纳米颗粒悬浮液强化对流传热的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了适应工业过程强化和发展高效传热设备的需要,近几十年来研究者提出了多种强化传热技术。随着纳米技术的飞速发展,一些学者开始尝试将纳米颗粒与流体混合,制成纳米颗粒悬浮液,强化对流传热,给强化传热技术带来了蓬勃生机。本文的研究主要是围绕纳米流体对流传热方面展开,以期为纳米流体对流传热的深层次研究奠定基础。
     将纳米颗粒和液体介质直接混合,并添加分散剂和超声振动悬浮液,制备了稳定的氧化铜纳米颗粒悬浮液。采用沉降实验、zeta电位测量、粒度分布测定及红外光谱等手段对悬浮液的稳定性进行了分析。分析了分散剂的种类、加入量及介质的pH等因素对纳米颗粒悬浮液稳定性的影响。
     自行设计并建立了一套纳米流体传热性能测试实验装置,测量了不同粒子体积分数的水-CuO纳米流体在不同流速下的管内对流传热系数并与水和分散剂溶液进行了对比。实验结果表明,在液体中添加纳米粒子增大了液体的管内对流传热系数,粒子的体积分数是影响纳米流体对流传热系数的主要因素之一,在相同雷诺准数下,纳米流体的对流传热系数随粒子体积分数的增加而增大。
     根据纳米颗粒强化流体对流传热的机理,应用有效连续介质理论,假设流体和颗粒相具有相等的运动速度,仅考虑颗粒质量通量的变化,建立了纳米流体对流传热微分方程组——颗粒迁移模型。颗粒迁移通量包括由剪切速率梯度和黏度梯度诱导、颗粒布朗运动及热泳引起的颗粒迁移通量。通过对模型进行参数分析发现:颗粒尺寸、K c/Kμ及颗粒平均浓度的大小影响颗粒在管道截面上的分布以及导热系数和黏度等物性的分布。随着颗粒的迁移,流体的速度分布变得更加平坦,影响了壁面附近的温度梯度,强化了传热。模拟结果与实验数据比较表明:模拟结果能够正确反映实验数据的变化趋势,且高于导热系数均匀分布时的模拟值。考虑热泳引起的颗粒迁移后,模拟结果改善了。颗粒迁移模型正确考虑了影响纳米流体对流传热的主要因素,具有一定的合理性。
Responding to the need for industry process intensification and more efficient heat transfer systems, many efforts have been devoted to heat transfer enhancement techniques in the past few decades. With the rapid development of nanotechnology, some scholars attempted to enforce heat transfer process with nanoparticles, which introduced a new method into heat transfer enhancement. The purpose of this paper is to demonstrate experimentally and theoretically the convective heat transfer characteristics of nanofluids, so as to lay a foundation for the farther investigation on heat transfer of nanofluids.
     CuO nanoparticle suspension has been prepared by directly mixing nanoparticles and base fluids. Some auxiliary dispersants and ultrasonic oscillation were necessary to obtain even distributed and stabilized suspensions. Sedimentation experiment, zeta potential, granularity test and infrared spectrum were given to illustrate the stability of suspensions. Some factors that affect the stability and evenness of suspension, such as the property and concentration of dispersants, pH of base fluid were discussed.
     An experimental system was designed and built up to investigate convective heat transfer characteristics of CuO nanofluids flowing in a tube. The effects of such factors as the volume fraction of suspended nanoparticles and the Reynolds number on heat transfer were discussed in detail. The convective heat transfer performance of water and dispersant solution were also tested to compare with nanofluids. The experimental results show that nanoparticles remarkably increase the convective heat transfer coefficient of base fluid. The heat transfer feature of nanofluids increases with the volume fraction of nanoparticles.
     By considering factors affecting the convective heat transfer of nanofluids, a convective heat transfer model for nanofluids under laminar flow was established. It is according to effective continuum theory, which supposes a common velocity for two phases and merely considers the mass flux of particles migration. The tatal flux of particle migration takes into account the effects of shear-induced and viscosity-gradient-induced, Brownian motion, as well as thermophoresis-induced particle migration. With the model the effects of particle size, K c/Kμand mean concentration of particle on concentration distribution were analyzed. The migration of particles leads to non-uniform viscosity and thermal conductivity distribution of suspension. Increases in blunting of velocity profile influences the fluid temperature grads close to the wall and thus intensifies heat transfer of nanofluids.
     Comparison between experimental data and calculated results indicates that the model describes correctly the trend of experimental value and simulation results are higher than those of even thermal conductivity distribution. The capability of model is improved after considering the migration of thermophoresis. The particle migration model is reasonable for energy transport of nanoparticle suspension.
引文
[1] Maxwell J C, A Treatise on electricity and magnetism, London: Clarendon press, 1881
    [2] Ahuja A S, Augmentation of heat transfer in laminar flow of polystyrene suspension, Journal of Applied Physics, 1975, 46(8): 3408-3425
    [3] Sohn C W, Chen M M, Microconvective thermal conductivity in disperse two-phase mixture as observed in a low velocity couette flow experiment, J of heat transfer, 1981, 103(1): 47-51
    [4] Eastman J A, Choi S U S, Li S et al, Enhanced thermal conductivity through the development of nanofluids, Materials Research Society Symposium-Proceedings, Pittsburgh, PA, USA: Materials research society, 1997, 457: 3-11
    [5] Lee S, Choi S U S, Application of metallic nanoparticle suspensions in advanced cooling system, American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, New York, NY, USA: American Society of Mechanical Engineers, 1996, 232: 227-232
    [6] Choi S U S, Enhancing thermal conductivity of fluids with nanoparticles, American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, New York, NY, USA: American Society of Mechanical Engineers, 1995, 231: 99-105
    [7] 周乐平,王补宣,准稳态法测量纳米颗粒悬浮液的热物性,工程热物理学报,2003,24(6):1037-1039
    [8] Wang X, Xu X, Thermal conductivity of nanoparticle-fluid mixture, Journal of thermal physics and heat transfer, 1999, 13(4): 474-480
    [9] 李芃,仇中柱,纳米流体热导率的测量与评价,节能,2005(4):13-15
    [10] Nagasaka Y, Nagashima A, Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method, Journal of Physics E (Scientific Instruments), 1981, 14(12): 1435-1440
    [11] Masuda, H, Ebata A, Teramae K et al, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2, and TiO2 ultra-fine particles), Netsu Bussei (Japan), 1993, 7(4): 227-233
    [12] Lee S, Choi S U S, Li S et al, Measuring thermal conductivity of fluids containing oxide nanofluids, 1999, 121(2): 280-289
    [13] Eastman J A, Choi S U S, Li S et al, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physics Letters, 2001, 78(6): 718-720
    [14] 宣益民,李强,纳米流体强化传热研究,工程热物理学报,2000,21(4):466-470
    [15] 李强,宣益民,纳米流体热导率的测量,化工学报,2003,54(1):42-46
    [16] 李强,宣益民,纳米流体强化导热系数机理初步分析,热能动力工程,17(6):568-584
    [17] 谢华清,王锦昌,奚同庾等,SiC 纳米粉体悬浮液导热系数研究,硅酸盐学报,2001,29(4):361-364
    [18] 谢华清,吴清仁,王锦昌等,氧化铝纳米粉体悬浮液强化导热研究,硅酸盐学报,2002,30(3):272-276
    [19] 谢华清,奚同庾,王锦昌,纳米流体介质导热机理初探,物理学报,2003,52(6):1444-1449
    [20] Xie H, Wang J, Xi T et al, Thermal conductivity of suspensions containing nanosized particles, International Journal of Thermophysics, 2002, 23(2): 571-580
    [21] Hong T K, Yang H S, Choi C J, Study of the enhanced thermal conductivity of Fe nanofluids, Journal of Applied Physics, 2005, 97(6): 064311-064314
    [22] Murshed S M S, Leong K C, Yang C,Enhanced thermal conductivity of TiO2-water based nanofluids, International Journal of Thermal Sciences, 2005, 44(4): 367-373
    [23] Sarit K, Das N P, Peter T et al, Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of Heat Transfer, 2003, 125(4): 567-574
    [24] Li C H, Peterson G P, Experimental investigation of temperature and volume fractionvariations on the effective thermal conductivity of nanoparticles suspensions (nanofluids), Journal of Applied Physics, 2006, 99 (8): 0843141-0843148
    [25] Putnam S A, Cahill D G, Braun P V et al, Thermal conductivity of nanoparticle suspensions, Journal of Applied Physics, 2006, 99(8): 0843081-0843086
    [26] Yu W, Choi S U S, Analysis of thermal conductivity and convective heat transfer in nanotube suspension, American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD, New York, NY, United States: American Society of Mechanical Engineers, 2002, 372(2): 205-206
    [27] Choi S U S, Zhang Z G, Yu W et al, Anomalous thermal conductivity enhancement in nano-tube suspensions, Applied Physics Letters, 2001, 79(14): 2252-2254
    [28] Xie H, Lee H, Youn W et al, Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities, Journal of Applied Physics, 2003, 94(8): 4967-4971
    [29] Biercuk M, Llaguno M, Radosavljevic M et al, Carbon nanotube composites for thermal management, Applied Physics Letters, 2002, 80 (15): 2767-2769
    [30] Llaguno M, Hone J, Johnson A et al, Thermal conductivity of single-wall carbon nanotubes: diameter and annealing dependence, in: Kuzmany H, Fink J, Mehring M et al, (Eds.), AIP Conference Proceedings, New York, USA: AIP, 2001, 591: 384-387
    [31] Choi E S, Brooks J S, Eaton D L et al, Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing, Journal of Applied Physics, 2003, 94 (9): 6034-6039
    [32] Wen D, Ding Y, Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids), Journal of Thermophysics and Heat Transfer, 2004, 18 (4): 481-485
    [33] Ding Y, Alias H, Wen D et al, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), International Journal of Heat and Mass Transfer, 2006, 49(1-2): 240-250
    [34] Assael M J, Chen C F, Metaxa I N et al, Thermal conductivity of suspensions of carbonnanotubes in water, International Journal of Thermophysics, 2004, 25 (4): 971-985
    [35] Assael M J, Metaxa I N, Arvanitidis J et al, Thermal conductivity enhancement in aqueous suspensions of carbon multiwalled and double-walled nanotubes in the presence of two different dispersants, International Journal of Thermophysics, 2005, 26 (3): 647-664
    [36] Liu M S, Lin M C C, Huang I T et al, Enhancement of thermal conductivity with carbon nanotube for nanofluids, International Communications in Heat and Mass Transfer, 2005, 32 (9): 1202-1210
    [37] Pak B C, Cho Y I, Hydrodynamic and transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer, 1998, 11(2): 151-170
    [38] Wen D S, Ding Y L, Experimental investigation into convection heat transfer of nanofluids at the entrance region under laminar flow conditions, International Journal of Heat and Transfer, 2004, 47(24): 5181-5188
    [39] Yang Y, Zhang Z G, Grulke E A et al, Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow, International Journal of Heat and Mass Transfer, 2005, 48(6): 1107-1116
    [40] Heris S Z, Esfahany M N, Etemad S Gh, Nanofluid laminar convection heat transfer, VDI Berichte, 2005,1920: 177-180
    [41] Heris S Z, Etemad S Gh, Esfahany M N, Experimental investigation of metal oxide nanofluid convection heat transfer, VDI Breichte, 2005, 1920: 181-184
    [42] Heris S Z, Etemad S Gh, Esfahany M N, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, International Communications in Heat and Mass Transfer, 2006, 33 (4): 529-535
    [43] Faulkner D J, Rector D R, Davidson J J et al, Enhanced heat transfer through the use of nanofluids in forced convection, American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD, New York, United States: American Society of Mechanical Engineers, 2004, 375(3): 219-224
    [44] 李强,宣益民,纳米流体对流换热的实验研究,工程热物理学报,2002,23(6):721-723
    [45] 李强,宣益民,航天用纳米流体流动与传热特性的实验研究,宇航学报,2005,26(4):391-394
    [46] Li Q, Xuan Y M, Convective heat transfer and flow characteristics of Cu-Water nanofluid, Science in China, 2002, 45(4): 408-416
    [47] Xuan Y M, Li Q, Investigation on convective heat transfer and flow features of nanofluids, Journal of Heat Transfer, 2003, 125(1): 151-155
    [48] 戴闻亭,李俊明,陈骁等,细圆管内纳米悬浮液对流换热系数的实验研究,工程热物理学报,2003,24(4):633-636
    [49] 陈骁,李俊明,戴闻亭等,细圆管内纳米颗粒悬浮液强化对流换热的探讨,工程热物理学报,2004,25(4):643-645
    [50] 谢华清,纳米颗粒悬浮液热物理行为研究,博士学位论文,中国科学院上海硅酸盐研究所,2002
    [51] Wen D S, Ding Y L. Formulation of nanofluids for natural convective heat transfer applications, International Journal of Heat Fluid Flow, 2005, 26(6): 855-864
    [52] Putra N, Roetzel W, Das S K, Natural convection of nanofluids, Heat and Mass Transfer, 2003, 39(8-9): 775-784
    [53] 赵言冰,施明恒,纳米尺度固体悬浮颗粒强化池沸腾换热的实验研究,能源研究与利用,2002,(3):18-20
    [54]施明恒,赵言冰,刘中良,固体颗粒强化液体沸腾换热和抗垢特性的研究,东南大学学报,2002,32(3):419-423
    [55] Das S K, Putra N, Roetzel W, Pool boiling of nanofluids on horizontal narrow tubes, International Journal of Multiphase flow, 2003, 29(8): 1237-1247
    [56] Das S K, Putra N, Roetzel W, Pool Boiling characteristic of nano-fluids. International journal of heat and mass transfer, 2003, 46(5): 851-862
    [57] You S M, Kim J H, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Applied physics Letters, 2003, 83 (16): 3374-3376
    [58] Vassallo P, Kumar R, Amico S D, Pool boiling heat transfer experiments in silica-water nano-fluids, International journal of heat and mass transfer, 2004, 47(2): 407-411
    [59] Bang I C, Chang S H, Baek W P, Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool, International Journal of Heat and Mass Transfer 2005, 48 (12): 2420-2428
    [60] Wen D, Ding Y, Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids, Journal of Nanoparticle Research, 2005, 7 (2): 265-274
    [61] Keblinski P, Philipot S R, Choi S U S, et al, Mechanism of heat flow in suspension of nano-sizes particle (nanofluids), International Journal of heat and mass transfer, 2002, 45(4): 855-863
    [62] 谢华清,奚同庚,王锦昌,纳米流体介质导热机理初探,物理学报,2003,56(2):1444-1449
    [63] Xue L, Keblinski P, Philipot S R et al, Effect of liquid layering at the liquid-solid interface on thermal transport, International Journal of heat and mass transfer, 2004, 47(19-20): 4277-4284
    [64] Yu W, Choi S U S, The role of interfacial layers in the enhanced thermal of nanofluids: a renovated Maxwell model, Journal of Nanoparticle Research, 2003, 5 (1-2): 167-171
    [65] Yu W, Choi S U S, The role of interfacial layers in the enhanced thermal conductivity of nanofluids, renovated Hamilton-Crosser model, Journal of Nanoparticle Research, 2004, 6 (4): 355-361
    [66] Wang B X, Zhou L P, Peng X F, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, International Journal of Heat and Mass Transfer, 2003, 46(14): 2665-2672
    [67] Xue Q Z, Model for effective thermal conductivity of nanofluids, Physics Letters A, 2003, 307(5-6): 313-317
    [68] Xue Q, Xu W M, A model of thermal conductivity of nanofluids with interfacial shells, Materials Chemistry and Physics 2005, 90 (2-3): 298-301
    [69] Xie H, Fujii M, Zhang X, Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture, International Journal of Heat and Mass Transfer, 2005, 48 (14): 2926-2932
    [70] Xuan Y, Li Q, Hu W, Aggregation structure and thermal conductivity of nanofluids, AIChE Journal, 2003, 49 (4): 1038-1043.
    [71] Kumar D H, Patel H E, Kumar V R R et al, Model for heat conduction in nanofluids, Physical Review Letters, 2004,93 (14): 1443011-1443014
    [72] Bhattacharya P, Saha S K, Yadav A et al, Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids, Journal of Applied Physics, 2004, 95 (11): 6492-6494
    [73] Jang S P, Choi S U S, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Applied Physics Letters, 2004, 84(21): 4316-4318
    [74] Prasher R, Bhattacharya P, Phelan P E, Thermal conductivity of nanoscale colloidal solutions (nanofluids), Physical Review Letters, 2005, 94 (2): 0259011-0259014
    [75] Koo J, Kleinstreuer C, A new thermal conductivity model for nanofluids, Journal of Nanoparticle Research, 2004, 6 (6): 577-588
    [76] Koo J, Kleinstreuer C, Laminar nanofluid flow in micro-heat sinks, International Journal of Heat and Mass Transfer, 2005, 48 (13): 2652-2661
    [77] Xue Q Z, Model for thermal conductivity of carbon nanotube-based composites, Physics B: Condensed Matter, 2005, 368 (1-4): 302-307
    [78] Maiga S E B, Nguyen C T, Galanis N et al, Heat transfer behaviors of nanofluids in a uniform heated tube, Superlattices and microstructure, 2004, 35(3-6):543-557
    [79] Maiga S E B, Nguyen C T, Galanis N, et al, Hydrodynamic and thermal behaviours of a nanofluid in a uniformly heated tube, Computational Studies, Southampton, United Kingdom: WIT Press, 2004, 5: 453-462
    [80] Maiga S E B, Nguyen C T, Galanis N et al, Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension, International Journal of Numerical Methodsfor Heat and Fluid Flow, 2006, 16(3): 275-292
    [81] Nguyen C T, Maiga S E B, Palm S J et al, Heat transfer enhancement by using nanofluids in forced convection flows, International Journal of Heat and Fluid Flow, 2005, 26(4): 530-546
    [82] Roy G, Nguyen C T, Lajoie P R, Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids, Supperlattices and Microstructures, 2004, 35(3-6): 497-511
    [83] Xuan Y M, Li Q, Heat transfer enhancement of nanofluids, International Journal of Heat and Fluid Flow, 2000, 21(1): 58-64
    [84] Xuan Y M, Roetzel W, Conceptions for heat transfer correlation of nanofluids, International Journal of Heat and Mass Transfer, 2000, 43(19): 3701-3707
    [85] Khanafer K, Vafai K, Lightstone M, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, International Journal of heat and mass transfer, 2003, 46(19): 3639-3653
    [86] 徐健立,纳米流体之热传效能分析,硕士学位论文,中原大学,2003
    [87] Chein R Y, Huang G M. Analysis of microchannel heat sink performance using nanofluids, Applied Thermal Engineering, 2005, 25(17-18): 3104-3114
    [88] Buonglorno J, A non-homogeneous equilibrium model for convective transport in flowing nanofluids, Proceedings of the ASME Summer Heat Transfer Conference New York, United States: American Society of Mechanical Engineers, 2005, 2: 559-607
    [89] Buonglorno J, Convective Transport in Nanofluids, Journal of Heat Transfer 2006, 128(3): 240-250
    [90] Wen D S, Ding Y L, Effect of particle migration on heat transfer in suspensions of nanoparticle flowing through minichannels, Microfluid nanofluid, 2005, 1(2): 183-189
    [91] Ding Y L, Wen D S, Particle migration in a flow of nanoparticle suspensions, Powder Technology, 2005, 149(2): 84-92
    [92] Koo J, Kleinstreuer C, Laminar nanofluid flow in microheat-sinks, InternationalJournal of Heat and Mass Transfer, 2005, 48(13): 2652-2661
    [93] Behzadmehr A, Saffar A M, Galanis N, Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach, International Journal of Heat and Fluid Flow, 2006, in press
    [94] 吴轩,宣益民,基于晶格-Boltzmann 方法的纳米流体流动和传热模型,工程热物理学报,2003,24(1):121-123
    [95] 宣益民,余凯,吴轩等,基于 Lattice-Boltzmann 方法的纳米流体流动和传热分析,工程热物理学报,2004,25(6):1022-1024
    [96] 宣益民,李强,姚正平,纳米流体的格子-Boltzmann 模拟,中国科学 E,2004,34(3):280-287
    [97] Xuan Y, Yu K, Li Q, Investigation on flow and heat transfer of nanofluids by the thermal Lattice Boltzmann model, Progress in Computational Fluid Dynamics, 2005, 5(1): 13-19
    [98] 仁俊,卢寿慈,沈健等,微细颗粒在水,乙醇及煤油中的分散行为特征,科学通报,2000,45(5):583-586
    [99] 朱燕萍,纳米颗粒团聚问题的研究进展,天津医科大学学报,2005,11(2):338-341
    [100] 王广阔,杨英贤,不同超声频率与温度对纳米 ZnO 颗粒分散性能的影响,纺织科技进展,2005,2:24-26
    [101] 贾晓林,谭伟,纳米粉体分散技术发展概况,非金属矿,2003,26(4):1-3
    [102] 唐聪明,李新利,水性体系分散剂的研究进展,四川化工,2005,8(3):26-28
    [103] 张清岑,黄苏萍,水性体系分散剂应用新进展,中国粉体技术,2000,6(4):32-35
    [104] 徐桂英,张莉,李干佐,表面活性剂吸附对固/液分散体系稳定性的影响,日用化学工业,1997,3:56-59
    [105] 王相田,胡黎明,顾达,超细颗粒分散过程分析,化学通报,1995,5:13-17
    [106] 高濂,孙静,刘阳桥,纳米粉体的分散及表面改性,北京:化学工业出版社,2003
    [107] 施周,许光眉,张彬,纳米颗粒的分散及其在水与废水处理中的作用,环境污染治理技术与设备,2003,4(11):1-5
    [108] 宋晓岚,王海波,吴雪兰,纳米颗粒分散技术的研究与发展,化工进展,2005,24(1):47-52
    [109] 马文有,田秋,曹茂盛,纳米颗粒分散技术研究进展-分散方法与机理(1),中国粉体技术,2002,8(3):28-31
    [110] 李强,纳米流体强化传热机理研究,博士学位论文,南京理工大学,2002
    [111] 李玲,表面活性剂与纳米技术,北京:化学工业出版社,2004
    [112] 仁俊,沈健,卢寿慈,颗粒分散科学与技术,北京:化学工业出版社,2005
    [113] 李风生,崔平,杨毅等,微纳米粉体后处理技术及应用,北京:国防工业出版社,2005
    [114] Boisvert J P, Persello J, Castaing J C et al, Dispersion of alumina-coated TiO2 particles by adsorption of sodium polyacrylate, Colloids and Surfaces, 2001, 178(1): 187-198
    [115] Tseng W J, Tzeng F, Effect of ammonium polyacrylate on dispersion and rheology of aqueous ITO nanoparticle colloids, Colloids and surfaces A, Physicochemical and engineering aspects, 2006, 276(1-3): 34-39
    [116] Liufu S C, Xiao H N, Li Y P, Effect of MA-Na copolymer adsorption on the colloidal stability of nano-sized ZnO suspension, Materials Letters, 2005, 59(27): 3494-3497
    [117] Li J M, Li Z L, Wang B X, Experimental viscosity measurements for copper oxide nanoparticle suspension, Tsinghua Science and Technology, 2002, 7(2): 198-201
    [118] Wang W L, Li D S, Wang Z J, Study on the morphology and infrared spectrum behavior of ultrafine powder CuO, Chinese Journal of Inorganic Chemistry, 2002, 18(8): 823-826
    [119] Li H Y, Tripp C P, Interaction of sodium polyacrylate adsorbed on TiO2 with cationic and anionic surfactants, Langmuir, 2004, 20(24): 10526-10533
    [120] Lee D H, Condrate Sr R A, Reed J S, Infrared spectral investigation of polyacrylate adsorption on alumina, Journal of Materials Science, 1996, 31(2): 471-478
    [121] Li C C, Chang M H, Colloidal stability of CuO nanoparticles in alkanes via oleate modifications, Material Letters, 2004, 58(30): 3903-3907
    [122] 戴闻亭,细圆管内纳米颗粒悬浮液流动和对流换热的实验研究,硕士学位论文,清华大学,2002
    [123] 徐大中,糜振琥,热工测量与实验数据整理,上海,上海交通大学出版社,1991
    [124] Sieder E N, Tate G E, Heat transfer and pressure drop of liquid in tubes, Industry and Engineering Chemistry, 1936, 28(12): 1429-1435
    [125] Dittus F W, Boelter L M K, Heat transfer in Automobile radiators of the tubular type, University of California Publications in Engineering, 1930, 2(13): 443-461
    [126] Gadala-Maria F, Acrivos A, Shear induced structure in a concentrated suspension of solid spheres, Journal of Rheology, 1980, 24(6): 799-814
    [127] Abbott J R, Tetlow N, Graham A L et al, Experimental observations of particle migration in concentrated suspensions: Couette flow, Journal of Rheology, 1991, 35(5): 773-795
    [128] Hampton R E, Mammoli A A, Graham A L et al, Migration of particles undergoing pressure-driven flow in a circular conduit, Journal of Rheology, 1997, 41(3): 621-640
    [129] Koh C J, Hookham P A, Leal L G, An experimental investigation of concentrated suspension flow in a rectangular channel 1994, Journal of Fluid Mechanics, 256:1-32
    [130] Leighton D, Acrivos A, The shear-induced self-diffusion in concentrated suspensions, Journal of Fluid Mechanics, 1987,181: 415-439
    [131] Leighton D, Acrivos A, Measurement of shear-induced self-diffusion in concentrated suspensions of spheres, Journal of Fluid Mechanics, 1987, 177: 109-131
    [132] Phillips R J, Armstrong R C, Brown R A et al, A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration, 1992, Physics of Fluids A, 4(1): 30-40
    [133] Fang Z, Phan-Thien N, A particle suspension model: an unstructured finite-volume implementation, 1999, Journal of Non-Newtonian Fluid Mechanics, 80(2): 135-153
    [134] Nott P R, Brady J F, Pressure driven flow of suspensions: simulation and theory, 1994, Journal of Fluid Mechanics, 275: 157-199
    [135] Lam Y C, Chen X, Tan K W, Numerical investigation of particle migration in poiseuille flow of composite system, Composites Science and Technology, 2004, 64(7-8): 1001-1010
    [136] Lam Y C, Chen X, Tan K W, Shear-induced particle migration modelling in a concentrated suspension flow, Modelling and Simulation in Material Science and Engineering, 2003, 11(4): 503-522
    [137] Buyevich Y A, Kapbsov S K, Segregation of a fine suspension in channel flow, Journal of Non-Newtonian Fluid Mechanics, 1999, 86(1-2): 157-184
    [138] Stratmann F, Otto E, Fissan H, Experimental and theoretical study of submicron particle transport cooled laminar tube flow due to combine convection, diffusional and thermophoretic, Journal of Aerosol Science, 1989, 20(8): 899-902
    [139] Walker K L, Homsy G M, Geyling R T, Thermophoretic deposition of small particles in laminar tube flow, Journal of Colloid and Interface Science, 1979, 69(1): 138-147
    [140] Stratmann F, Otto E, Fissan H, Thermophoretic and diffusional particle transport in cooled laminar tubes flow, Journal of Aerosol Science, 1994, 25(7): 1305-1319
    [141] Talbot L, Cheng R K, Schefer D R, Thermophoresis of particles in a heated boundary layer, Journal of Fluid Mechanics, 1980, 101: 737-758
    [142] Brock J R, The thermal Force on Spherical Sodium Chloride Aerosol, Journal of Colloid and Interface Science, 1965, 20: 571
    [143] Brock J R, The thermal Force in the Transition Region, Journal of Colloid Interface and Science, 1967, 23: 448-452
    [144] Giddings J C, Shinudu P M, Semenov S N, Thermophoresis of metal particles in a liquid, Journal of Colloid and Interface Science, 1995, 176(2): 435-458
    [145] Semenov S N, Schimpf M E, Molecular thermodiffusion (thermophoresis) in liquid mixtures, Physical Review E, 2005, 72(4): 0412021-9
    [146] Regazzetti A, Hoyos M, Martin M, Experimental evidence of thermophoresis of non-brownian particles in pure liquids and estimation of their thermophoretic mobility, Journal of Physical Chemistry B, 2004, 108 (39): 15285 -15292
    [147] Rusconi R, Isa L, Piazza R, Thermal-lensing measurement of particle thermophoresis in aqueous dispersions, Journal of the Optical Society of America B, 2004, 21(3): 605-616
    [148] Parola A, Piazza R, Particle thermophoresis in liquids, The European Physical Journal E-Soft Matter, 2004, 15(3): 255-263
    [149] McNAB G S, Meisen A, Thermophoresis in liquid, Journal of colloid and interface science, 1973, 44(2): 339-346
    [150] Schaflinger U, Acrivos A, Zhang K, Viscous resuspension of a sediment within a laminar and stratified flow, International Journal of Multiphase Flow, 1990,16: 567-578
    [151] Hamilton R L, Crosser O K, Thermal conductivity of heterogeneous two component systems, Industrial and Engineering Chemistry Fundamentals, 1962, 1(3): 187-191
    [152] 苏金明,阮沈勇,matlab6.1 实用指南(上册),北京:电子工业出版社,2002
    [153] 陶文铨,数值传热学,西安:西安交大出版社,2001
    [154] Patanker SV, Numerical heat transfer and fluid flow, New York: Hemisphere Pub Co, McGraw-Hill; 1980
    [155] 黄华江,实用化工计算机模拟-matlab 在化学工程中的应用,北京:化学工业出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700