. Journal of Power Sources, 2004. 126(1-2): p. 41-45.
    54. Lin H.L., Yu T.L., Huang C.H., Lin T.L., Morphology study of nafion membranes prepared by solutions casting. Journal of Polymer Science :Part B-Polymer Physics, 2005. 43(21): p. 3044-3057.
    55. Silva R.F., Passerini S., Pozio A., Solution-cast Nafion((R))/montmorillonite composite membrane with low methanol permeability. Electrochimica Acta, 2005. 50(13): p. 2639-2645.
    56. Maruyama J., Inaba M., Katakura K., Ogumi Z., Takehara Z., Influence of Nafion (R) film on the kinetics of anodic hydrogen oxidation. Journal of Electroanalytical Chemistry, 1998. 447(1-2): p. 201-209.
    57. Adjemian K.T., Lee S.J., Srinivasan S., Benziger J., Bocarsly A.B., Silicon oxide Nafion composite membranes for proton-exchange membrane fuel cell operation at 80-140℃. Journal of the Electrochemical Society, 2002. 149(3): p. A256-A261.
    58. Costamagna P., Yang C., Bocarsly A.B., Srinivasan S., Nafion (R) 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 degrees C. Electrochimica Acta, 2002. 47(7): p. 1023-1033.
    59. Dimitrova P., Friedrich K.A., Vogt B., Stimming U., Transport properties of ionomer compositemembranes for direct methanol fuel cells. Journal of Electroanalytical Chemistry, 2002. 532(1-2): p. 75-83.
    60. Xu H.F., Wang X., Shao Z.G., Hsing I.M., Recycling and regeneration of used perfluorosulfonic membranes for polymer electrolyte fuel cells. Journal of Applied Electrochemistry, 2002. 32(12): p. 1337-1340.
    61. Klein L.C., Daiko Y., Aparicio M., Damay F., Methods for modifying proton exchange membranes using the sol-gel process. Polymer, 2005. 46(12): p. 4504-4509.
    62. Sacca A., Carbone A., Passalacqua E., D'Epifanio A., Licoccia S., Traversa E., Sala E., Traini F., Ornelas R., Nafion-TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs). Journal of Power Sources, 2005. 152(1): p. 16-21.
    63. Hoyer B., Jensen N., Busch L.P., Effect of the pretreatment of recast Nafion membranes on their rejection of the albumin interference in anodic stripping voltammetry. Electroanalysis, 2001. 13(10): p. 843-848.
    64. Lee S.J., Yu T.L., Lin H.L., Liu W.H., Lai C.L., Solution properties of nafion in methanol/water mixture solvent. Polymer, 2004. 45(8): p. 2853-2862.
    65. Loppinet B., Gebel G., Rodlike colloidal structure of short pendant chain perfluorinated ionomer solutions. Langmuir, 1998. 14(8): p. 1977-1983.
    66. Siroma Z., Fujiwara N., Ioroi T., Yamazaki S., Yasuda K., Miyazaki Y., Dissolution of Nafion (R) membrane and recast Nafion (R) film in mixtures of methanol and water. Journal of Power Sources, 2004. 126(1-2): p. 41-45.
    67. Charles R. Martin T.A.R., James A. Ferguson, Dissolution of perfluorinated ion-containing polymers. Anal. Chem., 1982. 54(9): p. 1639-1641.
    68. Aldebert P., Gebel G., Loppinet B., Nakamura N., Polyelectrolyte effect in perfluorosulfonated ionomer solutions. Polymer 1995. 36(2): p. 431-434.
    69. Gebel G., Loppinet B., Colloidal structure of ionomer solutions in polar solvents. Journal of Molecular Structure 1996. 383(1-3): p. 43-49.
    70. Loppinet B., Gebel G., Williams C.E., Small-angle scattering study of perfluorosulfonated ionomer solutions. Journal of Physical Chemistry B, 1997. 101(10): p. 1884-1892.
    71. Aldebert P., Dreyfus B., Pineri M., Small-angle neutron scattering of perfluorosulfonated ionomers in solution. Macromolecules, 1986. 19(10): p. 2651-2653.
    72. Szajdzinska-Pietek E., Schlick S., Plonka A., Self-Assembling of Perfluorinated Polymeric Surfactants in Nonaqueous Solvents. Electron Spin Resonance Spectra of Nitroxide Spin Probes in Nafion Solutions and Swollen Membranes. Langmuir, 1994. 10(7): p. 2188-2196.
    73.衣宝廉,燃料电池——原理、技术、应用.第一版. 2003年8月,北京:化学工业出版社.
    74.毛宗强,燃料电池.第一版. 2005年4月,北京:化学工业出版社.
    75.衣宝廉,燃料电池的原理、技术状态与展望.电池工业, 2003. 8(1): p. 16-22.
    76. Büchi F.N., Scherer G.G., In-situ resistance measurements of Nafion 117 membranes in polymer electrolyte fuel cells. Journal of Electroanalytical Chemistry, 1996. 404(1): p. 37-43.
    77. Antonucci P.L., Arico A.S., Creti P., Ramunni E., Antonucci V., Investigation of a direct methanol fuel cell based on a composite Nafion (R)-silica electrolyte for high temperature operation. SolidState Ionics, 1999. 125(1-4): p. 431-437.
    78. Bellows R.J., Lin M.Y., Arif M., Thompson A.K., Jacobson D., Neutron imaging technique for in situ measurement of water transport gradients within Nafion in polymer electrolyte fuel cells. Journal of the Electrochemical Society, 1999. 146(3): p. 1099-1103.
    79. Baradie B., Dodelet J.P., Guay D., Hybrid Nafion (R)-inorganic membrane with potential applications for polymer electrolyte fuel cells. Journal of Electroanalytical Chemistry, 2000. 489(1-2): p. 101-105.
    80. Jia N.Y., Lefebvre M.C., Halfyard J., Qi Z.G., Pickup P.G., Modification of Nafion proton exchange membranes to reduce methanol crossover in PEM fuel cells. Electrochemical and Solid State Letters, 2000. 3(12): p. 529-531.
    81. Büchi F.N., Scherer G.G., Investigation of the transversal water profile in nafion membranes in polymer electrolyte fuel cells. Journal of the Electrochemical Society, 2001. 148(3): p. A183-a188.
    82. Florjanczyk Z., Wielgus-Barry E., Poltarzewski Z., Radiation-modified Nafion membranes for methanol fuel cells. Solid State Ionics, 2001. 145(1-4): p. 119-126.
    83. Hobson L.J., Ozu H., Yamaguchi M., Hayase S., Modified Nafion 117 as an improved polymer electrolyte membrane for direct methanol fuel cells. Journal of the Electrochemical Society, 2001. 148(10): p. A1185-a1190.
    84. Miyake N., Wainright J.S., Savinell R.F., Evaluation of a sol-gel derived Nafion/silica hybrid membrane for polymer electrolyte membrane fuel cell applications - II. Methanol uptake and methanol permeability. Journal of the Electrochemical Society, 2001. 148(8): p. A905-a909.
    85. Miyake N., Wainright J.S., Savinell R.F., Evaluation of a sol-gel derived Nafion/silica hybrid membrane for proton electrolyte membrane fuel cell applications - I. Proton conductivity and water content. Journal of the Electrochemical Society, 2001. 148(8): p. A898-a904.
    86. Passalacqua E., Lufrano F., Squadrito G., Patti A., Giorgi L., Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochimica Acta, 2001. 46(6): p. 799-805.
    87. Staiti P., Arico A.S., Baglio V., Lufrano F., Passalacqua E., Antonucci V., Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells. Solid State Ionics, 2001. 145(1-4): p. 101-107.
    88. Yang C., Srinivasan S., Arico A.S., Creti P., Baglio V., Antonucci V., Composition Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature. Electrochemical and Solid State Letters, 2001. 4(4): p. A31-a34.
    89. Dimitrova P., Friedrich K.A., Stimming U., Vogt B., Modified Nafion((R))-based membranes for use in direct methanol fuel cells. Solid State Ionics, 2002. 150(1-2): p. 115-122.
    90. Jiang R.Z., Chu D.R., CO2 crossover through a Nafion membrane in a direct methanol fuel cell. Electrochemical and Solid State Letters, 2002. 5(7): p. A156-a159.
    91. Jung D.H., Cho S.Y., Peck D.H., Shin D.R., Kim J.S., Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell. Journal of Power Sources, 2002. 106(1-2): p. 173-177.
    92. Park K.W., Ahn H.J., Sung Y.E., All-solid-state supercapacitor using a Nafion (R) polymermembrane and its hybridization with a direct methanol fuel cell. Journal of Power Sources, 2002. 109(2): p. 500-506.
    93. Shao Z.G., Hsing I.M., Nafion membrane coated with sulfonated poly, vinyl alcohol-Nafion film for direct methanol fuel cells. Electrochemical and Solid State Letters, 2002. 5(9): p. A185-a187.
    94. Shao Z.G., Wang X., Hsing I.M., Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell. Journal of Membrane Science, 2002. 210(1): p. 147-153.
    95. Shim J., Ha H.Y., Hong S.A., Oh I.H., Characteristics of the Nafion ionomer-impregnated composite membrane for polymer electrolyte fuel cells. Journal of Power Sources, 2002. 109(2): p. 412-417.
    96. Banerjee S., Nafion (R) perfluorinated membranes in fuel cells. Abstracts of Papers of the American Chemical Society, 2003. 226: p. U524-U524.
    97. Damay F., Klein L.C., Transport properties of Nafion (TM) composite membranes for proton-exchange membranes fuel cells. Solid State Ionics, 2003. 162: p. 261-267.
    98. Easton E.B., Langsdorf B.L., Hughes J.A., Sultan J., Qi Z.G., Kaufman A., Pickup P.G., Characteristics of polypyrrole/Nafion composite membranes in a direct methanol fuel cell. Journal of the Electrochemical Society, 2003. 150(10): p. C735-C739.
    99. Liu F.Q., Yi B.L., Xing D.M., Yu J.R., Zhang H.M., Nafion/PTFE composite membranes for fuel cell applications. Journal of Membrane Science, 2003. 212(1-2): p. 213-223.
    100. Smit M.A., Ocampo A.L., Espinosa-Medina M.A., Sebastian P.J., A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell. Journal of Power Sources, 2003. 124(1): p. 59-64.
    101. Uchida H., Ueno Y., Hagihara H., Watanabe M., Self-humidifying electrolyte membranes for fuel cells - Preparation of highly dispersed TiO2 particles in Nafion 112. Journal of the Electrochemical Society, 2003. 150(1): p. A57-a62.
    102. Banerjee S., Curtin D.E., Nafion (R) perfluorinated membranes in fuel cells. Journal of Fluorine Chemistry, 2004. 125(8): p. 1211-1216.
    103. Bauer F., Willert-Porada M., Microstructural characterization of Zr-phosphate-Nafion((R)) membranes for direct methanol fuel cell (DMFC) applications. Journal of Membrane Science, 2004. 233(1-2): p. 141-149.
    104. Ciureanu M., Effects of Nafion (R) dehydration in PEM fuel cells. Journal of Applied Electrochemistry, 2004. 34(7): p. 705-714.
    105. Shao Z.G., Joghee P., Hsing I.M., Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. Journal of Membrane Science, 2004. 229(1-2): p. 43-51.
    106. Silva R.F., De Francesco A., Pozio A., Tangential and normal conductivities of Nafion((R)) membranes used in polymer electrolyte fuel cells. Journal of Power Sources, 2004. 134(1): p. 18-26.
    107. Tang H.F., Pan M., Mu S.C., Yuan R.Z., Synthesis of platinum nanoparticles modified with nafion and the application in PEM fuel cell. Journal of Wuhan University of Technology-Materials Science Edition, 2004. 19(3): p. 7-9.
    108. Yu T.L., Lin H.L., Shen K.S., Huang L.N., Chang Y.C., Jung G.B., Huang J.C., Nafion/PTFE composite membranes for fuel cell applications. Journal of Polymer Research-Taiwan, 2004. 11(3): p. 217-224.
    109. Zhou C., Zawodzinski T., Schiraldi D., Chemical changes in nafion membranes under simulated fuel cell conditions. Abstracts of Papers of the American Chemical Society, 2004. 228: p. U344-U345.
    110. Bae B.C., Ha H.Y., Kim D., Preparation and characterization of nafion/poly(1-vinylimidazole) composite membrane for direct methanol fuel cell application. Journal of the Electrochemical Society, 2005. 152(7): p. A1366-a1372.
    111. Bauer F., Willert-Porada A., Characterisation of zirconium and titanium phosphates and direct methanol fuel cell (DMFC) performance of functionally graded Nafion(R) composite membranes prepared out of them. Journal of Power Sources, 2005. 145(2): p. 101-107.
    112. Chen S.L., Bocarsly A.B., Benziger J., Nafion-layered sulfonated polysulfone fuel cell membranes. Journal of Power Sources, 2005. 152(1): p. 27-33.
    113. Cho K.Y., Jung H.Y., Choi N.S., Sung S.J., Park J.K., Choi J.H., Sung Y.E., A coated Nafion membrane with a PVdF copolymer/Nafion blend for direct methanol fuel cells (DMFCs). Solid State Ionics, 2005. 176(39-40): p. 3027-3030.
    114. Lin H.L., Yu T.L., Huang L.N., Chen L.C., Shen K.S., Jung G.B., Nafion/PTFE composite membranes for direct methanol fuel cell applications. Journal of Power Sources, 2005. 150: p. 11-19.
    115. Liu J., Wang H.T., Cheng S.A., Chan K.Y., Nafion-polyfurfuryl alcohol nanocomposite membranes for direct methanol fuel cells. Journal of Membrane Science, 2005. 246(1): p. 95-101.
    116. Moravcova S., Cilova Z., Bouzek K., Preparation of a novel composite material based on a Nafion (R) membrane and polypyrrole for potential application in a PEM fuel cell. Journal of Applied Electrochemistry, 2005. 35(10): p. 991-997.
    117. Prabhuram J., Zhao T.S., Liang Z.X., Yang H., Wong C.W., Pd and Pd-Cu alloy deposited nafion membranes for reduction of methanol crossover in direct methanol fuel cells. Journal of the Electrochemical Society, 2005. 152(7): p. A1390-a1397.
    118. Rhee C.H., Kim H.K., Chang H., Lee J.S., Nafion/sulfonated montmorillonite composite: A new concept electrolyte membrane for direct methanol fuel cells. Chemistry of Materials, 2005. 17(7): p. 1691-1697.
    119. Shim J.H., Koo I.G., Lee W.M., Nafion-impregnated polyethylene-terephthalate film used as the electrolyte for direct methanol fuel cells. Electrochimica Acta, 2005. 50(12): p. 2385-2391.
    120. Xu W.L., Lu T.H., Liu C.P., Xing W., Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells. Electrochimica Acta, 2005. 50(16-17): p. 3280-3285.
    121. Yang B., Fu Y.Z., Manthiram A., Operation of thin Nafion-based self-humidifying membranes in proton exchange membrane fuel cells with dry H-2 andO(2). Journal of Power Sources, 2005. 139(1-2): p. 170-175.
    122. Zhang Y., Erkey C., Preparation of platinum-Nafion-carbon black nanocomposites via asupercritical fluid route as electrocatalysts for proton exchange membrane fuel cells. Industrial & Engineering Chemistry Research, 2005. 44(14): p. 5312-5317.
    123. Sum E., Rychcik M., Skyllas-Kazacos M., Investigation of the vanadium(V)/vanadium(IV) system for use in the positive half-cell of a redox battery. Journal of Power Sources, 1985. 16(2): p. 85-95.
    124. Sum E., Skyllas-Kazacos M., A study of the vanadium(II)/vanadium(III) redox couple for redox flow cell applications. Journal of Power Sources, 1985. 15(2-3): p. 179-90.
    125. Tian B., Yan C.W., Wang F.H., Proton conducting composite membrane from Daramic/Nafion for vanadium redox flow battery. Journal of Membrane Science, 2004. 234(1-2): p. 51-54.
    126. Sukkar T., Skyllas-Kazacos M., Membrane stability studies for vanadium redox cell applications. Journal of Applied Electrochemistry, 2004. 34(2): p. 137-145.
    127. El Aakel L., Launay F., Bregeault J.M., Atlamsani A., Nafion (R)-supported vanadium oxidation catalysts: redox versus acid-catalysed ring opening of 2-substituted cycloalkanones by dioxygen. Journal of Molecular Catalysis a-Chemical, 2004. 212(1-2): p. 171-182.
    128. Mohammadi T., Mahdifar M., Water transport study across ion exchange membranes in the vanadium redox flow battery. Iranian Journal of Science and Technology, 2001. 25(B1): p. 57-66.
    129. Mohammadi T., Kazacos M.S., Evaluation of the chemical stability of some membranes in vanadium solution. Journal of Applied Electrochemistry, 1997. 27(2): p. 153-160.
    130. Mohammadi T., Chieng S.C., Kazacos M.S., Water transport study across commercial ion exchange membranes in the vanadium redox flow battery. Journal of Membrane Science, 1997. 133(2): p. 151-159.
    131.顾军,李光强,隋智通,钒氧化还原液流电池研究进展(Ⅱ)-电池材料的发展.电源技术, 2000. 24(3): p. 181.
    132. Chieng S.C., Kazacos M., Skyllas-Kazacos M., Modification of Daramic, microporous separator for redox flow battery applications. Journal of Membrane Science, 1992. 75: p. 81-91.
    133. Eisenberg A., Yeager H.L., Perfluorinated Ionomer Membranes. 1982, Washington D. C.: American Chemical Society.
    134. Rakib M., Mocoteguy P., Viers P., Petit E., Durand G., Behaviour of Nafion (R) 350 membrane in sodium sulfate electrochemical splitting: continuous process modelling and pilot scale tests. Journal of Applied Electrochemistry, 1999. 29(12): p. 1439-1448.
    135. Tan S., Belanger D., Characterization and transport properties of Nafion/polyaniline composite membranes. Journal of Physical Chemistry B, 2005. 109(49): p. 23480-23490.
    136. Bandini S., Nafion membranes for conversion of sodium phenoxides into undissociated phenols. Journal of Membrane Science, 2002. 207(2): p. 209-225.
    137. Harmer M.A., Farneth W.E., Sun Q., High surface area nafion resin/silica nanocomposites: A new class of solid acid catalyst. Journal of the American Chemical Society, 1996. 118(33): p. 7708-7715.
    138. Olah G.A., Shamma T., Prakash G.K.S., Catalysis by solid superacids .31. Dehydration of alcohols to ethers over Nafion-H, a solid perfluoroalkanesulfonic acid resin catalyst. Catalysis Letters, 1997. 46(1-2): p. 1-4.
    139. Heidekum A., Harmer M.A., Hoelderich W.F., Highly selective Fries rearrangement over zeolitesand Nafion in silica composite catalysts: A comparison. Journal of Catalysis, 1998. 176(1): p. 260-263.
    140. Palinko I., Torok B., Prakash G.K.S., Olah G.A., Dehydration-rehydration characteristics of Nafion-H, Nafion-H supported on silica and Nafion-H silica nanocomposite catalysts studied by Infrared Microscopy. Journal of Molecular Structure, 1999. 483: p. 29-32.
    141. Torok B., Kiricsi I., Molnar A., Olah G.A., Acidity and catalytic activity of a Nafion-H/silica nanocomposite catalyst compared with a silica-supported Nafion sample. Journal of Catalysis, 2000. 193(1): p. 132-138.
    142. Kellie L. Tuck P.J.H., The deuteriation of constituents in olive oil and red wine with Nafion, a polymer supported acid catalyst. Journal of Labelled Compounds and Radiopharmaceuticals, 2001. 44(14): p. 1005-1011.
    143. Park C., Keane M.A., Gas phase dehydration of C-6 alcohols promoted by Y zeolite and supported nafion catalysts. Journal of Molecular Catalysis a-Chemical, 2001. 166(2): p. 303-322.
    144. Shiroishi H., Yamashita S., Kaneko M., Activity analysis of trans-[RuCl2(NH3)(4)](+) incorporated into Nafion membrane for water oxidation catalyst. Journal of Molecular Catalysis a-Chemical, 2001. 169(1-2): p. 269-273.
    145. Wang H., Wang J.W., Xu B.Q., Qiu X.Q., Preparation and characterization of a novel class of solid acid catalyst Nafion/SiO2. Acta Chimica Sinica, 2001. 59(9): p. 1367-1371.
    146. You L.Q., Zheng G.R., Lu P., Preparation of p-1,1,3,3-tetramethylbutylphenol by using nafion-H catalyst. Chinese Chemical Letters, 2002. 13(4): p. 308-310.
    147. Gonzalez-Cruz R., Solorza-Feria O., Oxygen reduction in acid media by a RuxFeySez(CO)(n) cluster catalyst dispersed on a glassy carbon-supported Nafion film. Journal of Solid State Electrochemistry, 2003. 7(5): p. 289-295.
    148. McGovern M.S., Garnett E.C., Rice C., Masel R.I., Wieckowski A., Effects of Nafion as a binding agent for unsupported nanoparticle catalysts. Journal of Power Sources, 2003. 115(1): p. 35-39.
    149. Zolfigol M.A., Mohammadpoor-Baltork I., Habibi D., Mirjalili B.F., Bamoniri A., The use of Nafion-H (R) as an efficient catalyst for the deprotection of trimethylsilyl ethers to their corresponding alcohols under mild and heterogeneous conditions. Phosphorus Sulfur and Silicon and the Related Elements, 2004. 179(11): p. 2189-2193.
    150. Laufer M.C., Bonrath W., Hoelderich W.F., Synthesis of (all-rac)-alpha-tocopherol using Nafion resin/silica nanocomposite materials as catalysts. Catalysis Letters, 2005. 100(1-2): p. 101-103.
    151. Yu C.B., Wang Y.J., Hua K.F., Xing W., Yang H., Lu T.H., Application of modified Nafion membrane to the sulfur dioxide gas electrochemical sensor. Chinese Journal of Analytical Chemistry, 2002. 30(4): p. 397-400.
    152. Hung W.T., Ho K.C., An electrochemical gas sensor for nitrogen dioxide based on Pt/Nafion((R)) electrode. Journal of New Materials for Electrochemical Systems, 2002. 5(4): p. 305-313.
    153. Egashira N., Kumasako H., Uda T., Ohga K., Fabrication of a trimethylamine gas sensor based on electrochemiluminescence of Ru(bpy)(2+)(3)/Nafion gel and its application to a freshness sensor for seafood. Electroanalysis, 2002. 14(12): p. 871-873.
    154. Ho K.C., Hung W.T., An amperometric NO2 gas sensor based on Pt/Nafion (R) Electrode. Sensorsand Actuators B-Chemical, 2001. 79(1): p. 11-16.
    155. Hwang B.J., Liu Y.C., Chen Y.L., Nafion based solid-state gas sensors: Pt/Nafion electrodes prepared by a Takenata-Torikai method in sensing oxygen. Journal of the Chinese Institute of Chemical Engineers, 1999. 30(4): p. 303-309.
    156. Sun J., Hauser P.C., Zhelyaskov V., Lin J., Broderick M., Fein H., Zhang X., A New Nitric Oxide Gas Sensor Based on Reticulated Vitreous Carbon/Nafion and Its Applications. Electroanalysis, 2004. 16(20): p. 1723-1729.
    157. Sungpet A., Way J.D., Thoen P.M., Dorgan J.R., Reactive polymer membranes for ethylene/ethane separation. Journal of Membrane Science, 1997. 136(1-2): p. 111-120.
    158.山边正显,松尾仁,含氟材料的研究开发. 2003:华东理工大学出版社.
    159. Donald J.C., William F.G., Fluorocarbon Vinyl Ether Polymers. 1966. US 3282875.
    160. Asawa T., Miyake H., Yamashita M., Fluorinated polymer having ion-exchange groups. 1982. US 4320205.
    161. Kimoto K., Miyauchi H., Ohmura J., Ebisawa M., Hane T., Fluorinated copolymers and cation exchange membrane and process for producing the same. 1981. GB 2051831.
    162. Grot W.G., Liquid composition containing a perfluorinated ion-exchange polymer. Eur. Pat. Appl. (1982), 41 pp. CODEN: EPXXDW EP 66369 A1, 1982. US 4433082.
    163. Rubinstein I., Bard A.J., Polymer films on electrodes. 4. Nafion-coated electrodes and electrogenerated chemiluminescence of surface-attached tris(2,2'-bipyridine)ruthenium(2+). J. Am. Chem. Soc., 1980. 102(21): p. 6641-6642.
    164. Moore R.B., Martin C.R., Chemical and morphological properties of solution-cast perfluorosulfonate ionomers. Macromolecules, 1988. 21(5): p. 1334-1339.
    165. Heitner-Wirguin C., Infra-red spectra of perfluorinated cation-exchanged membranes. Polymer, 1979. 20(3): p. 371-374.
    166. Okamoto Y., An ab initio study of the side chain of Nafion. Chemical Physics Letters, 2004. 389(1-3): p. 64-67.
    167. Yeo R.S., Solubility parameter of perfluorosulfonated polymer. ACS Symposium Series (1982), 180, (Perfluorinated Ionomer Membr.): p. 65-77.
    168. Martin C.R., Rhoades T.A., Ferguson J.A., Dissolution of perfluorinated ion-containing polymers. Analytical Chemistry, 1982. 54(9): p. 1639-41.
    169.王海,王建武,徐柏庆,邱显清,全氟磺酸树脂Nafion NR50溶液的制备.应用化学, 2001. 18(10): p. 798-781.
    170.徐洪峰,徐麟,溶剂对全氟磺酸再铸膜性能的影响.高校化学工程学报, 2006. 20(6): p. 978-982.
    171.王守绪,郑重德,胡涛,马迪,特种Nafion溶液制备及其在PEMFC中的应用研究.电子科技大学学报, 2006. 35(5): p. 826-828.
    172. Dobrynin A.V., Rubinstein M., Obukhov S.P., Cascade of Transitions of Polyelectrolytes in Poor Solvents. Macromolecules, 1996. 29(8): p. 2974-2979.
    173. Winter H.H., Chambon F.J., Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel Point. Journal of Rheology, 1986. 30: p. 367.
    174. Winter H.H., Chambon F.J., Linear Viscoelasticity at the Gel Point of a Crosslinking PDMS with Imbalanced Stoichiometry. Journal of Rheology, 1987. 31: p. 683.
    175. Winter H.H., Mours M., Rheology of Polymers Near Liquid-Solid Transitions. Advances in Polymer Science, 1997. 134: p. 165-234.
    176. Witten J., T. A., Sander L.M., Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon. Physical Review Letters, 1981. 47(13): p. 1119.
    177. Mineo F., Takeji H., Hiromichi K., Small-Angle X-ray Scattering Study of Perfluorinated Ionomer Membranes. 1. Origin of Two Scattering Maxima. Macromolecules 1981. 14: p. 1309-1315.
    178. Brown G.L., Formation of films from polymer dispersions. Journal of Polymer Science, 1956. 22: p. 423-34.
    179. Visschers M., Laven J., German A.L., Current understanding of the deformation of latex particles during film formation. Progress in Organic Coatings 1997. 30(1-2): p. 39-49.
    180. Miyatake K., Chikashige Y., Higuchi E., Watanabe M., Tuned Polymer Electrolyte Membranes Based on Aromatic Polyethers for Fuel Cell Applications. Journal of the American Chemical Society, 2007. 129(13): p. 3879-3887.
    181. Lin H.L., Yu T.L., Han F.H., A Method for Improving Ionic Conductivity of Nafion Membranes and its Application to PEMFC. Journal of Polymer Research, 2006. 13(5): p. 379-385.
    182. Sachdeva A., Sodaye S., Pandey A.K., Goswami A., Formation of silver nanoparticles in poly(perfluorosulfonic) acid membrane. Analytical Chemistry, 2006. 78(20): p. 7169-7174.
    183. Rollins H.W., Lin F., Johnson J., Ma J.J., Liu J.T., Tu M.H., DesMarteau D.D., Sun Y.P., Nanoscale cavities for nanoparticles in perfluorinated ionomer membranes. Langmuir, 2000. 16(21): p. 8031-8036.
    184. Tricoli V., Carretta N., Bartolozzi M., A comparative investigation of proton and methanol transport in fluorinated ionomeric membranes. Journal of the Electrochemical Society, 2000. 147(4): p. 1286-1290.
    185. Robert B. Moore, III Charles R. Martin, Chemical and morphological properties of solution-cast perfluorosulfonate ionomers. Macromolecules, 1988. 21(5): p. 1334-1339.
    186. Howard W. Starkweather J., Crystallinity in perfluorosulfonic acid ionomers and related polymers Macromolecules, 1982. 15(2): p. 320-323.
    187. de Almeida S.H., Kawano Y., Thermal behavior of Nafion membranes. Journal of Thermal Analysis and Calorimetry, 1999. 58(3): p. 569-577.
    188. Moore R.B., Martin C.R., Morphology and chemical properties of the Dow perfluorosulfonate ionomers. Macromolecules, 1989. 22(9): p. 3594-3599.
    189. Lage L.G., Delgado P.G., Kawano Y., Vibrational and thermal characterization of Nafion (R) membranes substituted by alkaline earth cations. European Polymer Journal, 2004. 40(7): p. 1309-1316.
    190. Page K.A., Cable K.M., Moore R.B., Molecular origins of the thermal transitions and dynamic mechanical relaxations in perfluorosulfonate ionomers. Macromolecules, 2005. 38(15): p. 6472-6484.
    191. Scott K., Taama W., Cruickshank J., Performance of a direct methanol fuel cell. Journal of AppliedElectrochemistry, 1998. 28(3): p. 289.
    192. Jung D.H., Lee C.H., Kim C.S., Shin D.R., Performance of a direct methanol polymer electrolyte fuel cell. Journal of Power Sources, 1998. 71(1-2): p. 169-173.
    193. Cruickshank J., Scott K., The degree and effect of methanol crossover in the direct methanol fuel cell. Journal of Power Sources, 1998. 70(1): p. 40-47.
    194. Scott K., Taama W., Cruickshank J., Performance of a direct methanol fuel cell. Journal of Applied Electrochemistry, 1998. 28(3): p. 289-297.
    195. Scott K., Taama W.M., Kramer S., Argyropoulos P., Sundmacher K., Limiting current behaviour of the direct methanol fuel cell. Electrochimica Acta, 1999. 45(6): p. 945-957.
    196. Liu J.G., Zhao T.S., Liang Z.X., Chen R., Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells. Journal of Power Sources, 2006. 153(1): p. 61-67.
    197. Ling J., Savadogo O., Comparison of methanol crossover among four types of Nafion membranes. Journal of the Electrochemical Society, 2004. 151(10): p. A1604-a1610.
    198. Tang H.L., Pan M., Jiang S.P., Yuan R.Z., Modification of Nafion (TM) membrane to reduce methanol crossover via self-assembled Pd nanoparticles. Materials Letters, 2005. 59(28): p. 3766-3770.
    199. Xiu Y.K., Kamata K., Ono T., Kobayashi K., Nakazato T., Nakagawa N., Reduction of methanol crossover by a Pt film directly sputtered on Nafion membrane. Electrochemistry, 2005. 73(1): p. 67-70.
    200. Tang H.L., Pan M., Mu S.C., Yuan R.Z., Electrostatic self-assembly Pd particles on Nafion (TM) membrane surface to reduce methanol crossover. Chinese Science Bulletin, 2005. 50(4): p. 377-379.
    201. Tang H.L., Pan M., Jiang S.P., Wan Z.H., Yuan R.Z., Self-assembling multi-layer Pd nanoparticles onto Nafion(TM) membrane to reduce methanol crossover. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2005. 262(1-3): p. 65-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700