轴对称旋转流气固分离理论与技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转流气固分离器(旋风器)作为重要的多用途气固两相分离设备,已广泛应用于气固分离、物料回收、颗粒分级和污染控制等领域,并已显示了独特的不可替代的作用。针对高温高压分离技术的要求、流态化技术的发展、能源有效利用矛盾的突出以及环境保护问题(微型化分离技术)的需要等问题,本文提出一种新型具有轴对称蜗向进口通道的旋风器,并通过试验研究、理论解析和数值计算方法对其分离机理和过程等性能特性进行较为深入系统的研究。
     首先,在总结与回顾不同旋风器进口结构型式研究现状的基础上,本文提出了新型具有轴对称蜗向进口型式的Stairmand HE型旋风器。采用质量分析法和压差法等试验研究的方法测定了包括直接式和渐缩通道式新型进口结构在内的四种旋风器的分离特性和阻力特性,分析对比了不同进口结构型式、不同流量条件下旋风器性能的变化规律。在此基础上应用灰色综合评价模型评价了各旋风器的性能,指出轴对称蜗向进口通道结构型式的旋风器具有较优的性能。
     其次,为对旋风器的性能评估和设计方法提供理论依据,本文采用理论解析的方法对具有轴对称蜗向进口通道旋风器的分离特性和阻力特性进行了研究,提出其理论计算模型并与试验值进行了比较。其中,在柱坐标系下详细分析了气固两相流场中固相颗粒的受力情况,突破了基于旋风器内径向截面上固相颗粒浓度分布均一的假设并认为径向浓度梯度对于分离效率的影响不可忽视,同时发展了空间定点分离的概念与理论,首次提出采用临界粒径分离理论、边界层分离理论和固相颗粒粒径分布规律相结合的新型理论与方法来推导旋风器的分离理论模型并将模型的计算结果与试验结果进行比较和分析,结果表明理论与试验结果符合较好;同时结合旋风器内部流场特性,详细分析旋风器内部阻力的产生机理与构成因素,将旋风起内部的阻力构成分为进口阻力、摩擦阻力、涡流阻力和出口阻力,首次从新的角度给出新型旋风器阻力的分步计算模型,并将计算结果与不同结构的旋风器阻力的试验结果进行比较,结果表明理论值与试验值取得较好一致。从而进一步验证了分离模型和阻力模型的准确性与有效性。
     再次,为深入详细的探讨新型进口结构旋风器内部气固两相的分离机理,本文应用计算流体动力学(Computational Fluid Dynamics,CFD)技术对新型旋风器内部的气固两相流动规律进行数值模拟。在建立新型旋风器的物理模型并对其进行网格划分的基础上,应用Euler-Lagrange气固两相流理论,以雷诺应力模型(Reynolds Stress Model,RSM)模拟气相、颗粒追踪技术(Particle Tracking Method,PTM)模拟颗粒相,同时采用有限体积法和SIMPLE压力速度耦合算法分析讨论了新型旋风器内部的气相流场的压力分布、三维速度分布和固相颗粒轨迹,并在此基础上提出旋风器分离效率和阻力的数值计算方法。数值模拟结果与试验结果取得较好的一致,同时表明CFD作为一种更为基础的理论和方法,可更为有效的模拟旋风器内部的气固两相三维强旋湍流流动。
Cyclone separators, as important gas-solid phase separation equipments, have been widely used in the field of gas-particle separation, product recovery, particulate size classifiers and pollution control. At present, cyclone separators have also demonstrated the irreplaceable use value. In order to adapt well to the extremely harsh operating conditions and special requirements including the high temperature and high pressure, fluidization, energy utilization and environmental protection, a novel cyclone separator with symmetrical spiral inlet channel (SSIC) is conceived and designed for engineering and processing application. The performance characteristics including collection efficiency and pressure drop for this cyclone separator is investigated by using the experimental, theoretical and numerical methods in this work.Firstly, on basis of the overview of current status on cyclone separator geometries, a new cyclone separator with symmetrical spiral inlet is presented in terms of the Stairmand high efficiency cyclone configuration. The separation characteristics and pressure drop characteristics for four kinds of cyclone separators with different inlet type are measured by using mass analysis method and differential pressure method, and are compared as functions of inlet type and flow rate. Moreover, the performances of cyclone separators are evaluated according to the grey correlation evaluation model. The results show the cyclone separator with symmetrical spiral inlet channel provides the optimized performance.Secondly, theoretical investigation on both the collection efficiency characteristics and pressure drop characteristics are carried out for symmetrical spiral inlet channel cyclone respectively. A new theoretical method for evaluating cyclone efficiency is developed based on the investigation of flow pattern, the critical particle size separation theory and the boundary layer separation theory. The radial particle concentration gradient, instead of the usually assumed uniform radial particle concentration within the cyclone, is considered in this mathematical model. The local particle concentration and the cyclone grade efficiency can be calculated on the base of a time-of-flight model in terms of the particle size distribution of the feed. The availability of the method is verified by comparison of the calculated grade efficiency with experimental data and theoretical counterparts in the literature. On the other hand, a new theoretical model was developed for prediction of pressure drop across cyclone separators. This model includes the effect of the geometrical dimensions and flow parameters, and assumes that total pressure drop consists of five main partial pressure drops due to gas expansion at the separator entrance, wall friction within the separator, swirling motion of gas, gas flow through the outlet pipe. The availability of the
    
    method is verified by comparison of calculated value with experimental data as well as with the other models for different dimensions of cyclones. The both theoretical results indicate a good agreement with the experimental data.Thirdly, to analyze the separation mechanisms of symmetrical spiral inlet channel cyclone, A Computation Fluid Dynamics (CFD) simulation is performed for prediction of gas flow pattern and particle collection efficiency in this new type cyclone separator. The governing gas flow equations, along with the three-dimensional Reynolds Stress Model (RSM), are solved using the finite volume method and the SIMPLE pressure-velocity coupling algorithm in a body-fitted coordinate system. A particle tracking method (PTM) is employed to calculate the particle grade efficiency. The numerical flow simulations confirm the main characteristics of vortex structure and particle separation inside the main body of the cyclone. On this basis, a numerical method for calculating the collection efficiency and pressure drop is proposed. The comparisons between numerical and experimental results have to be regarded as a reasonable agreement, and also demonstrate CFD is a liab
引文
[1] 石铭显.高温旋风分离器的技术进展.石油化工设备技术,1991.12(2):5-11
    [2] 夏兴祥.高温除尘技术综述.化工机械,2000.27(1):47-52
    [3] 许世森.高温烟气(煤气)净化技术的分析评价.热力发电,1995.3:37-40
    [4] 宁佐阳,衣晓青,刘和云.火电厂细粉分离器的改进.节能,2000.10:24-25
    [5] 高小晋,日本专业机构及科研单位的大气污染源监测技术,环境科学研究,1996.9(2):36-40
    [6] 陈明绍,吴光兴,张大中,等,除尘技术的基本理论与应用,北京:中国建筑工业出版社,1981
    [7] R. Thorn, Reengineering the cyclone separator, Metal Finishing, 1998, 8: 34-35
    [8] V. Galperin, M. Shapiro, Cyclone as dust concentrations, Journal of Aerosol Science, 2000, 30 (S1): S897-S898
    [9] C. Hayward, Cyclone dust collectors: an underestimated technology?, Filtration and Separation, 2001, 12: 20-21
    [10] M. W. Blachmann, M. Lippmarm, Performance characteristics of the multi-cyclone, aerosol sampler, American Industrial Hygiene Association Journal, 1979, 35: 311-316
    [11] W. John, G. Reischl, A cyclone for size-selective sampling of ambient air, Journal of the Air Pollution Control Association, 1980, 30 (8): 872-876
    [12] H. Buttner, Size separation of particles from aerosol samples using impactors and cyclones, Particle and. Particle System Characteristics, 1988, 5: 87-93
    [13] D. W. Cooper, Theoretical comparison of efficiency and power for single-stage and multiple-stage particulate scrubbing, Atmospheric Environment, 1976, 10: 1001-1004
    [14] D. W. Cooper, Minimizing cyclone energy consumption, Journal of Air Pollution Control and Assessment, 1981, 31: 1193-1194
    [15] D. W. Cooper, Cyclone design: Sensitivity, elasticity, and error analysis, Atmospheric Environment, 1983, 17 (3): 485-489
    [16] J. B. Wedding, M. A. Weigand, T. A. Carney, A 10μm cutpoint inlet for the dichotomous sampler, Environmental Science and Technology, 1982, 16: 602-606
    [17] R. E. DeOtte, Jr., Characterization of the velocity field in small, cylindrical, low Reynolds number aerosol sampling cyclone, Aerosol Science and Technology, 1990, 12: 1037-1049
    [18] R. E. DeOtte, Jr., A model for the prediction of the collection efficiency characteristics of a small, cylindrical aerosol sampling cyclone, Aerosol Science and Technology, 1990, 12: 1055-1066
    [19] M. E. Moore, A. R. McFarland, Design of Stairmand-type sampling cyclones, American Industrial Hygiene Association Journal, 1990, 51: 151-159
    [20] M. E. Moore, A. R. McFarland, Performance modeling of single-inlet aerosol sampling cyclones, Environment Science and Technology, 1993, 27: 1842-1848
    [21] M. E. Moore, A. R. McFarland, Design methodology for multiple-inlet air sampling cyclones, Environment Science and Technology, 1996, 30:271-276
    [22] M. Gautam, A. Streenath, Performance of a respirable multi-inlet cyclone sampler, Journal of Aerosol Science, 1997, 28 (7): 1265-1281
    
    [23] K.S. Lim, S.B. Kwon, K.W. Lee, Characteristics of the collection efficiency for a double inlet cyclone with clean air, Journal of Aerosol Science, 2003, 34: 1085-1095
    [24] H. Yoshida, Three-dimensional simulation of air cyclone and particle separation by a revised type cyclone, Colloids and Surfaces, 1996, 109: 1-12
    [25] H. Yoshida, A. Sugitate, K. Fukui, E. Shinoda, J. Ma, Effect on the duct shape on particle separation performance of cyclone separator, Journal of Chemical Engineering of Japan, 2000, 33 (2): 273-276
    [26] H. Yoshida, K. Fukui, K. Yoshida, E. Shinoda, Particle separation by Iinoya's type gas cyclone, Powder Technology, 2001, 118: 16-23
    [27] L.C. Kenny, R.A. Gussman, Characterization and modeling of a family of cyclone aerosol preseparators, Journal of Aerosol Science, 1995, 26: S777-S778
    [28] L.C. Kenny, R.A. Gussman, A direct approach to the design of cyclones for aerosol-monitoring application, Journal of Aerosol Science, 2000, 31 (12): 1407-1420
    [29] J. Abrahamson, R. Jones, A. Lau, S. Reveley, Influence of entry duct bends on the performance of return-flow cyclone dust collectors, Powder Technology, 2002, 123: 126-137
    [30] A. Plomp, M.I.L. Beumer, A.C. Hoffmann, Postcyclone (PoC) An approach to a better efficiency of dustcyclones, Journal of Aerosol Science, 1996, 27 (S1): S631-S632
    [31] M.B. Ray, P.E. Luning, A.C. Hoffman, A. Plomp, M.I.L. Beumer, Post cyclone (PoC): an innovative way to reduce the emission of fines from industrial cyclones, Industrial Chemical Research, 1997, 36: 2166-2114
    [32] M.B. Ray, P.E. Luning, A.C. Hoffmann, A. Plomp, M.I.L. Beumer, Improving the removal efficiency of industrial-scale cyclone for particles smaller than five micrometer, International Journal of Mineral Processing, 1998, 53: 39-47
    [33] Y. Jo, C. Tien, M.B. Ray, Development of a post cyclone improve the efficiency of reverse flow cyclones, Powder Technology, 2000, 113: 97-108
    [34] Y.F. Zhu, M.C. Kim, K.W. Lee, Y.O. Park, M.R. Kuhlman, Design and performance evaluation of a novel double cyclone, Aerosol Science and Technology, 2001, 34: 373-380
    [35] T. Allen, Particle size measurement: Optimization of gas cyclones, Chapman and Hall, Ltd: London, 1968,2731-2740
    [36] Z.B. Maroulis, C. Kremalis, Development of an effective cyclone simulator under excel, Filtration and Separation, 1995, 11/12: 969-976
    [37] R.L.R. Salcedo, M.G Candido, Global optimization of reverse-flow gas cyclones: Application to small-scale cyclone design, Separation Science and Technology, 2001, 36 (12): 2707-2731
    [38] W. Licht, W.H. Koch, New design approach boosts cyclone efficiency, Chemical Engineering, 1977, 80-88
    [39] W.B. Smith, Jr, R.R. Wilson, D.B. Harris, A five-stage cyclone system for in-situ sampling, Environmental Science and Technology, 1979, 13: 1387-1392
    [40] W.B. Smith, Jr, D.L. Iozia, D.B. Harris, Performance of small cyclone for aerosol sampling, Journal of Aerosol Science, 1983, 14: 402-409
    [41] B.E. Saltzman, J.M. Hochstrasser, Design and performance of miniature cyclones for respirable aerosol sampling, Environmental Science and Technology, 1983, 17: 418-424
    [42] M. Biffin, N. Syred, P. Sage, Enhanced collection efficiency for cyclone dust separators, Chemical Engineering Research and Design, 1984, 62: 261-267
    
    [43] Z. Li, Z. Zisheng, Y. Kuotsung, Study of structure parameters of cyclones, Chemical Engineering Research and Design, 1988, 66: 114-120
    [44] W. L. Heumann, Cyclone separators: A Family Affair, Chemical Engineering, 1991, 6: 118-123
    [45] P. Schmidt, Unconventional cyclone separators, International Chemical Engineering, 1993, 33 (1): 8-17
    [46] A. K. Coker, Understand cyclone design, Chemical Engineering Progress, 1993, 28: 51-55
    [47] M. Berezowski, K. Warmuzinske, Gas recycling as a meas of controlling the operation of cyclones, Chemical Engineering and Processing, 1993, 32: 345-352
    [48] X. Jiao, K. Yamamoto, Cyclone dust collector with an internal perforated cylindrical tubes, Society of Mechanical Engineering of Japan, 1993, B: 3153-3159
    [49] O. Molerus, M. Gluckler, Development of a cyclone separator with new design, Powder Technology, 1996, 86:37-40
    [50] K. H. Schwamborn, H. J. Smigerski, Improved dedusting of powders in cyclone collectors and cyclone classifiers, Powder Handling and Processing, 1996, 8 (3): 257-263
    [51] M. Bohnet, O. Gottschalk, M. Morweiser, modern design of aerocyclones, Advanced Powder Technology, 1997, 8 (2): 137-161
    [52] 沈恒根,党义荣,刁永发,许晋源.双进口旋风器内流场的实验研究.西安建筑科技大学学报,1997.29(3):275-277
    [53] 宋贤良,朱利,李永胜,朱江.轴对称进口旋风分离器性能的研究.郑州工程学院学报,2000.21(4):34-37
    [54] 吴小林,严超宇,石铭显.双入口直切式旋风分离器内流场旋进蜗核现象的研究.化工机械,2002.29(1):1-4,7
    [55] 王伟文,李建隆.单双切向环流式旋风除尘器的比较.化学工程,2003.31(4):58-60
    [56] 岑可法,倪明江,严建华,等.气固分离理论及技术.杭州:浙江大学出版社,1999
    [57] K. Iinoya, Study on the cyclone, Mem. Faculty Engng Nagoya Univ., 1953, 5: 131-178
    [58] J. M. Beekmans, C. J. Kim, Analysis of the efficiency of reverse flow cyclones, Canada Journal of Chemical Engineering, 1977, 55:640-643
    [59] K. J. Caplan, I. J. Doemeny, S. D. Sorenson, Performance characteristics of the 10 mm cyclone respirable mass sampler, Part I-monodisperse studies, American Industrial Hygiene Association Journa, 1977, 38:83-95
    [60] R. Parker, R. Taen, S. Calver, D. Derhmel, J. Abbott, Particle collection in cyclones at high temperature and high pressure, Environmental Science and Technology, 1981, 15 (4): 451-458
    [61] J. Abrahamson, R. W. K. Allen, The efficiency of conventional return-flow cyclones at high temperatures, In Gas Cleaning at High Temperatures, Institution of Chemical Engineering Symp. Set, Guilford, U. K., 1986, 99: 31-39
    [62] P. A. Patterson, R. J. Munz, Cyclone efficiencies at very high temperatures, Canada Journal of Chemical Engineering, 1989, 67:321-328
    [63] P. A. Patterson, R. J. Munz, Gas and particle flow patterns in cyclones at room and elevated temperatures, Canada Journal of Chemical Engineering, 1996, 74:213-221
    [64] M. Bohnet, T. Lorenz, Separation efficiency and pressure drop of cyclones at high temperatures, In Gas Cleaning at High Temperatures, R. Clift, J. P. K. Seville, Eds., Blackie Academic and Professional: Glasgow, UK, 1993:17-31
    
    [65] G. Liden, A. Gudmundsson, Semi-empirical modelling to generalise the dependence of cyclone collection efficiency on operating conditions and cyclone design, Journal of Aerosol Science, 1997, 28 (5): 853-874
    [66] J. Reppenhagen, A. Schetzschen, J. Werther, Find the optimum cyclone size with respect to the fines in pneumatic conveying systems, Powder Technology, 2000, 112: 251-255
    [67] E. Hugi, L. Reh, Focus on solids strand formation improves separation performance of highly loaded circulating fluidized bed recycle cyclones, Chemical Engineering and Processing, 2000, 39: 263-273
    [68] A.C. Hoffmann, A.V. Santen, R.W.K. Allen, Effects of geometry and solid loading on the performance of gas cyclones, Powder Technology, 1992, 70: 83-91
    [69] M. Trefz, E. Muschelknautz, Extended cyclone theory for gas flows with high solids concentrations, Chemical Engineering and Technology, 1993, 16: 153-160
    [70] L.Z. Wang, L. Ye, Reducing pressure drop in cyclones by a stick, Aerosol Science and Technology, 1999, 31(2/3): 187-193
    [71] W.E. Ranz, Wall flows in a cyclone separator: A description of internal phenomena, Aerosol Science and Technology, 1985, 4: 417-432
    [72] M.I.G. Bloor, D.B. Ingham, The flow in industrial cyclones, Journal of Fluid Mechanics, 1987, 178: 507-519
    [73] J.C. Kim, K. W. Lee, Experimental study of particle collection by small cyclones, Aerosol Science and Technology, 1990, 12: 1003-1015
    [74] J.R. Torczynski, D.J. Rader, The virtual cyclone: A device for nonimpact particle separation. Aerosol Science and Technology, 1997, 26:560-573
    [75] Y. Zhu, K.W. Lee, Experimental study on small cyclones operating at high flowrates, Aerosol Science and Technology, 1999, 30 (10): 1303-1315
    [76] R. Xiang, S.H. Park, K.W. Lee, Effects of cone dimension on cyclone performance, Journal of Aerosol Science, 2001, 32: 549-561
    [77] H.T. Kim, K.W. Lee, M.R. Kuhlman, Exploratory design modifications for enhancing cyclone performance, Journal of Aerosol Science, 2001, 32: 1135-1146
    [78] H.T. Kim, Y. Zhu, W.C. Hinds, K.W. Lee, Experimental study of small virtual cyclones as particle concentrators, Journal of Aerosol Science, 2002: 33: 721-733
    [79] L. Svarovsky, Solid-Gas separation. Elsevier Scientific Publishing, New York, 1981, 33-52
    [80] T.A. Gauthier, C.L. Briens, M.A. Bergougnou, P. Galtier, Uniflow cyclone efficiency study, Powder Technology, 1990, 62: 217-225
    [81] C. Konig, H. Buttner, F. Ebert, Design data for cyclones, Particle and Particle System Characteristics, 1991, 8: 301-307
    [82] A.D. Maynard, L.C. Kenny, Performance assessment of three personal cyclone models, using an aerodynamic particle sizer, Journal of Aerosol Science, 1995, 26: 671-684
    [83] 沈恒根,赵兵涛,亢燕铭.具有多个切向进口回转通道的旋风分离器.中华人民共和国专利ZL02265289.2
    [84] 国家技术监督局.中华人民共和国国家标准(GB/T 1236-2000),工业通风机-用标准化风道进行性能试验.北京:中国标准出版社,2000
    [85] 沈恒根,亢燕铭,高洪澜等,离心式除尘器,机械行业标准JB/T 9054-2000,2000
    [86] 张劲松,李玉星,冯叔初.液-液旋流分离器性能的模糊综合评价研究.炼油设计,2001.31(5):27-29
    
    [87] 张永照,胡洪钢,刘智勇.轴流式多管旋风分离器的试验研究.工业锅炉,1997.4:28-33
    [88] Liu Xinxi. Application of grey correlation analysis to cyclone separators selection. Coal Science and Technology. 2000.28 (2): 33-34, 37
    [89] 张国强,曾光明,彭建国.工业锅炉旋风除尘器性能的模糊综合评价.1993.4:16-18
    [90] 傅立.灰色系统理论及应用.北京:科学技术文献出版社,1992
    [91] P. Rosin, E. Rammler, W. Intelmann, Grundlagen and grenzen der zyklonentstaubung, Z Ver. Dtsch. Ing., 1932, 76 (16): 433-438
    [92] C.E. Lapple, Gravity and centrifugal separation, American Industrial Hygiene Association Quarterly, 1950, 11(1): 40-48
    [93] C.J. Stairmand, Design and performance of cyclone separators, Trans. Inst. Chem. Eng., 1951, 29: 356-383
    [94] W. Barth, Design and layout of the cyclone separator on the basis of new investigations, Brennst Warme Kraft, 1956, 8(1): 1-9
    [95] E. Muschelknautz, K. Brunner, Untersuchungen an zyklonen, Chemie-lng.-Tech., 1967, 39(9/10): 531-538
    [96] D. Leith, W. Licht, The collection efficiency of cyclone type particle collectors: a new theoretical approach, Air Pollution and Its Control, AIChE Symposium Series, 1972, 68(126): 196-206
    [97] W. Licht, Air pollution control engineering-Basic calculations for particulate collection, Marcel Dekker, Inc., New York and Basel, Switzerland, 1980:233-264
    [98] C.E. Lapple, Processes use many collector types, Chemical Engineering, 1951, 58 (5): 144-151
    [99] L. Theodore, V. De. Paola, Predicting cyclone efficiency, Journal of the Air Pollution Control Association, 1980, 30 (10): 1132-1133
    [100] J. Dirgo, D. Leith, Performance of theoretically optimized cyclones. Filtration and Separation, 1985, 22 (3/4): 119~125
    [101] J. Dirgo, D. Leith, Cyclone collection efficiency: Comparison of experimental results with theoretical predictions, Aerosol Science and Technology, 1985, 4 (4): 401-415
    [102] D.L. Iozia, D. Leith, Effect of cyclone dimensions on gas flow pattern and collection efficiency, Aerosol Science and Technology, 1989, 10:491-500
    [103] D.L. Iozia, D. Leith, The logistic function and cyclone fractional efficiency, Aerosol Science and Technology, 1990, 12 (3): 598-606
    [104] T.J. Overcamp, S.E. Scarlett, Effects of Reynolds number on the Stokes number of cyclones, Aerosol Science and Technology, 1993, 19(3): 362-370
    [105] T.J. Overcamp, S.V. Mantha, A simple method for estimating cyclone efficiency, Environmental Progress, 1998, 17(2): 77-79
    [106] W.T. Sproull, Air Pollution and Its Control, Exposition Press, New York. 1970
    [107] J. Hejma, Einflub der turbulenz auf den abscheicevorgang im zyklon, Kustaub-Reinhalt, 1971, 31(7): 22-26
    [108] H. Mothes, F. L6ffier, Investigation of cyclone grade efficiency using light scattering particle size measuring technique, Journal of Aerosol Science, 1982, 13: 184-188
    [109] H. Mothes, F. L6ffier, Motion and deposition of particles in cyclones, Germany Chemical Engineering, 1985, 8:223-233
    [110] R. Clift, M. Ghadiri, A.C. Hoffman, A critique of two models for cyclone performance, AIChE Journal, 1991, 37 (2): 285-289
    
    [111] P.W. Dietz, Collection efficiency of cyclone separators, AIChE Journal, 1981, 27 (6): 888-892
    [112] A.J. ter Linden, Investigations into cyclone dust collectors. Proc. Inst. Mech. Eng., 1949, 160: 233-240
    [113] H. Mothes, F. Loffler, Prediction of particle removal in cyclone separators, International Chemical Engineering, 1988, 23 (2): 231-240
    [114] Enliang. Li, Yingmin. Wang, A new theory of cyclone separators. AIChE Journal, 1989, 35 (4): 666-669
    [115] R.L. Salcedo, Collection efficiencies and particle size distributions from sampling cyclones -Comparison of recent theories with experimental data. Canada Journal of Chemical Engineering, 1993, 71 (1): 20-27
    [116] R.L. Salcedo, A.M. Fonseca, Grade-Efficiencies and particle size distributions from sampling cyclones, In Mixed-Flow Hydrodynamics, P. Cheremisinoff Ed., Gulf Publishers: Houston, Texas, 1996, 539-561
    [117] R.L Salcedo, M.A. Coelho, Turbulent dispersion coefficients in cyclone flow-an empirical approach. Canada Journal of Chemical Engineering, 1999, 77 (4): 609-617
    [118] W.S. Kim, J.W. Lee, Collection efficiency model based on boundary-layer characteristics for cyclones, AIChE Journal, 1997,43 (10): 2446-2455
    [119] C.H. Kim, J.W. Lee, A new efficiency model for small cyclones considering the boundary-layer effect, Journal of Aerosol Science, 2001,32: 251-269
    [120] A. Avci, I. Karagoz, A mathematical model for the determination of a cyclone performance, International Communication of Heat and Mass Transfer, 2000, 27 (2): 263-272
    [121] A. Avci, I. Karagoz, Effects of flow and geometrical parameters on the collection efficiency in cyclone separators, Journal Aerosol Science, 2003, 34: 937-955
    [122] M.B. Ray, A.C. Hoffmann, R.S. Postma, Performance of different analytical methods in evaluating grade efficiency of centrifugal separators, Journal of Aerosol Science, 2000, 31 (5): 563-581
    [123] J. Gimbun, T.S.Y. Choong, T.G Chuah, Comment on: "Performance of different analytical methods in evaluating grade efficiency of centrifugal separators" by Ray M.B., Hoffmann A.C. and Postma R.S. (2000) J. Aerosol Sci., 31(5), pp. 563-581, Journal Aerosol Science, 2003,34(11): 1595-1596
    [124] S. Altmeyer, V. Mathieu, S. Jullemier, P. Contal, N. Midoux, S. Rode, J.P. Leclerc, Comparison of different models of cyclone prediction performance for various operating conditions using a general software, Chemical Engineering and Processing, 2004, 43: 511-522
    [125] M. Crawford, Air Pollution Control Theory, 1976
    [126] A. Ogawa, Separation of particles from air and gases, J.K. Beddow, Ed., CRC Press: Boca Raton, Fla, 1984,2: 15-16
    [127] Z.M. Zhao, R. Pfeffer, A simplified model to predict the total efficiency of gravity settlers and cyclones, Powder Technology, 1997, 90: 273-280
    [128] H. Buttner, Dimensionless representation of separation characteristic of cyclone, Journal of Aerosol Science, 1999,30(10): 1291-1302
    [129] A.A. Economopoulou, D. Alexander, Repaid performance evaluation and optional sizing of dry cyclone separators, Journal of Environmental Engineering, 2002, 128 (3): 275-285
    
    [130] J.M. Hochstrasser, The investigation and development of cyclone dust collector theories for application to miniature cyclone pre-samplers, Ph.D. thesis, Department of Environmental Health, University of Cincinnati, Cincinnati (OH), U.S.A., 1976
    [131] T. Chan, M. Lippmann, Particle collection efficiency of air sampling cyclones: an empirical theory, Environmental Science and Technology, 1977, 11: 377-382
    [132] R.P. Dring, M. Suo, Particle trajectories in swirling flows, Journal of Energy, 1978, 2: 232-237
    [133] M. Biffln, N. Syred, P. Sage, Enhanced collection efficiency for cyclone dust separators, Chemical Engineering Research and Design, 1984, 62:261-265
    [134] W.H. Chan, Investigation of hydrodynamic behavior in cyclone separators, Ph. D. thesis, Laboratory for Power and Environmental Studies, State University, Buffalo (NY), USA, 1984
    [135] T.D. Tawari, F.A. Zenz, Evaluating cyclone efficiencies from stream compositions, Chemical Engineering, 1984, 91 (9): 69-73
    [136] A. Burkholz, Approximation formulae of particle separation in cyclones, Germany Chemical Engineering, 1985, 8: 351-358
    [137] B. Wu, S. Liu, H. Wang, A study on advanced concept for fine particle separation, Experimental Thermal and Fluid Science, 2002, 26:723-730
    [138] S. Wang, M. Fang, Z. Luo, X. Li, M. Ni, K. Cen, Instantaneous separation model of a square cyclone, Powder Technology, 1999, 102:65-70
    [139] T. Chmielniak, A. Bryczkowski, Method of calculation of new cyclone-type separator with swirling baffle and bottom take off of clean gas-part Ⅰ: theoretical approach, Chemical Engineering and Processing, 2000, 39:441-448
    [140] T. Chmielniak, A. Bryczkowski, Method of calculation of new cyclone-type separator with swirling baffle and bottom take off of clean gas-part Ⅱ: experimental verification, Chemical Engineering and Processing, 2001, 40:245-254
    [141] A.D. Maynard, A simple model of axial flow cyclone performance under laminar flow conditions, Journal of Aerosol Science, 2000, 31 (2): 151-167
    [142] E. Muschelknautz, Auslegung von Zyklonabscheidern in der technischen Praxis, Staub-Reinhaltung der Luft 30 (5) (1970), 187-195
    [143] 1002 E. Muschelknautz, M. Trefz, Pressure drop and separation efficiency in cyclones, VD1-Heat Atlas, Lj. (1992) 1-8
    [144] A.C. Hoffmann, L.E. Stein, Gas cyclones and twirl tubes: Principles, design and operation, Springer, (2002) 97-122
    [145] 向晓东.计算旋风器分离效率的一种新方法.通风除尘,1990.2:1-7,47
    [146] 向晓东.几种典型除尘器收尘效率的扩散模型研究.环境科学学报,2003.23(5):657-661
    [147] 张吉光,叶龙.高效旋风器分级效率理论计算的新方法.青岛建筑工程学院学报,1991.12(4):41-48
    [148] 陈建义,时铭显.旋风分离器分级效率的多区计算模型.石油大学学报(自然科学版),1993.17(2):54-58
    [149] 张从智,叶龙,沈恒根,等.高效旋风分离器分级效率理论计算的新方.通风除尘,1996.2:14-19
    [150] 杨兴森,刘福国,尹静,等.火力发电厂细粉分离器分离效率的理论模型.电站辅机,1907 3:29-32
    
    [151] 沈恒根,刁永发,许晋源.平衡尘粒模型用于旋风分离器分级效率的计算.环境工程,1998.16(6):29-31
    [152] 刁永发,沈恒根,许晋源,等.高温旋风分离分级效率的理论计算及其分析.化工机械,2000.27(1):16-19
    [153] 王政,周学林.环流式旋风除尘器分离效率数学模型的研究.青岛化工学院学报(自然科学版),2000.21(1):78-80
    [154] 王广军,陈红.电厂锅炉细粉分离器性能分析数学模型.中国电机工程学报,2001.21(9).53-57
    [155] R. M. Alexander, Fundamentals of cyclone design and operation, Proceedings of the Australian Institute of Mining and Metallurgy, (New Series), 1949, 152-153:203-228
    [156] S. Corrsin, J. Lumely, The equation of motion for particle in turbulent fluid, App. Sci. Res. A, 1956, 6:114-116
    [157] S. K. Fieldlander, Behavior of suspended particle in a turbulent fluid, AIChE Journal, 1957, 3: 381-390
    [158] P. G Saffman, The lift on a small sphere in a slow shear flow, Journal of Fluid Mechanics, 1965, 22:385-400
    [159] D. B Spalding, Numerical computation of multi-phase fluid flow and heat transfer: Recent advances in numerical methods in fluids, edited by C. Taylor and K. Morgan, Pineridge Press Limited, Swansee, U.K., 1980
    [160] M. R. Wells, D. E. Stokes, The effects of crossing trajectories on the dispersion of particle in a turbulent flow, Journal of Fluid Mechanics, 1983, 136:31-62
    [161] M. R. Maxey, J. J. Riley, Equation of motion for a small rigid sphere in nonuniform flow, Physics of Fluids, 1983, 26 (4): 883-889
    [162] S. L. Soo, Multiphase fluid dynamics, Science Press, Beijing, 1990
    [163] D. K. Squires, J.K. Eaton, Particle response and turbulence modification in isotropic turbulence, Physics of Fluids, 1990, A2 (7): 1191-1203
    [164] T. Frank, K.P. Schade, D. Petrak, Numerical simulation and experimental investigation of a gas solid two phase flow in a horizontal channel, International Journal of Multiphase Flow, 1993, 19:187-188
    [165] A. S. Sangani, G. Mo, H. Tsao, D. L. Koch, Simple shear flows of dense gas-solid suspensions at finite Stokes numbers, Journal of Fluid Mechanics, 1996, 313: 309-341
    [166] S. Benyahia, H. Arastoopour, T. Knowlton, Prediction of solid and gas flow behavior in a riser using a computational multiphase flow approach, Fluidization Ⅸ, Editors: L. S. Fan anti T. Knowlton, Durango, Colorado, 1998, 493-500
    [167] 岑可法,樊建人,工程气固多相流的理论及计算,浙江大学出版社,1990
    [168] 周力行,湍流两相流动与燃烧的数值模拟,清华大学出版社,1991
    [169] C. B. Shepherd, C. E. Lapple, Flow pattern and pressure drop in cyclone dust collectors, Industrial and Engineering Chemistry, 1940, 32:1246-1248
    [170] M. W. Firs, Cyclone dust collector design, Am. Soc. Mech. Eng., 1949, 49 (A): 127-132
    [171] E. Muschelknautz, Auslegung von Zyklonabscheidern in der technischen Praxis, Staub Reinhalt, Luft, 1970, 30 (5): 187-195
    [172] J. Casal and J.M. Martinez-Bennet, A batter way to calculate cyclone pressure drop. Chemical Engineering, 1983, 90 (3): 99-100
    [173] J. Dirgo, Relationships between cyclone dimensions and performance, Ph. D. Thesis, Harvard University, USA, 1988
    
    [174] A. Avci, I. Karagoz, Theoretical investigation of pressure losses in cyclone separators, International Communication of Heat and Mass Transfer, 2001, 28 (1): 107-117
    [175] D. L. Iozia, D. Leith, Cyclone optimization, Filtration and Separation, 1989:272-274
    [176] G. Ramachandran, D. Leith, Cyclone optimization based on a new empirical model for pressure drop, Aerosol Science and Technology, 1990, 15:135-148
    [177] A. C. Stern, K.J. Caplan, P.D. Bush, Cyclone dust collectors, American Petroleum Institute, New York, 1955
    [178] D. Leith, D. Mehta, Cyclone performance and design, Atmospheric Environment, 1973, 7: 527-549
    [179] K. J. Caplan, Source Control by Centrifugal Source and Gravity, In Air Pollution, A.C. Stern, Ed., Academic Press: New York, 1968, 43:366-377
    [180] K. J. Caplan, In Air Pollution, 3rd, Academic Press, New York, 1977, 4:21-26
    [181] D. Leith, J. Dirgo, W. T. Davis, In air pollution, 3rd, Academic Press, New York, 1986, 7: 53-58
    [182] L. W. Briggs, Effect of dust concentration on cyclone performance, Transaction of American Institute of Chemical Engineering, 1946, 42:511-526
    [183] J. G. Masin, W. H. Koch, Cyclone efficiency and pressure drop correlations in oil shale retorts, Environmental Progress, 1986, 5 (2): 116-120
    [184] M. Comas, J. Comas, C. Chetrit, J. Casal, Cyclone pressure drop and efficiency with and without an inlet vane, Powder Technology, 1991, 66:143-148
    [185] H. S. Bryant, R. W. Silverman, F.A. Zenz, How dust in gas affects cyclone pressure drop, Hydrocarbon Processing, 1983, 62:87-90
    [186] P. Swift, An empirical approach to cyclone design and application, Filtration and Separation, 1986, Jan/Feb: 24-27
    [187] J. M. Beeckmans, B. Morin, Powder Technology, 1987, 52:227-232
    [188] F. L. Fassani, L. Goldstein Jr., A study of the effect of high inlet solids loading on a cyclone separator pressure drop and collection efficiency, Powder Technology, 2000, 107:60-65
    [189] D. Sykes, R.H. Cumming, L. Grieveson, F. J. Rowell, Measurement and modeling of fluid loss in a cyclone, Journal of Aerosol Science, 2000, 31 (S1): 588-589
    [190] 张娟娟.旋风分离器阻力的研究.硕士学位论文,西安:西安冶金建筑学院,1990
    [191] 王怀斌,戴坚,刘文铁,等.循环流化床锅炉旋风分离器阻力损失的计算模型.哈尔滨工业大学学报,1990.6:22-25
    [192] 周亚素,戴元熙.旋风除尘器阻力计算的新方法.中国纺织大学学报,1990.16(6):95-100
    [193] 龚光彩,利光裕.平旋流型除尘器能量损失的简易估计.通风除尘,1995.3:7-10
    [194] 陈建义,罗晓岚,时铭显.含尘条件下PV型旋风分离器压降的计算.石油化工设备技术,1997.18(4):1-3
    [195] 王连泽,彦启森.旋风分离器内压力损失的计算.环境工程,1998.16(2):44-48
    [196] 王德耕.旋风分离器速度分布指数及压降计算通用模型.化学工程,1998.26(1):44-47
    [197] F. Boysan, W. H. Ayers, A. Swithenbank, A fundamental mathematical modelling approach for cyclone design, Transactions of the Institution of Chemical Engineers (London), 1982, 60: 222-230
    [198] K. A. Pericleous, Appl. Math. Modeling, 1987, 11: 242-255
    
    [199] R.K. Duggins, P.C.W. Frith, Filtration and Separation, 1987, 394-397
    [200] L.X. Zhou, S.L. Soo, Gas-solids flow and collection of solids in a cyclone separator, Powder Technology, 1990, 63: 45-53
    [201] S.L. Soo, Multiphase Fluid Dynamics, Science Press, Beijing, 1990
    [202] S. Nieh, J. Zhang, Simulation of the strongly swirling aerodynamic field in a vortex combustor, Journal of Fluids Engineering, 1992, 114: 367-374
    [203] M. Kessler, D. Leith, Flow measurement and efficiency modeling of cyclones for particle collection, Aerosol Science and Technology, 1991, 15: 8-18
    [204] T. Dyakowski, R.A. Williams, Modelling turbulent flow within a small-diameter hydrocyclone. Chemical Engineering Science, 1993, 48 (6): 1143-1152
    [205] W.D. Griffiths, F. Boysan, Computational fluid dynamics (CFD) and empirical modeling of a number of cyclone samplers, Journal of Aerosol Science, 1996, 27 (2): 281-304
    [206] A.C. Hoffmann, M.D. Groot, A. Hospers, The effect of the dust collection system on the flow pattern and separation efficiency of a gas cyclone, The Canadian Journal of Chemical Engineering, 1996, 74 (4): 464-470
    [207] H.F. Meier, M. Mori, Gas-solid flow in cyclone: The Eulerian-Eulerian approach, Computers & Chemical Engineering, 1998, 22(S1): S641-S644
    [208] H.F. Meier, M. Mori, Anisotropic behavior of the Reynolds stress in gas and gas-solid flows in cyclones, Powder Technology, 1999, 101: 108-119
    [209] H.F. Meier, K. Ropelato, M. Mori, K.J.J. less, H. Forster, Computational fluid dynamics (CFD) for cyclone evaluation and design, Part 1, ZKG International, 2002, 55 (4): 64-75
    [210] A.J. Hoekstra, J.J. Derksen, H.E.A. Van Den Akker, An experimental and numerical study of turbulent swirling flow in gas cyclones, Chemical Engineering Science, 1999, 54: 2055-2065
    [211] S. Hogg, M.A. Leschziner, Computation of highly swirling confined flow with a Reynolds Stress Turbulence Model. AIAA Journal, 1989,27: 57-63
    [212] A.J. Hoekstra, J.J. Derksen, H.E.A. Van Den Akker. CFD Study on the performance of a high-efficiency gas cyclone, American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication II), 1999, 397: 219-226
    [213] M. Modigell, M. Weng, Pressure loss and separation characteristic calculation of a uniflow Cyclone with a CFD Method, Chemical Engineering and Technology, 2000, 23 (9): 753-758
    [214] K. Pant, C.T. Crowe, P. Irving, On the design of miniature cyclones for the collection of bioaerosols, Powder Technology, 2002, 125: 260-265
    [215] L. Ma, D.B. Ingham, X. Wen, Numerical Predictions of the Performance of Small Sampling Cyclones, Journal of Aerosol Science, 1998, 29 (S1): S329-S330
    [216] L. Ma, D.B. Ingham, X. Wen, A finite volume method for the fluid flow in a polar cylindrical grid. International Journal for Numerical Methods in Fluids, 1998, 28: 663-677
    [217] L. Ma, D.B. Ingham, X. Wen, Numerical modelling of the fluid and particle penetration through small sampling cyclones, Journal of Aerosol Science, 2000, 31 (9): 1097-1119
    [218] G.A. Kallio, M.W. Reeks, A numerical simulation of particle deposition in turbulent boundary layers, International Journal of Multiphase Flow, 1989, 15 (3): 433-446
    [219] X. Wen, M.I.G. Bloor, J.W. Ferguson, D.B. Ingham, A numerical study of the fluid and particle collection efficiency in a cyclone, Proceeding of 4th Congress of the Aerosol Science, 1990: 149-154
    [220] R.L. Salcedo, J.A.G. Campos, In optimization for pollution reduction: A numerical approach to cyclone design, 2nd Conference on Process Integration, Modeling and Optimization for Energy Saving and Pollution Reduction, Budapest, Hungary, May 31-June 2, 1999, 571-576
    
    [221] L. Xiaodong, Y. Jianhua, C. Yuchun, N. Mingjiang, C. Kefa, Numerical simulation of the effects of turbulence intensity and boundary layer on separation efficiency in a cyclone separator, Chemical Engineering Journal, 2003, 95:235-240
    [222] G. Solero, A. Coghe, Experimental fluid dynamic characterization of a cyclone chamber, Experimental Thermal and Fluid Science, 2002, 27:87-96
    [223] W. Peng, A. C. Hoffmann, P. J. A. J. Boot, A. Udding, H. W. A. Dries, A. Ekker, J. Kater, Flow pattern in reverse-flow centrifugal separators, Powder Technology, 2002, 127:212-222
    [224] 周力行.燃烧理论和化学流体力学.科学出版社,北京:1986
    [225] 周力行,S. Nieh, G Yang.旋风两相流动和燃烧数值模拟理论及流场预报.工程热物理学报,1989.10(4):440-445
    [226] 周力行,林文漪,廖昌明.双侧进气突扩燃烧室中三维湍流有旋回流两相流动的数值模拟.工程热物理学报,1994.15(4):446-448
    [227] 洪涛,周力行.四角喷燃炉膛内湍流三维气相燃烧和气固两相流动的数值模拟.工程热物理学报,1991.12(1):96-100
    [228] 顾璠,许晋源.气固两相流场的湍流颗粒浓度理论模型.应用力学学报,1994.11(4):11-18
    [229] 吴小林,时铭显.旋风分离器内颗粒运动规律的数值模拟.化工机械,1994.21(6):333-337
    [230] 李成之,吴少安,金珠梅.液排渣粉煤旋风燃烧器内的流场的数值模拟.工程热物理学报,1995.16(2):235-239
    [231] 由长福,岳光溪.方形分离器内气固两相流动的数值模拟.工程热物理学报,1996.17(2):252-256
    [232] 徐江荣.多相流动颗粒轨道模型的一种新解法.杭州电子工业学院学报,1997.17(3):16-20
    [233] 张健,S. Nieh.涡旋管内强旋湍流气固两相流动数值模拟.燃烧科学与技术,1998.4(3):327-333
    [234] 还博文,王振宇.强旋湍流气固两相流动和煤粉燃烧数值模拟.动力工程,1998.18(3):43-48
    [235] 杨海,还博文,张小斐.k-ε-k_p模型的Cμ修正及三维强旋气相流场预报.热力发电,1998.5:4-7
    [236] 杨卫宏,萧泽强.电厂旋风分离器计算机仿真与优化.热能动力工程,1999.14(83):387-389
    [237] 黄虹宾,刘淑艳,郑世琴,闫为革.二级空气滤清器中旋风分离器流场的数值模拟.内燃机学报,1999.17(2):173-177
    [238] 林玮,王乃宁.旋风分离器内三维两相流场的数值模拟.动力工程,1999.19(1):72-76
    [239] 魏志军,张平.旋风分离器气相流场的数值模拟.北京理工大学学报,2000.20(5):561-564
    [240] 郭印诚,王希麟,王德新,等.旋风炉内气相燃烧及两相流动的数值模拟.燃烧科学与技术,2000.6(3):12-16
    [241] 李凤瑞,池作和,周昊,岑可法.新型浓淡分离型稳燃器内气固两相流动的数值模拟.中国电机工程学报,2001.21(3):58-61
    [242] 彭维明.且向旋风分离器内部流场的数值模拟及实验研究.农业机械学报,2001.32(4): 20-24
    
    [243] 余战英,奚金样,徐通模,惠思恩.下排气旋风分离器流场的测定及数值模拟.动力工程,2002.22(5):1941-1944
    [244] 毛羽,庞磊,王小伟,吴德飞.旋风分离器内三维紊流场的数值模拟.石油炼制与化工,2002.33(2):1-6
    [245] M. D. Slack, R.O. Prasad, A. Bakker, F. Boysan, Advances in cyclone modelling using unstructured grids, Transactions of the Institution of Chemical Engineering, 2000, 78 (Part A): 1098-1104
    [246] 李长志,王莹,董鹏.湍流气固两相流动数值模拟理论研究的最新进展.电站系统工程,2002.18(3):19-20
    [247] 周力行 著,陈文芳,林文漪 译.湍流气粒两相流动和燃烧理论与数值模拟.北京:科学出版社,1994
    [248] 张政,谢灼利.流体-固体两相流的数值模拟.化工学报,2001.52(1):1-12
    [249] 熊鳌魁.湍流模式理论综述.武汉理工大学学报(交通与工程科学版)2001.25(4):451-455
    [250] 李福田,倪浩清.工程湍流模式的研究开发及其应用.水利学报,2001.(5):22-31
    [251] B. E. Launder, D. B. Spalding, Comput. Methods Appl. Mech. Eng., 1974, 3:269-289
    [252] V. C. Patel, W. Rodi, G. Scheuerer, Turbulence models for near-wall and low Reynolds Number flows: A Review, ALAA Journal, 1984, 23:1308-1319
    [253] B. Lakshminarayana, Turbulence Modeling for Complex Flows. AIAA Journal, 1986, 24: 1900-1917
    [254] C. G. Speziale, Discussion of turbulence modeling: Present and future. Proc. Whither Wofkshop, Ithaca, N. Y. Lect. NotesPhys., ed.J.L.Lumley, 1990:490-512
    [255] V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, C.G. Speziale, Development of turbulence models for shear flows by A double expansion technique. Phys. Fluids A, 1992, 4:1510-1520
    [256] 姜宗琳,陈耀松.关于RNG代数湍流模式的研究.力学学报,1995.27(1):99-103
    [257] 张健,S. Nieh.强旋湍流气-固两相流动的颗粒随机轨道法模拟.力学学报,1994.26(6):657-663
    [258] 徐江荣,周志军,刘建忠,岑可法.煤粉浓淡旋流燃烧器喷口气固两相流动的数值模拟.动力工程,2002.22(5):1928-1931
    [259] 王树立,张雅琴,张敏卿.湍流两相流动模式理论综述及展望.抚顺石油学院学报,1997.17(2):37-43
    [260] 符松.非线性湍流模式研究及进展.力学进展,1995.25(3):318-328
    [261] 李福田,倪浩清.工程湍流模式理论综述及展望.力学进展,1996.26(2):145-165
    [262] B. E. Launder, G.J. Reece, W. Rodi, Progress in the development of a Reynolds-Stress turbulence closure, Journal of Fluid Mechanics, 1975, 68 (3):537-566
    [263] M. M. Gibson, B. E. Launder, Ground effects on pressure fluctuations in the atmospheric boundary layer, Journal of Fluid Mechanics, 1978, 86:491-511
    [264] B. E. Launder, Second-moment closure: Present and Future, International Journal of Heat Fluid Flow, 1989, 10 (4): 282-300
    [265] B. J. Daly, and F.H. Harlow, Transport equations in turbulence, Phys. Fluids, 1970, 13: 2634-2649
    [266] F. S. Lien, M. A. Leschziner, Assessment of turbulent transport models including non-linear RNG eddy-viscosity formulation and second-moment closure, Computers and Fluids, 1994, 23 (8): 983-1004
    
    [267] C. G Speziale, S. Sarkar, T. B. Gatski, Modelling the pressure-strain correlation of turbulence: An invariant dynamical systems approach, Journal of Fluid Mechanics, 1991, 227:245-272
    [268] S. Sarkar, L. Balakrishnan, Application of a Reynolds-Stress turbulence model to the compressible shear layer, ICASE Report, 1990, NASA CR 182002: 90-18
    [269] S. A. Morsi, A. J. Alexander, An investigation of particle trajectories in two-phase flow systems, Journal of Fluid Mechanics, 1972, 55 (2): 193-208
    [270] A. Haider, O. Levenspiel, Drag coefficient and terminal velocity of spherical and nonspherical Particles, Powder Technology, 1989, 58:63-70
    [271] H. Ounis, G. Ahmadi, J. B. McLaughlin, Brownian diffusion of submicrometer particles in the viscous sublayer, Journal of Colloid and Interface Science, 1991, 143 (1): 266-277
    [272] L. Talbot et al, Thermophoresis of particles in a heated boundary layer, Journal of Fluid Mechanics, 1980, 101 (4): 737-758
    [273] A. Li & G. Ahmadi, Dispersion and deposition of spherical particles from point sources in a turbulent channel flow, Aerosol Science and Technology, 1992, 16:209-226
    [274] P. G. Saffman, The lift on a small sphere in a slow shear flow, Journal Fluid Mechanics, 1965, 22:385-400
    [275] B. J. Daly, F.H. Harlow, Transport equations in turbulence, Physical Fluids, 1970, 13:2634-2649
    [276] B. E. Launder, D.B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, 1974, 3: 269-289
    [277] T. J. Barth, D. Jespersen, The design and application of upwind schemes on unstructured meshes, Technical Report AIAA-89-0366, AIAA 27th Aerospace Sciences Meeting, Reno, Nevada, 1989
    [278] C. M. Rhie, W. L. Chow, Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA Journal, 1983, 21(11): 1525-1532
    [279] S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere, Washington, D.C., 1980
    [280] 陶文铨.数值传热学(第二版),西安:西安交通大学出版社,2001
    [281] J. Abrahamson, C. G. Martin, K. K. Wong, The physical mechanisms of dust collection in cyclone, Transactions of the Institute of Chemical Engineering, 1978, 56:168-177
    [282] B. T. Chao, Scaling and modeling, Handbook of Multipahase System, Hemisphere Publishing Co, 1982, 3:44-48
    [283] N. P. Cheremisinoff, P.N. Cheremisinoff, Particulate capture from process gas streams in encyclopedia of fluid mechanics, 1986, 4:1217-1279
    [284] L. Svarovsky, Solid-gas separation in gas fluidization technology, John Wiley & Sons, 1986, 197-217
    [285] J. S. Ontko, Cyclone separator scaling revisited, Powder Technology, 1996, 87:93-104
    [286] R. H. Perry, Perry's chemical engineering's handbook, 7th edition, McGraw-Hill, New York, 1997
    [287] A. Gil, L. M. Romeo, C. Cortes, Scaling parameters for PFBC cyclone separator system analysis, Proceedings of the 15th International Conference on Fluidized Bed Combustion, USA, 1999, 1-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700