长江水源热泵换热器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在国家大力提倡节能减排的形势下,发展可再生能源是缓解我国能源短缺局面、调整我国能源结构的不合理性、保护环境的有效方式,是实现社会和环境可持续发展的必由之路。
     相对于空气温度而言,江河水水温度更为稳定,冬季比室外气温高,夏季比室外气温低,是一种较好的建筑用冷热源。论文在对长江重庆段江水水源概况进行详细实验调研的基础上,对发展长江水源热泵的技术路线和关键技术展开了研究。应用湍流流动理论、计算流体力学、两相流和对流换热理论,对长江水源热泵用换热器进行理论和实验研究。研究方法、内容和成果如下:
     以长江重庆段江水为例,对江水温度的日逐时变化、日平均变化和月平均变化进行了详细实验调研和分析,得出江水日波动在0.5℃以内,与气温日波动10几℃相比,是一种稳定的冷热源;江水的横断面水温分布均匀;江水做水源热泵的冷热源的主要水质问题是泥沙含量和水中的悬浮物,长江悬移质泥沙主要为粉砂和粘土。三峡库区的形成对重庆段江水夏季水位影响较小,因此江水水质变化不大。
     通过对长江水源热泵系统的技术路线、节能性和环保性分析,提出了适合发展长江水源热泵技术的开式直接系统。开式直接江水源热泵可分别比冷水机组+燃气锅炉系统和空气源热泵系统节能减排33%和40%。由于江水的流动性,江水源热泵系统可有效缓解城市热岛效应。
     江水泥沙颗粒的运动规律是两相流研究的基础。论文对颗粒运动微分方程进行详细的分析讨论,建立了三维颗粒运动微分方程的直接模拟数值方法。分析了颗粒在液体中受到非线性曳力、Basset力以及虚拟质量力作用时的沉降规律。对颗粒在流体中的阻力和升力进行了量级分析,得到在液体中的颗粒运动,除了考虑惯性力、曳力、压力梯度力和重力外,需要考虑Basset力以及虚拟质量力,而Saffman升力和Magnus升力则主要在靠近壁面的附近起作用。应用大涡模拟和颗粒相直接模拟技术对颗粒在突扩管内的扩散进行了数值分析,结果表明随着St P数的增加,颗粒的扩散度是减小的,也可以看出由于湍流的作用,流场对小粒径颗粒的携带能力更强。
     对江水换热引起的污垢热阻,采用热力学第一、二定律和熵产分析法,分析污垢对管内对流换热过程性能的影响。从污垢的形成过程看,熵增率是逐渐增加的,同时引起整个对流换热过程的不可逆性的增加。
     在相关理论研究的基础上,论文首先根据江水的水质特点对适合于长江水源热泵的换热器型式进行了分析讨论,分别提出了适合大型机组换热器型式(专利申请号200810069811.1)和中小型机组的单流道套管式换热器。
     对影响套管式换热器泥沙分离的半圆环形折返管内流动、换热以及两相流进行了数值模拟,得出折返管内存在明显的二次流现象,并且由于二次流的作用,使得换热管的对流换热性能较直管有一定的增加。而含沙江水两相流采用两流体连续介质模型,对不同曲率折返管内含沙江水两相流进行了数值模拟,得到当R/r在10~40的范围内,泥沙分离出现极小值的结果。
     在以上分析的基础上设计内壁采用光滑,外壁带有螺旋槽的换热内管,折返管弯曲度为R/r=12的实验用套管换热器,并采用数值方法对换热器的换热性能、阻力以及泥沙两相流进行了分析,换热性能和阻力分析结果表明,采用计算流体力学分析方法可满足工程应用的要求,可作为工程辅助设计的参考,而泥沙两相流分析的结果表明换热器不会出现泥沙堵塞的现象。
     在换热器实验研究方面,为了验证数值模拟的结果,论文对换热器分离堵塞进行了实验研究,得到换热器在泥沙流动稳定后,不会出现由于泥沙的分离而产生堵塞现象。
     最后论文对所设计换热器进行了热泵机组的冬季实验和夏季实验研究,经过实际工况的分析,换热器没有出现堵塞现象,同时换热器性能良好,能够得到实际应用,有推广的价值。
Under the national energy saving and emission reduction situation, the development of renewable energy is the effective way of releaseing national energy shortage, adjusting the un-reasonable national energy structure, environmental protection, and is the only way of society and environment sustainable development.
     Compared with the air temperature, the temperature of river water is more stable,higher than air temperature in winter and lower in summer, and is a better cold and heat source used in building. Basing on the detailed investigation of Yangtze River water source in Chongqing,P.R.China, the technical route and key technology of river water source heat pump are studied.Using turbulent flow, computational fluid dynamics, two-phase flow and convection heat exchange theory, the heat exchanger used by river water source heat pump is studied theoretically and experimentally, which is a key technical problem of the development of river water source heat pump technology. Research methods, contents and Achievements are as follows:
     Hourly, daily and monthly average water temperature of Yangtze River in Chongqing,P.R.China are investigated and analysed Detailedly. The results show that the water temperature fluctuation is below 0.5℃, river water is a better cold and heat source than air , whose temperature fluctuation is larger than 10℃.Yangtze River cross section water temperature is well distributed. The quality problem is that river water contains much sediment and suspended matter. Yangtze River suspended sediment is mainly silt and clay. The formation of Three Gorges Reservoir Region has little influence on Yangtze River water level in Chongqing, P.R.China. So the water qulity changes little.
     By analysis technical route, energy saving and environmental protection of river water source heat pump system, the open-direct system of reasonablely developing of river water source heat pump technology is presented. Open-direct river water source heat pump system could save 33% energy than chiller and gas-fired boiler system, and 40% than air source heat pump system. River water source heat pump system can release the urban heat island effect because of the river water fluidity.
     The motion law of river sediment particle is basis of the river water two-phase flow research. The particle motion differential equation is analysed detailedly and the three-dimensional direct numerical method of particle motion differential equation is established. the settlement regularity of particle under non-linear drag force, Basset force and virtual mass force is analysed. By analysing magnitude of resistance force and lift force, the results show that the inertial force, drag force, pressure gradient foree, gravity alse with Basset, virtual mass force should be considered in particle-liquid motion. The Saffman force and Magnus force is only significant near wall.
     Using the large eddy simulation and particle direct simulation, the diffusion of particle in sudden expansion pipe is modeled. The results show that the diffusion degree of particle decreases with increase of St P number. Because of turbulence effect,the small particle can be taken more easily .
     Using the first and the second laws of thermodynamic, the entropy generation analysis, the influence of fouling on performance of convection heat transfer process inside pipe is analysed. Entropy production increased with the formation of fouling and caused the irreversibility of convection heat transfer process increased.
     Based on the water quality characteristics of Yangtze River, the heat exchanger type used in river water source heat pump is analysed and discussed, heat exchanger type used in large unit(patent application number 200810069811.1) and double pipe heat exchanger used in middle and small unit is presented.
     The flow,heat exchange and two-phase flow inside semi-annulus reentry pipe, which affected the sediment separation in pipe double pipe heat exchanger, is simulated numerically. The results show that secondary flow phenomenon is significant in semi-annulus reentry pipe. The performance of convection heat transfer will increase because of secondary flow phenomenon. Using two-fluid continuum model,the flow of the river water with sediment in semi-annulus reentry pipe of various curvature is simulated. The results show that separation of sediment has minimum when R/r ranges from 10 to 40.
     Using smooth inner wall and spiral groove exine pipe, whose R/r is 12, the experimental double pipe heat exchanger is designed. With numerical method, the heat transfer performance, resistance and two-phase flow of heat exchanger are analysed.the heat transfer performance and resistance analysis show that the CFD technology could meet heat exchanger design engineering application and could be used as computer assistant design reference. The result of two-phase flow simulation shows that the heat exchanger is not blocked by sediment.
     To validate numerical simulation result, the separation and blocking of heat exchanger is studied experimentally. Experimental results show that there are not blocking phenomenon caused by the sediment separation.
     At last, using the designed heat exchanger, the heat pump unit is studied experimentally in winter and in summer. The heat exchanger is not blocked and the heat pump unit operated well, it can be applied and popularized practically.
引文
[1] BP世界能源统计. http://www.bp.com,2007.7.2.
    [2]国家统计局工业交通统计司、国家发展和改革委员会能源局.《中国能源统计年鉴-2006》.2007.3.
    [3]匡跃辉.中国水资源与可持续发展[M].北京:气象出版社.2001.
    [4] Chen Chao, Zhen NI, Li Xiao-ring, et al. Applications of closed-loop water-source heat-pump air-conditioning system to residential buildings[J]. Heat Ventilate Air Condition 2004; 34(6):72-76.
    [5] Büyükalaca O,Rkinci F,Yilmaz T. Experimental investigation of Seyhan River and dam lake as heat source-sink for a heat pump[J],Energy,2003,28(2):157-169.
    [6] Hanneke V.Large energy systems-an international overview[J].IEA Heat Pump Centre Newsletter,1998,16(1):10-15.
    [7]刘光远,陈兴华.俄罗斯热泵新技术简介[J].能源研究与利用2001 ,7(3) : 17-19.
    [8] JARN Ltd.A new river water source heat pump project[M].Japan Air-Conditioning,Heating & Refrigeration News,1996.08.25.
    [9]吕灿仁,马一太.运用热泵提高低温地热采暖系统能源利用率的分析[J].天津大学学报, 1982: 117-121.
    [10]王勇,刘宪英,付祥钊.地源热泵及地下蓄能的实验研究[J].暖通空调,2003,33(5):21-23.
    [11]王建敏,叶衍华,彭国荣.地源热泵的地热利用方式与工程运用[J].流体机械,2002,21(2):30-33.
    [12]邓波,龙惟定,冯小平.大型地表水源热泵在上海世博园区域供冷系统中的应用[J].建筑热能通风空调,2007,26(6):95-97.
    [13]丁卫东,袁鲁滨.水源热泵技术在供热空调工程中的应用[J] .节能,2002 (5) :24 26.
    [14]江琴,季赐明,直流冷却在广州地铁集中供冷系统中的应用[J].给水排水,2005,21(7):71-72.
    [15]冯小平,熊占野,鞠晓芳等.崇明某生态住宅小区地表水地源热泵系统方案可行性分析[J] .暖通空调,2006,36 (9) :72-76.
    [16]朱金鸣,项堋中.江水源热泵在上海十六铺工程中的应用[J] .暖通空调,2007,37 (2) :88-93.
    [17]张文宇.上海世博园大型地表水源热泵对黄浦江水环境的影响分析[D].同济大学,2007,3
    [18] Pai S I. Two-phase flows[M]. Braunschweig: Vieweg-Verlag, 1977.
    [19] Migdal D , Gosta D V. A source flow model for continuum gas-particle flow[J]. J. Appl. Mech.(ASME trans.), 1967, 34: 860-886.
    [20] Ishii M. Thermo-fluid dynamics theory of two-phase flow[M]. Paris: Eyrolles, 1975.
    [21] Drew D A. Average field equations for two-phase media[J]. Stu Appl Math, 1971, 50:133-166.
    [22] Drew D A. Averaged equations for two-phase flows[J]. Stu Appl Math, 1971, 50:205-231.
    [23] Drew D A. Mathematical modeling of two-phase flow[J]. Ann Rev Fluid Mech, 1983, 15:261-291.
    [24] Drumheller D.S, Bedford A. A thermomechanical theory for reacting immiscible mixtures[J].Arch Rational Mech Anal, 1980, 73:257-284.
    [25] Johnson G, Massoudi M, Rajagopal K R. Flow of a fluid-solid mixture between flat plates[J].Chemical Engineering Science, 1991, 46(7):1713-1723.
    [26]刘大有.二相流体动力学[M].北京:高等教育出版社, 1993.
    [27]蔡树棠,范正翘,陈越南.两相流基本方程[J].应用数学和力学, 1986, 7(6):477-485.
    [28]陈天翔.多相流体力学的场方程及其平均[J].力学进展, 1986, 16(4):482-494.
    [29]刘大有.再论二相流基本方程—关于固相碰撞应力的讨论[J].中国科学A辑, 1998, 1:72-79.
    [30]刘大有.建立两相流方程的动力论方法[J].力学学报, 1987, 5:213-221.
    [31]刘大有.关于二相流、多相流、多流体模型和非牛顿流等概念的探讨[J].力学进展, 1994, 1:66-74.
    [32]刘大有.研究多相介质运动的意义、内容和方法[J].力学与实践, 1995, 6:1-10
    [33]傅旭东.液固两相流动理学模型研究[D].北京:清华大学水利水电工程系, 2001.
    [34] Melville W K, Bray K N C. A model of the two-phase turbulent jet[J]. Int J Heat Mass Transfer, 1979, 22:647-656.
    [35] Picart A, Berlemont A , Gouesbet G. Modelling and predicting turbulence fields and the dispersion of discrete particles transported by turbulent flows[J]. Int J Multiphase Flow, 1986, 12:237-261.
    [36] Elghobashi S E, Abou-Arab T W.A two-equation turbulence model for two-phase flows[J]. Phys Fluids, 1983, 26(4):931-938.
    [37] Chen C P, Wood P E. A turbulence closure model for dilute gas-particle flows[J]. The Canadian Journal of Chemical Engineering, 1985, 63:349-360.
    [38] Viollet P L, Simonin O. Modelling dispersed two-phase flows: Closure, Validation and software development[J]. Appl Mech Rev, 1994, 47(6), part2:80-84.
    [39] Besnard D C, Harlow F H. Turbulence in multiphase flow[J]. Int J Multiphase Flow, 1988, 14(6):679-699.
    [40] Cao J, Ahmadi G. Gas-particle two-phase turbulent flow in a vertical duct[J]. Int JMultiphase Flow, 1995, 21(6):1203-1228.
    [41] Hinze J O. Turbulence[M]. NewYork: McGraw-Hill, 1975.
    [42] Choi Y D, Chung M K. Analysis of turbulent gas-solid suspension flow in a pipe[J]. Journal of Fluids Engineering, 1983, 105:329-334.
    [43] Rizk M A, Elghobashi S E. A two-equation turbulence model for dispersed dilute confined two-phase flow[J]. Int J Multiphase Flow, 1989, 15:119-133.
    [44]周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].北京:科学出版社, 1994.
    [45] L. P. Match,D.G.. Klaren, Scale control in high temperature distillation utilized fluidized bed heat exchanger[J], Research and Development Repot., 1970. 571.
    [46] C. A. Allen,E. S. Grimmett, Liquid-fluidized-bed heat exchanger design parameters[J]. Department of Energy Idaho Operation office,Under Contrast, 1978,4:15-70.
    [47] J. F. Richardson,W. N. Zaki.Sedimentation and fluidization[J]: PartⅠ, Trans. Inst.Chem. Engrs, 1954, 32: 35-53.
    [48] D. G.. Klaren.Development of a vertical flash evaporator[D].Delft University of Technology, 1975.
    [49] J. A. M. Merjer.Inhibition of calcium sulfate scale by a fluidized bed[D]. Delft University of Technology, l984.
    [50] A. W. Veenman.A review of new development in desalinations by distillation process[J]. Desalination, 1978, 27: 21-29.
    [51] A. W. Veenman.Desalination[J] 1977, 22: 49-52.
    [52]高忠信,周先进,张世雄等.水轮机转轮液固两相三维湍流计算及磨损预估[J].水利学报,2002,9:37-43.
    [52]曹树良,许国吴,玉林.水轮机活动导叶内部三维液固两相湍流计算及磨损预估[J].工程热物理学报,1999,20(5):384-588.
    [54]黄社华,程良骏.水涡轮机械液固两相流及泥沙磨损的理论研究[J],水轮机技术,1995,15(6):33-38.
    [55]翁永基.含沙多相流对金属管道腐蚀一磨损及其监测[J].管道技术与设备,2002,4:26-29.
    [56]中国气象局气象信息中心气象资料室.中国建筑热环境分析专用气象数据集[M].北京:中国建筑工业出版社,2005.
    [57]幸梅,鲍雷.三峡水库蓄水前后长江部分江段水质变化[J].环境与健康杂,2004,21(5):308-310.
    [58]戴润泉,臧小平,邱光胜.三峡水库蓄水前库区水质状况研究[J].长江流域资源与环境, 2004,13 (2):124-127.
    [59]薛武申,孙兵,刘培青.长江源区水质分析及与长江武汉段水质对比[J].安全与环境工程,2005,12(1):17-20.
    [60]万咸涛.长江流域(片)水资源水质现状及特征[J].水电能源科学,2006,24(3):1-5.
    [61]刘兰芬,陈凯麒,张士杰等.河流水电梯级开发水温累积影响研究[J].中国水利水电科学研究院学报,2007,5(3):173-180.
    [62]王子云,付祥钊,仝庆贵.利用长江水作热泵系统冷热源的技术分析[J].中国给水排水,2007 23(6):6-9.
    [63]叶小云,陈立,吴门伍.挟沙水流泥沙浓度分布的试验研究[J].泥沙研究,2003,4:36-40.
    [64]吴荣华,张承虎,孙德兴.城市原生污水与其他冷热源的比较研究[J].暖通空调,2006,36(1):43-46
    [65]吴荣华,张承虎,李桂涛.地表水源热泵系统节能系数及环境影响研究[J].太阳能学报,2007,28(7):751-755.
    [66]尹军,陈雷,王鹤立.城市污水的资源再生及热能回收利用[M].北京:化学工业出版社, 2003.
    [67]张兆顺.湍流[M].北京:国防工业出版社.2002.
    [68]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社, 1998.
    [69] Marzio Piller,Enrico Nobile,J.Thomas.DNS study of turbulent transport at low Prandtl numbers in a channel flow[J].Journal of Fluild Mechanics,2002 (458):419-441.
    [70] J.G Winssink. Thomas.DNS study of separating low Reynolds numerber flow in a turbine casecade with incoming wakes[J]. International Journal of Heat and Fluild Flow,2003 24 (4):626-635.
    [71] A. Dehbi. Turbulent particle dispersion in arbitrary wall-bounded geometries: A coupled CFD-Langevin-equation based approach[J].International Journal of Multiphase Flow.2008 137:342-352.
    [72] A. Dehbi. A CFD model for particle dispersion in turbulent boundary layer flows[J]. Nuclear Engineering and Design.2008 283:707-715.
    [73] V.Yakhot,S.A.Orzag,Renormalization group analysis of turbulence:basic theory[J].J Scient Comput.1986(1):3-11.
    [74] Smagorinsky J.General circulation experiments with the primitive equations[J] .Mon Weather Rev ,1963:93-99.
    [75] B.E.Launder and D.B.Spalding. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974,3:269-289.
    [76]倪晋仁,王光谦,张红武.液固两相流基本理论及其应用[M].北京:科学出版社,1991.
    [77] S. A. Morsi and A. J. Alexander. An investigation of particle trajectories in two-phase flow Systems[J]. Fluid Mech. 1972,55(2):193-208.
    [78] Odar F. Verification of the proposed equation of the forces on a sphere accelerating in aviscous fluid[J] .J Fluid Mech ,1966 ,25 (3) :591~592.
    [79] Sommorfeld M. Modeling of particle wall collisions in confined gas-particle flows [J] . Int. J . Multiphase Flow ,1992 , 18 : 905 - 926.
    [80]刘大有.两相流体动力学[M] .北京:高等教育出版社,1993.
    [81]孙志忠,袁慰平,闻震初.数值分析[M].南京:东南大学出版社,2002.
    [82]刘导治.计算流体力学基础[M].北京:北京航空航天大学出版社, 1989.
    [83]马铁犹.计算流体力学[M].北京:北京航空学院出版社, 1986.
    [84]黄社华,李炜.任意流场中稀疏颗粒运动方程的数值解法及其应用[J].水动力学研究与进展, 1999,14(1) :51-61.
    [85]汪胡桢编.现代工程数学手册[M] .第一卷,武汉:华中工学院出版社,1985.
    [86]《数学手册》编写组.数学手册[M].北京:高等教育出版社,2004.
    [87]由长福岳光溪.方形分离器内气固两相流动的数值模拟[J].工程热物理学报,1996,17(2):252 -256.
    [88]张健Nieh,S.强旋湍流气—固两相流动和煤粉燃烧数学模型及其在涡旋燃烧炉的应用[J].化工学报,1995,46(5):545-551.
    [89] Hamed A. Particle dynamics of inlet flow-fields with swirling vanes[J]. J of Ai rcraft ,1982 ,19 (9) :707-712.
    [90] Beacher B et al . Improved particles trajectories calculations through turbomachery affected by coal ash particles [J] . J of Engi neeri ng for Power ,1982 ,104 (1) :64-68.
    [91] Enzo O Macagno ,Tin-Kan Hung. Computational and experimental study of a captive annular eddy[J] . Journal of Fluid Mechanics , 1967 , 28 :43-64.
    [92] Durst F ,et al. Low Reynolds number flow over a planesymmetric sudden expansion [J] . Journal of Fluid Mechanics , 1974 , 64 :111-128.
    [93] Hanjali K,Jakirli S. Contribution towards the second moment closure modeling of separating turbulent flows [J] .Computers and Fluids ,1998 , 27(2) :137-156.
    [94] Andreas Acrios ,Markl Schrader.Steady flow in a sudden expansion at high Reynolds number [J] . Physics of Fluids , 1982 , 25(6) :923-930.
    [95] Frank SMilos ,Andreas.Acrios. Steady flow past sudden expansion at large Reynolds number , part - I : boundary layer solutions[J]. Physics of Fluids , 1986 , 29(5) :1353-1359.
    [96] Frank SMilos , Andreas Acrios ,John Kim.Steady flow past sudden expansion at large Reynolds number - II , Navier-Stokes solutions for the cascade expansion[J] . Physics of Fluids , 1987 , 30(1) :7-18.
    [97] Oliveira P J ,Pinho F T. Pressure drop coefficient of laminar Newtonian flow in axisymmetric sudden expansions[J] . International Journal of Heat and Fluid Flow , 1997 ,18 :518-529.
    [98] Goodarz Ahmadi、Qian Chen.Dispersion and deposition of particles in a turbulent pipe flow with sudden expansion[J]. Aerosol Sci. 1998, 29(9):1097-1116.
    [99] Shahnam, M. and Morris, G. J. An investigation of particle-laden flows in an axisymmetric sudden expansion[J]. Recent Aduances in Mechanics of Structured Continua. ASME AMD-Vol. 160/MD-Vol. 41.
    [100] C.M. Liao, W.Y. Lin, L.X. Zhou.Simulation of particle-fluid turbulence interaction in sudden-expansion flows[J].Powder Technology . 1997:29-38.
    [101]罗坤,樊建人,郑水华等.圆湍射流中的拟序结构和颗粒弥散[J].化工学报,2006 ,57(6):1329-1333.
    [102] Grant G, Tabakoff W. Erosion prediction in turbomachinery resulting f rom environmental solid particles [J ] . J our nal of Ai rcraft ,1975 ,12 (5) :471-478.
    [103] Bott T R.The Fouling of Heat Exchangers[J]. Elsevier Science.1995,(5):256-258.
    [104] Watkinson A P and Wilson D I. Chemical reaction fouling: A review[J]. Experimental Thermal and Fluid Science.1997,(14):361-374.
    [105] Isabel Maria Bras Pereia. Contribution of air pollution to the fouling of heat exchangers in cooling water circuits[J]. Experimental Thermal and Fluid Science .1997,(14):438-441.
    [106] Hans-Curt Flemming, Adriana Tamachkiarowa. Monotoring of fouling and biofouling in technical systems[J] .Water Science Techonology.1998,(38):291-298.
    [107] P.Walker, R.Sheikholeslami. Assesmment of the effect of velocity and residence time in CaSO4 precipitating flow reaction[J].Chemical Engineering Science.2003,(58):3807-3816.
    [108] Zubair S M, Sheikh A K, Shaik M N. A probabilistic approach to the maintenance of heat-transfer equipment subject to fouling[J]. Energy,1992,17(8):769-776.
    [109] Zubair S M, Sheikh A K, Budair M O,et al. A maintenance strategy for heat transfer subeject to fouling[J].A Probabilistic Approach. Heat Transfer ,1997,119(3):575-580.
    [110]杨善让,徐志明,孙灵芳.换热设备污垢与对策[M].北京:科学出版社, 2004.
    [111]吴双应.对流换热过程的热力学分析及其应用[D].重庆大学博士学位论文,2004.
    [112] G.Yang and M.A.Ebadian.Turbulent forced convection in a helicoidal pipe with substantial pitch[J].Int. J. Heat Mass Transfer. 1996, 39(10):2015-2022.
    [113] Huajun Chen, Benzhao Zhang. Fuild flow and mixed convection heat transfer in a rotating curved pipe[J].Inernational Journal of Thermal Sciences,2003,42:1047-1059.
    [114]姚行健,孙利生,张昌.空气调节用制冷技术[M].北京:中国建筑工业出版社,1996.
    [115]钱颂文,朱冬生,李庆领等.管式换热器强化传热技术[M].北京:化学工业出版社,2003.
    [116]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [117]周谟仁.流体力学风机与泵[M].北京:中国建筑工业出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700