人类γδT细胞抗原表位肽的鉴定和健康人γδT细胞克隆的建立及鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管γδT细胞在机体抗感染、抗肿瘤的固有免疫应答中发挥重要的作用,但是目前所发现的配体抗原仅限于十余种,根本无法与承担特异性细胞免疫应答的αβT细胞可识别数以亿万计的抗原表位肽相比。此外,有关γδT细胞的表位蛋白多肽则尚无报道。因此,有必要进行γδT细胞蛋白抗原表位肽的研究,以澄清活化γδT细胞的结构基础。另一方面,活化的γδT细胞是机体免疫系统内杀伤肿瘤细胞的重要效应细胞,一旦获得具有活化γδT细胞的抗原表位多肽,可为体内外激活γδT细胞提供一个有效的活化手段。为此,我们所关注的第一个科学问题是是否存在人类γδT细胞的抗原表位?如果存在,多个串联抗原表位多肽是否比单个抗原表位肽更具刺激γδT细胞的能力?围绕上述两个科学问题我们开展了人类γδT细胞的抗原表位肽的鉴定研究。
     我们实验室先前根据三个来源于卵巢癌组织浸润的γδT细胞的TCRδ链互补决定区(CDR)3的(CDR3δ)基因序列,合成了三条CDR3δ多肽OT1、OT2、OT3,并且以这三条多肽为探针,在噬菌体随机十二肽库中筛选与CDR3δ多肽结合的十二肽,作为γδT细胞的候选抗原表位肽。我们获得了7个能与探针特异性结合的候选抗原表位肽。体外实验表明,这些多肽能在一定程度上增强γδT细胞杀伤肿瘤细胞的能力,提示这些多肽具有抗原表位活性。但是,可能由于这些多肽分子量小,因此,它们对γδT细胞的活化能力较弱。为了增强这些潜在抗原表位肽激活γδT细胞的能力,我们试图通过制备串联抗原多肽的方式来提高其刺激活性。具体的实验思路为:通过分子克隆技术,将表位肽串联,并与无关载体蛋白GST连接构建GST-表位融合蛋白表达载体,表达并鉴定了这些GST-表位融合蛋白的功能,以进一步阐明该项策略的可行性。
     这一研究的主要工作及其结果如下:
     首先,我们通过流式细胞仪检测、~3H掺入法、MTT掺入法证实筛选到的十二肽能在一定程度上刺激γδT细胞增殖并增强其杀伤肿瘤的作用,提示这些十二肽可能是γδTCR特异性识别的抗原表位肽。这为进一步澄清活化γδT细胞的结构基础提供了依据。
     其次,采用同尾酶技术构建了含不同表位组合方式的GST-表位融合蛋白的表达载体,通过ELISA和流式细胞术检测,从分子水平和细胞水平证实这些原核表达的重组GST-表位融合蛋白能与探针OT3、OT3(V)-Fc分子及γδT细胞的TCR特异性结合。并且,利用CFSE染色和MTT掺入的方法,验证GST-表位融合蛋白可刺激γδT细胞群体的增殖作用。此外,GST-表位融合蛋白与γδT细胞孵育后,发现它们可以促进γδT细胞的杀伤作用,且GST-串联表位融合蛋白的作用要强于GST-单表位融合蛋白。通过半定量RT-PCR和进一步的ELISA定量分析,发现GST-表位融合蛋白能够促进γδT细胞分泌细胞因子IL-2、IFN-γ,和TNF-α;此外,Fas配体和颗粒酶B的表达也有所增加。
     最后,我们观察了GST-串联表位融合蛋白刺激的人γδT细胞对荷瘤裸鼠的抑瘤作用。结果显示,GST-串联表位融合蛋白刺激的人γδT细胞治疗组小鼠肿瘤的生长较未刺激γδT细胞治疗组相比明显受到抑制,小鼠的生存期也有所延长。
     综上,我们首次系统地验证了γδT细胞表位肽的存在。这些表位肽能在一定程度上刺激γδT细胞增殖,并增强其杀伤肿瘤的作用。其次,通过构建GST-表位融合蛋白并进行功能实验证实,串联表位肽的γδT细胞活化效果要优于单表位肽。这说明将表位串联起来提高表位的γδT细胞活化能力的新策略是完全可行的。这将为基于γδT细胞的过继免疫细胞治疗肿瘤提供新型活化手段。
     γδT细胞是一群特殊的T细胞,是连接固有免疫和特异性免疫之间不可或缺的桥梁。由于γδT细胞在外周血中只占很少的比例,分离纯化相对较繁琐,这为深入研究γδT细胞的结构和功能带来了一定的困难。因此,若能建立在体外可长期培养的γδT细胞克隆,尤其是建立单个的γδT细胞克隆,将极大地促进其抗原识别、细胞活化及功能等研究。为此,本文的第二方面工作为健康人γδT细胞克隆的建立及鉴定。
     在本实验中,我们首先探索了固相法扩增的γδT细胞的冻存与复苏条件。其次,以~(60)Co照射的同种异体PBMC作为饲养细胞,以有限稀释法对经过阳性分选的γδT细胞进行克隆化。用流式细胞术及分子生物学检测鉴定所获克隆,以MTT掺入法对所获克隆进行细胞毒检测。结果共获得五株γδT细胞克隆,这五株克隆均为Vγ9Vδ2亚型,CD4分子和CD8分子表达均为阴性,对肿瘤细胞SKOV3均具有一定的杀伤作用。在这5株γδT细胞克隆中,有两株为单克隆,且这两株单克隆经证实为相同克隆,其VδCDR3区序列为ACDTIPGDLVRADKLIFGKG,VγCDR3区序列为ALWEVGKLGKKIKVFGPG。另三株克隆为寡克隆,其中有两株为双克隆,另一株为三克隆。这五株γδT细胞克隆的相关功能实验正在进行之中。
     综上,本实验第二部分建立了正常人外周血γδT细胞克隆,为深入研究γδT细胞结构、表面标志、亚群及功能奠定了坚实的基础。
γδT cells play an important role in anti-infection and anti-tumor immune responses, but only a few antigens recognized byγδT cells have been identified and antigenic peptide epitopes recognized byγδT cells were no reports so far.Therefore,it is necessary to study the antigenic epitope peptides recognized byγδT cells and thus clarify the structural basis of activation ofγδT cells.On the other hand,activatedγδT cells exert effector functions on tumor cells directly via cytotoxicity or indirectly via producing powerful cytokines.Once antigenic epitope peptides which could activateγδT cells were obtained,it can provide an effective means of activatingγδT cells in vitro and in vivo.To this end,the first scientific question we concerned is whether there exist antigenic epitope recognized by humanγδT cells? If there exist,whether the ability of stimulatingγδT cells of tandem epitope peptides was superior to that of single epitope peptide? Therefore,in the first part of my thesis,we identified the epitope peptides recognized byγδT cells.
     In previously study,we synthesized three CDR3-peptide OT1,OT2 and OT3 according to the gene sequence ofγδTCR CDR3 derived from tumor infiltrating lymphocyte(TIL) s in ovarian epithelial carcinoma(OEC),and then we used the OT1, OT2 and OT3 as probe in an attempt to identify possible epitopes forγδT cells by screening a Ph.D.-12~(TM) Phage Display Peptide Library.We obtained seven peptides (EP1~EP7) recognized by probes as the candidates of epitope peptides,and these peptides could trigger the cytotoxicity ofγδT cells to tumor cells.However,perhaps because of their small molecular weight,the ability of activatingγδT cells of these peptides is weak. In order to enhance the functions of candidate epitope peptides,we tried to construct tandem peptides to improve their stimulation activity.The specific strategy for the experiment is to borrow a GST carrier protein and adopt a tandem-connection strategy to construct expression vectors of GST-epitope fusion protein,and the function of recombinant GST-epitope fusion protein would be verified to further clarify the strategy's feasibility.
     The results of the present study were summarized as follows:
     Firstly,we synthesized these seven candidate epitope peptides and investigated their biological functions in vitro.The results confirmed that these peptides were able to induce significant proliferation response of humanγδT cells and could selectively trigger the growth ofγδT cells in vitro.Furthermore,we performed a MTT experiment to validate that cytotoxicity ofγδT cells against SKOV3 cells was promoted after pre-incubated with these peptides.All the results indicate that these peptides have the feature of antigen epitopes recognized byγδT cells,which provided a basis to further clarify the activation structure ofγδT cells.
     Secondly,we constructed four types of GST-epitope fusion proteins expression vectors containing single epitope or tandem epitopes by using isocaudamer technique.The results confirmed that the GST-epitope fusion proteins could bind to probe OT3, OT3(V)-Fc andγδTCR specially as shown by the analysis of ELISA and flow cytometry. Subsequently,we did CFSE,MTT assay,semi-quantity RT-PCR and ELISA to investigate the potential effect of GST- epitope fusion proteins to.γδT cells.The results of CFSE and MTT indicated that these GST-epitope fusion proteins could promote the proliferation ofγδT cells.Moreover,after pre-incubated with GST-epitope fusion proteins,significant cytotoxicity of.γδT cells to tumor cell lines was observed in a dose-dependant manner.In addition,the expression level of IL-2,IFN-γ,TNF-α,FasL and gramB were also found to be increased.Meanwhile,there were significant difference between GST-tandem epitope fusion protein groups and GST-single epitope fusion protein group,demonstrating that the function of epitopes were enhanced by tandem connected.
     Finally,the function of GST-epitope fusion proteins was further analyzed through experimental immunotherapy in subcutaneous tumor bearing nude mice models.Three intraperitoneal injections of.γδT cells pre-incubated with GST-EPt7 greatly decreased the sizes of SKOV3 tumors and prolonged the survival of tumor-bearing nude mice, significantly different from PBS control.
     In conclusion,for the first time,we systematically verified the existence of epitope peptides for.γδT cells;confirmed that the activation of tandem epitope peptides were superior to that of single epitope through the construction of four types of GST-epitope fusion proteins and functional tests,which clarify the strategy's feasibility of enhancing the activation of epitope peptides by tandem connected.These results provide a new means for activatingγδT cells in tumor immunotherapy.
     γδT cells,a special group of T cells,are an indispensable bridge linking innate immunity and specific immunity.AsγδT cells account for only small proportion in the peripheral blood,it is relatively cumbersome to separate and purify,and hinder the in-depth study of the structure and function ofγδT cells.Therefore,establishment ofγδT cell clones in vitro,especiallyγδT cell single clones,will help us in-depth study of its antigen recognition,cell activation and functions.Therefore,in the second part of my thesis,we established healthy donor'sγδT cell clones.
     In this study,we firstly explored the freezing and thawing condition ofγδT cells. Secondly,γδT cells were cloned by limiting dilution after positive choice,with ~(60)Co irradiated allogeneic PBMC as feeder cells.Flow cytometry analysis and molecular biology technique were then used to identifyγδT cells clones,and MTT assay was used to verify their cytotoxicity.Results demonstrated that fiveγδT clones have been established. The subtype of these five clones is all Vγ9 Vδ2 and the expression of CD4 and CD8 molecule were negative.Among these five clones,two clones were monoclonal,and these two clones are identical,the amino acid sequence of VδCDR3 is ACDTIPGDLVRADKLIFGKG and the amino acid sequence of VγCDR3 is ALWEVGKLGKKIKVFGPG;other threeγδT clones are oligoclonal.All of these five clones could kill tumor cell line SKOV3.Functional study of these fiveγδT cell clones is now in process.
     In conclusion,in the second part of the thesis,we successfully established five normal peripheral bloodγδT cell clones,which laid a solid foundation for further study onγδT cells.
引文
1. Hayday AC. γδ cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol. 2000, 18: 975-1026.
    
    2. Chien YH, Konigshofer Y. Antigen recognition by gammadelta T cells. Immunol Rev,2007,215:46-58.
    
    3. Allison TJ, Winter CC, Fournie JJ, Bonneville M, Garboczi DN. Structure of a human gammadelta T-cell antigen receptor. Nature. 2001, 411(6839):820-824.
    
    4. Rock EP, Sibbald PR, Davis MM, Chien YH. CDR3 length in antigen-specific immune receptors. J Exp Med, 1994,179(1):323-328.
    
    5. Chien YH, Bonneville M. Gamma delta T cell receptors. Cell Mol Life Sci, 2006,63(18):2089-2094.
    
    6. Kawakami Y. Identification of human tumor antigens recognized by T-cells and their use for immunotherapy. Int J Hematol, 2003, 77(5):427-434.
    
    7. Groh V, Steinle A, Bauer S, Spies T. Recognition of Stress-Induced MHC Molecules by Intestinal Epithelial gammadelta T Cells. Science, 1998, 279(5357): 1737-1740.
    
    8. Wu J, Groh V, Spies T. T Cell Antigen Receptor Engagement and Specificity in the Recognition of Stress-Inducible MHC Class I-Related Chains by Human Epithelial gammadelta T Cells. J Immunol, 2002, 169(3): 1236-1240.
    
    9. Moriwaki S, Korn BS, Ichikawa Y, van Kaer L, Tonegawa S. Amino acid substitutions in the floor of the putative antigen-binding site of H-2T22 affect recognition by a gamma delta T-cell receptor. Proc Natl Acad Sci, 1993, 90(23): 11396-11400.
    
    10. Steele CR, Oppenheim DE, Hayday AC. Gamma(delta) T cells: non-classical ligands for non-classical cells. Curr Biol, 2000, 10(7):R282-285.
    
    11. Cao W, He W. The recognition pattern of gammadelta T cells. Front Biosci, 2005,10:2676-2700.
    
    12. Scotet E, Martinez LO, Grant E,Barbaras R, Jeno P, Guiraud M, Monsarrat B,Saulquin X, Maillet S, Esteve JP, Lopez F, Perret B, Collet X, Bonneville M, Champagne E. Tumor recognition following Vgamma9Vdelta2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I.Immunity, 2005, 22(1):71-80.
    
    13. Shin S, EI-Diwany R, Schaffert S, Adams Ej, Garcia KC, Pereira P, Chien YH.Antigen recognition determinants of gammadelta T cell receptors. Science, 2005,308(5719):252-255.
    
    14. Adams EJ, Chien YH, Garacia KC. Structure of a gammadelta T cell receptor in complex with the nonclassical MHC T22. Science, 2005, 308(5719):227-231.
    
    15. Guo BL, Liu Z, Aldrich WA, Lopez RD. Innate anti-breast cancer immunity of apoptosis-resistant human gammadelta-T cells. Breast Cancer Res Treat. 2005,93(2):169-175.
    
    16. Liu Z, Guo BL, Gehrs BC, Nan L, Lopez RD. Ex vivo expanded human Vgamma9Vdelta2+ gammadelta-T cells mediate innate antitumor activity against human prostate cancer cells in vitro. J Urol. 2005, 173(5): 1552-1556.
    
    17. Viey E, Fromont G, Escudier B, Morel Y, Da Rocha S, Chouaib S, Caignard A.Phosphostim-activated gamma delta T cells kill autologous metastatic renal cell carcinoma. J Immunol. 2005, 174(3):1338-1347.
    
    18. Corvaisier M, Moreau-Aubry A, Diez E, Bennouna J, Mosnier JF, Scotet E, Bonneville M, Jotereau F. V gamma 9V delta 2 T cell response to colon carcinoma cells. J Immunol. 2005, 175(8):5481-5488.
    
    19. Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T, Minato N, Toma H. Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother. 2007, 56(4):469-476.
    
    20. Chen J, Niu H, He W, Ba D. Antitumor activity of expanded human tumor-infiltrating gammadelta T lymphocytes. Int Arch Allergy Immunol. 2001,125(3):256-263.
    
    21. Xu C, Zhang H, Hu H, He H, Wang Z, Xu Y, Chen H, Cao W, Zhang S, Cui L, Ba D, He W. Gamma delta T cells recognize tumor cells via CDR3delta region. Mol Immunol, 2007,44(4):302-310.
    
    22. Davis MM, Lyons DS, Altman JD, McHeyzer M, Williams S, Hampl J, Boniface JJ,Chien Y. T cell receptor biochemistry, repertoire selection and general features of TCR and Ig structure. Ciba Found Symp, 1997,204:94-104.
    
    23. Lang F, Peyrat MA, Constant P, Davodeau F, David-Ameline J, Poquet Y, Vie H,Fournie JJ, Bonneville M. Early activation of human V gamma 9V delta 2 T cell broad cytotoxicity and TNF production by nonpeptidic mycobacterial ligands. J Immunol.1995, 154(11):5986-5994.
    
    24. Belmant C, Espinosa E, Poupot R, Peyrat MA, Guiraud M, Poquet Y, Bonneville M,Fournie JJ. 3-Formyl-1-butyl pyrophosphate A novel mycobacterial metabolite-activating human gammadelta T cells. J Biol Chem. 1999,274(45):32079-32084.
    
    25. Sireci G, Espinosa E, Di Sano C, Dieli F, Fournie JJ, Salerno A. Differential activation of human gammadelta cells by nonpeptide phosphoantigens. Eur J Immunol. 2001,31(5):1628-1635.
    
    26. Kato Y, Tanaka Y, Miyagawa F, Yamashita S, Minato N. Targeting of tumor cells for human gammadelta T cells by nonpeptide antigens. J Immunol. 2001,167(9):5092-5098.
    
    27. Kunzmann V, Bauer E, Wilhelm M. Gamma/delta T-cell stimulation by pamidronate.N Engl J Med. 1999, 340(9):737-738.
    
    28. Miyagawa F, Tanaka Y, Yamashita S, Minato N. Essential requirement of antigen presentation by monocyte lineage cells for the activation of primary human gamma delta T cells by aminobisphosphonate antigen. J Immunol. 2001, 166(9):5508-5514.
    
    29. Jiang B, Liu W, Qu H, Meng L, Song S, Ouyang T, Shou C. A novel peptide isolated from a phage display peptide library with trastuzumab can mimic antigen epitope of HER-2. J Biol Chem. 2005, 280(6):4656-4662.
    
    30. Jin L, Zhu A, Wang Y, Chen Q, Xiong Q, Li J, Sun Y, Li T, Cao R, Wu J, Liu J. A Th1-recognized peptide P277, when tandemly repeated, enhances a Th2 immune response toward effective vaccines against autoimmune diabetes in nonobese diabetic mice. J Immunol. 2008, 180(1):58-63.
    
    31. Liu W, Chen YH. High epitope density in a single protein molecule significantly enhances antigenicity as well as immunogenicity: a novel strategy for modern vaccine development and a preliminary investigation about B cell discrimination of monomeric proteins. Eur J Immunol. 2005, 35(2):505-514.
    
    32. Liu Z, Chen YH. Design and construction of a recombinant epitope-peptide gene as a universal epitope-vaccine strategy. J Immunol Methods. 2004, 285(1):93-97.
    
    33. He X, Li G, Zhu J. Construction and selection of human anti-idiotypic antibody single chain variable fragments or CDR3 fragments of nasopharyngeal carcinoma. J Exp Clin Cancer Res. 2004, 23(4):607-615.
    
    34. Yang M, Asakura T. Design, expression and solid-state NMR characterization of silk-like materials constructed from sequences of spider silk, Samia cynthia ricini and Bombyx mori silk fibroins. J Biochem. 2005, 137(6):721-729.
    
    35. Asakura T, Tanaka C, Yang M, Yao J, Kurokawa M. Production and characterization of a silk-like hybrid protein, based on the polyalanine region of Samia cynthia ricini silk fibroin and a cell adhesive region derived from fibronectin. Biomaterials. 2004,25(4):617-624.
    
    36. Liu Z, Wang Z, Chen YH. Predefined spacers between epitopes on a recombinant epitope-peptide impacted epitope-specific antibody response. Immunol Lett. 2005,97(1):41-45.
    
    37. Bonneville M, Scotet E. Human Vgamma9Vdelta2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol. 2006, 18(5):539-546.
    1. Haecker G, Wagner H. Proliferative and cytolytic responses of human gamma delta T cells display a distinct specificity pattern. Immunology. 1994, 81(4):564-568.
    
    2. Yu S, He W, Chen J, Zhang F, Ba D. Expansion and immunological study of Human Tumor Infiltrating Gamma/Delta T Lymphocytes in vitro. Int Arch Allergy Immunol,1999, 119(1):31-37.
    
    3. Eardley DD. Cloned T cells with "co-helper" activity. I. Biologic activities of the clone. J Immunol. 1983 130(5):2209-2213.
    
    4. Zagury D, Morgan D, Lenoir G, Fouchard M, Feldman M. Human normal CTL clones:generation and properties. Int J Cancer. 1983, 31(4):427-432.
    
    5. Sheehy MJ, Yunis EJ, Agostini RM Jr, Quintieri FB, Leung DY, Geha RS, Yunis EJ.Morphology of human T lymphocyte clones. Lab Invest. 1983,48(5):549-555.
    
    6. Zanders ED, Lamb JR, Feldmann M, Green N, Beverley PC. Tolerance of T-cell clones is associated with membrane antigen changes. Nature. 1983,303(5918):625-627.
    
    7. Rosenthal KL, Oldstone MB, Hengartner H, Zinkernagel RM. Specificity of in vitro cytotoxic T cell clones directed against vesicular stomatitis virus. J Immunol. 1983,131(1):475-478.
    
    8. Wadee AA, Cohen JD, Rabson AR. A 180-kilodalton protein from Mycobacterium tuberculosis defined by a human T cell clone. J Clin Lab Immunol. 1989,29(1):25-32.
    
    9. Zwillich SH, Duby AD, Lipsky PE。 T-lymphocyte clones responsive to Shigella flexneri. J Clin Microbiol. 1989, 27(3):417-421.
    
    10. Burns J, Rosenzweig A, Zweiman B, Lisak RP. IL-2 secretion by soluble antigen-reactive human T-cell clones. Cell Immunol. 1983, 77(2):363-371.
    
    11. Jameson J, Havran WL. Skin gammadelta T-cell functions in homeostasis and wound healing. Immunol Rev. 2007, 215:114-122.
    12. Ferrarini M, Ferrero E, Dagna L, Poggi A, Zocchi MR. Human gammadelta T cells: a nonredundant system in the immune-surveillance against cancer. Trends Immunol.2002, 23(1): 14-18.
    
    13. Lopez RD. Human gammadelta-T cells in adoptive immunotherapy of malignant and infectious diseases. Immunol Res. 2002, 26(1-3):207-221.
    
    14. Bonneville M, Scotet E. Human Vgamma9Vdelta2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol. 2006, 18(5):539-546.
    
    15. Girardi M. Immunosurveillance and immunoregulation by gammadelta T cells. J Invest Dermatol. 2006, 126(1):25-31.
    
    16. Moser B, Brandes M. Gammadelta T cells: an alternative type of professional APC.Trends Immunol. 2006, 27(3):112-118.
    
    17. Mukherji B, MacAlister TJ. Clonal analysis of cytotoxic T cell response against human melanoma. J Exp Med. 1983, 158(1):240-245.
    
    18. Stein LD, Sigal NH. Limiting dilution analysis of Epstein-Barr virus-induced immunoglobulin production. Cell Immunol. 1983, 79(2):309-319.
    
    19. Roy A, Krzykwa E, Lemieux R, Neron S. Increased efficiency of gamma-irradiated versus mitomycin C-treated feeder cells for the expansion of normal human cells in long-term cultures. J Hematother Stem Cell Res. 2001, 10(6):873-880.
    
    20. Deschavanne PJ, Fertil B. A review of human cell radiosensitivity in vitro. Int J Radiat Oncol Biol Phys. 1996, 34(1):251-266.
    
    21. Chong AS, Bier DE, Grimes WJ, Hersh EM. Gamma-irradiated peripheral blood mononuclear cells can express LAK activity. Int J Cell Cloning. 1991, 9(1):65-77.
    
    22. Hata S, Clabby M, Devlin P, Spits H, De Vries JE, Krangel MS. Diversity and organization of human T cell receptor delta variable gene segments.J Exp Med. 1989,169(1):41-57.
    
    23. Takihara Y, Tkachuk D, Michalopoulos E, Champagne E, Reimann J, Minden M, Mak TW. Sequence and organization of the diversity, joining, and constant region genes of the human T-cell delta-chain locus. Proc Natl Acad Sci U S A. 1988, 85(16):6097-6101.
    
    24. Lefranc MP, Chuchana P, Dariavach P, Nguyen C, Huck S, Brockly F, Jordan B,Lefranc G. Molecular mapping of the human T cell receptor gamma (TRG) genes and linkage of the variable and constant regions. Eur J Immunol. 1989, 19(6):989-994.
    
    25. Font MP, Chen Z, Bories JC, Duparc N, Loiseau P, Degos L, Cann H, Cohen D,Dausset J, Sigaux F. The V gamma locus of the human T cell receptor gamma gene.Repertoire polymorphism of the first variable gene segment subgroup.J Exp Med.1988, 168(4):1383-1394.
    
    26. Lefranc MP, Forster A, Rabbitts TH. Genetic polymorphism and exon changes of the constant regions of the human T-cell rearranging gene gamma. Proc Natl Acad Sci U S A. 1986, 83(24):9596-9600.
    
    27. Huck S, Lefranc MP. Rearrangements to the JP1, JP and JP2 segments in the human T-cell rearranging gamma gene (TRG gamma) locus. FEBS Lett. 1987,224(2):291-296.
    
    28. Hinz T, Wesch D, Halary F, Marx S, Choudhary A, Arden B, Janssen O, Bonneville M,Kabelitz D. Identification of the complete expressed human TCR V gamma repertoire by flow cytometry. Int Immunol. 1997, 9(8): 1065-1072.
    
    29. Deusch K, Luling F, Reich K, Classen M, Wagner H, Pfeffer K. A major fraction of human intraepithelial lymphocytes simultaneously expresses the gamma/delta T cell receptor, the CD8 accessory molecule and preferentially uses the V delta 1 gene segment. Eur J Immunol. 1991, 21(4): 1053-1059.
    
    30. Davies DR, Padlan EA, Sheriff S. Antibody-antigen complexes. Annu Rev Biochem.1990, 59:439-473.
    
    31. Jorgensen JL, Reay PA, Ehrich EW, Davis MM. Molecular components of T-cell recognition. Annu Rev Immunol. 1992, 10:835-873.
    
    32. Zheng BJ, Chan KW, Im S, Chua D, Sham JS, Tin PC, He ZM, Ng MH. Anti-tumor effects of human peripheral gammadelta T cells in a mouse tumor model. Int J Cancer.2001,92(3):421-425.
    33. Lozupone F, Pende D, Burgio VL, Castelli C, Spada M, Venditti M, Luciani F, Lugini L, Federici C, Ramoni C, Rivoltini L, Parmiani G, Belardelli F, Rivera P, Marcenaro S,Moretta L, Fais S. Effect of human natural killer and gammadelta T cells on the growth of human autologous melanoma xenografts in SCID mice. Cancer Res. 2004,64(1):378-385.
    
    34. Sturm E, Braakman E, Fisch P, Vreugdenhil RJ, Sondel P, Bolhuis RL. Human Vgamma 9-V delta 2 T cell receptor-gamma delta lymphocytes show specificity to Daudi Burkitt's lymphoma cells. J Immunol. 1990, 145(10):3202-3208.
    1. Davis MM. The evolutionary and structural 'logic' of antigen receptor diversity. Semin Immunol. 2004, 16(4):239-243.
    
    2. Rock EP, Sibbald PR, Davis MM, Chien YH. CDR3 length in antigen-specific immune receptors. J Exp Med. 1994, 179(1):323-328.
    
    3. Pardoll DM. Immunology. Stress, NK receptors, and immune surveillance. Science.2001,294(5542):534-536.
    
    4. Bensmana M, Mattei MG, Lefranc MP. Localization of the human T-cell receptor gamma locus (TCRG) to 7p14—p15 by in situ hybridization. Cytogenet Cell Genet.1991, 56(1):31-32.
    
    5. Jameson JM, Cauvi G, Sharp LL, Witherden DA, Havran WL. Gammadelta T cell-induced hyaluronan production by epithelial cells regulates inflammation. J Exp Med. 2005, 201(8): 1269-1279.
    
    6. Hayday AC. [gamma] [delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol. 2000, 18:975-1026.
    
    7. Bonneville M, Fournie JJ. Sensing cell stress and transformation through Vgamma9Vdelta2 T cell-mediated recognition of the isoprenoid pathway metabolites.Microbes Infect. 2005, 7(3):503-509.
    
    8. Zhao J, Huang J, Chen H, Cui L, He W. Vdeltal T cell receptor binds specifically to MHC I chain related A: molecular and biochemical evidences. Biochem Biophys Res Commun. 2006, 339(1):232-240.
    
    9. Adams EJ,Chien YH,Garcia KC.Structure of a gammadelta T cell receptor in complex with the nonclassical MHC T22. Science. 2005, 308(5719):227-231.
    
    10. Scotet E, Martinez LO, Grant E, Barbaras R, Jeno P, Guiraud M, Monsarrat B,Saulquin X, Maillet S, Esteve JP, Lopez F, Perret B, Collet X, Bonneville M,Champagne E. Tumor recognition following Vgamma9Vdelta2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity. 2005, 22(1):71-80.
    
    11. Puan KJ, Jin C, Wang H, Sarikonda G, Raker AM, Lee HK, Samuelson MI,Marker-Hermann E, Pasa-Tolic L, Nieves E, Giner JL, Kuzuyama T, Morita CT.Preferential recognition of a microbial metabolite by human Vgamma2Vdelta2 T cells.Int Immunol. 2007, 19(5):657-673.
    
    12. Green AE, Lissina A, Hutchinson SL, Hewitt RE, Temple B, James D, Boulter JM,Price DA, Sewell AK. Recognition of nonpeptide antigens by human V gamma 9V delta 2 T cells requires contact with cells of human origin. Clin Exp Immunol.2004,136(3):472-482.
    
    13. Espinosa E, Belmant C, Pont F, Luciani B, Poupot R, Romagne F, Brailly H,Bonneville M, Fournie JJ. Chemical synthesis and biological activity of bromohydrin pyrophosphate, a potent stimulator of human gamma delta T cells. J Biol Chem. 2001,276(21):18337-18344.
    
    14. Spinozzi F, Agea E, Bistoni O, Forenza N, Monaco A, Falini B, Bassotti G, De Benedictis F, Grignani F, Bertotto A. Local expansion of allergen-specific CD30+Th2-type gamma delta T cells in bronchial asthma. Mol Med.1995,l(7):821-826.
    
    15. Burns J, Lobo S, Bartholomew B. Requirement for CD4+ T cells in the gammadelta T cell proliferative response to Daudi Burkitt's lymphoma. Cell Immunol. 1996,174(1): 19-24.
    
    16. De La Barrera SS, Finiasz M, Frias A, Aleman M, Barrionuevo P, Fink S, Franco MC,Abbate E, del C Sasiain M. Specific lytic activity against mycobacterial antigens is inversely correlated with the severity of tuberculosis. Clin Exp Immunol. 2003,132(3):450-461.
    
    17. Young JL, Goodall JC, Beacock-Sharp H, Gaston JS. Human gamma delta T-cell recognition of Yersinia enterocolitica. Immunology. 1997 , 91(4):503-510.
    
    18. Egan CE, Dalton JE, Andrew EM, Smith JE, Gubbels MJ, Striepen B, Carding SR. A requirement for the Vgammal+ subset of peripheral gammadelta T cells in the control of the systemic growth of Toxoplasma gondii and infection-induced pathology. J Immunol. 2005, 175(12):8191-8199.
    
    19. Maccario R, Comoli P, Percivalle E, Montagna D, Locatelli F, Gerna G. Herpes simplex virus-specific human cytotoxic T-cell colonies expressing either gamma delta or alpha beta T-cell receptor: role of accessory molecules on HLA-unrestricted killing of virus-infected targets. Immunology. 1995, 85(1):49-56.
    
    20. Fujishima N, Hirokawa M, Fujishima M, Yamashita J, Saitoh H, Ichikawa Y, Horiuchi T, Kawabata Y, Sawada KI. Skewed T cell receptor repertoire of Vdeltal(+) gammadelta T lymphocytes after human allogeneic haematopoietic stem cell transplantation and the potential role for Epstein-Barr virus-infected B cells in clonal restriction. Clin Exp Immunol. 2007, 149(1):70-79.
    
    21. Sindhu ST, Ahmad R, Morisset R, Ahmad A, Menezes J. Peripheral blood cytotoxic gammadelta T lymphocytes from patients with human immunodeficiency virus type 1 infection and AIDS lyse uninfected CD4+ T cells, and their cytocidal potential correlates with viral load. J Virol. 2003, 77(3):1848-1855.
    
    22. Guo BL, Liu Z, Aldrich WA, Lopez RD. Innate anti-breast cancer immunity of apoptosis-resistant human gammadelta-T cells. Breast Cancer Res Treat. 2005,93(2):169-175.
    
    23. Liu Z, Guo BL, Gehrs BC, Nan L, Lopez RD. Ex vivo expanded human Vgamma9Vdelta2+ gammadelta-T cells mediate innate antitumor activity against human prostate cancer cells in vitro. J Urol. 2005, 173(5): 1552-1556.
    
    24. Viey E, Fromont G, Escudier B, Morel Y, Da Rocha S, Chouaib S, Caignard A.Phosphostim-activated gamma delta T cells kill autologous metastatic renal cell carcinoma. J Immunol. 2005, 174(3): 1338-1347.
    
    25. Corvaisier M, Moreau-Aubry A, Diez E, Bennouna J, Mosnier JF, Scotet E, Bonneville M, Jotereau F. V gamma 9V delta 2 T cell response to colon carcinoma cells. J Immunol. 2005,175(8):5481-5488.
    
    26. Chen J, Niu H, He W, Ba D. Antitumor activity of expanded human tumor-infiltrating gammadelta T lymphocytes. Int Arch Allergy Immunol. 2001,125(3):256-263.
    
    27. Kobayashi H, Tanaka Y, Yagi J, Toma H, Uchiyama T. Gamma/delta T cells provide innate immunity against renal cell carcinoma. Cancer Immunol Immunother. 2001,50(3):115-124.
    
    28. Raspollini MR, Castiglione F, Rossi Degl'innocenti D, Amunni G, Villanucci A,Garbini F, Baroni G, Taddei GL. Tumour-infiltrating gamma/delta T-lymphocytes are correlated with a brief disease-free interval in advanced ovarian serous carcinoma. Ann Oncol. 2005,16(4):590-596.
    
    29. Poupot M, Pont F, Fournie JJ. Profiling blood lymphocyte interactions with cancer cells uncovers the innate reactivity of human gamma delta T cells to anaplastic large cell lymphoma. J Immunol. 2005, 174(3):1717-1722.
    
    30. Meeh PF, King M, O'Brien RL, Muga S, Buckhalts P, Neuberg R, Lamb LS Jr.Characterization of the gammadelta T cell response to acute leukemia. Cancer Immunol Immunother. 2006, 55(9):1072-1080.
    
    31. Ferrarini M, Heltai S, Pupa SM, Mernard, S, Zocchi R. Killing of laminin receptor-positive human lung cancers by tumor infiltrating lymphocytes bearing gammadelta(+) t-cell receptors. J Natl Cancer Inst. 1996, 88(7):436-441.
    
    32. Scott E, Martinez LO, Grant E. Tumor recognition following Vgamma9Vdelta2 T cell receptor interactions with a surface F1-AT-Pase-related structure and apolipoprotein A-I.Immunity. 2005, 22(1): 71-80.
    
    33. Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T, Minato N, Toma H. Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother. 2007, 56(4):469-476.
    
    34. Chung CS, Watkins L, Funches A, Lomas-Neira J, Cioffi WG, Ayala A. Deficiency of gammadelta T lymphocytes contributes to mortality and immunosuppression in sepsis.Am J Physiol Regul Integr Comp Physiol. 2006, 291(5):R1338-1343.
    35. Andrew EM,Newton DJ,Dalton JE.Delineation of the function of a major gamma delta T cell subset during infection.J Immunol 2005,175(3): 1741-1750.
    
    36. Poles MA, Barsoum s, Yu W. Human immunodeficiency virus type 1 indues persistent changes in mucosal and blood gammadelta T cells despite suppressive therapy. J Virol.2003,77(19):10456-10467.
    
    37. Poceia F, Agrati C, Martini F. Antiviral reactivities of gammadelta T cells. Microbes and Infection. 2005, 7(3):518-528.
    
    38. Martini F, Urso R, Gioia C. Gammadelta T cell anergy in human immunodeficiency virus-infected persons with opportunistic infections and recovery after highly active antiretroviral therapy. Immunology. 2000, 100(4): 481-486.
    
    39. Bordon J, Evans PS, Propp N. Association between longer duration of HIV-suppressive therapy and partial recovery of the V gamma2 T cell receptor repertoire. J Infect Dis. 2004,189(8): 1482-1486.
    
    40. Otto M, Barfield RC, Iyengar R, Gatewood J, Muller I, Holladay MS, Houston J,Leung W, Handgretinger R. Human gammadelta T cells from G-CSF-mobilized donors retain strong tumoricidal activity and produce immunomodulatory cytokines after clinical-scale isolation. J Immunother. 2005, 28(1):73-78.
    
    41. Sciammas R, Bluestone JA. HSV-1 glycoprotein I-reactive TCR gamma delta cells directly recognize the peptide backbone in a conformationally dependent manner. J Immunol. 1998, 161(10):5187-5192.
    
    42. Engelmann I, Santamaria A, Kremsner PG, Luty AJ. Activation status of cord blood gamma delta T cells reflects in utero exposure to Plasmodium falciparum antigen. J Infect Dis. 2005, 191(10):1612-1622.
    
    43. Kawaguchi-Miyashita M, Shimada S, Kurosu H, Kato-Nagaoka N, Matsuoka Y,Ohwaki M, Ishikawa H, Nanno M. An accessory role of TCRgammadelta (+) cells in the exacerbation of inflammatory bowel disease in TCRalpha mutant mice. Eur J Immunol. 2001, 31(4):980-8.
    
    44. Robak E, Niewiadomska H, Robak T, Bartkowiak J, Blonski JZ, Wozniacka A, Pomorski L, Sysa-Jedrezejowska A. Lymphocyctes Tgammadelta in clinically normal skin and peripheral blood of patients with systemic lupus erythematosus and their correlation with disease activity. Mediators Inflamm. 2001, 10(4): 179-189.
    
    45. Hassan J, Yanni G, Hegarty V, Feighery C, Bresnihan B, Whelan A. Increased numbers of CD5+ B cells and T cell receptor (TCR) gamma delta+ T cells are associated with younger age of onset in rheumatoid arthritis (RA). Clin Exp Immunol. 1996,103(3):353-356.
    
    46. Buck KS, Foster EM.Expression of T cell receptor variable region families by bone marrow gammadelta T cells in patients with IgA Nephropathy. Clin Exp Immunol.2002, 127(3):527-553.
    
    47. Lahn M, Kanehiro A, Takeda K, Konowal A, O'Brien RL, Gelfand EW, Born WK.gammadelta T cells as regulators of airway hyperresponsiveness. Int Arch Allergy Immunol. 2001,125(3):203-210.
    
    48. Svensson L, Lilliehook B, Larsson R, Bucht A. gammadelta T cells contribute to the systemic immunoglobulin E response and local B-cell reactivity in allergic eosinophilic airway inflammation. Immunology. 2003, 108(1):98-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700