煤矿井巷电波传播理论和MIMO信道建模关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁波在煤矿井巷的传输不仅会因巷道壁的吸收引起大的衰耗,更主要的是会频繁地发生反射和散射现象,形成多径效应。研究巷道电波的传播特性,一直是无线通信领域的难点。综合波模理论和几何光学方法的特点,提出运用多波模理论分析巷道内无线信道的大尺度衰落,几何光学方法分析巷道内的小尺度衰落,并建立了巷道内MIMO信道模型。
     在研究大尺度衰落过程中发展了波模理论,提出了多波模理论:(1)推导了高次模的介质波导损耗、散射损耗、倾斜损耗、分支损耗以及天线插入损耗的各个公式;(2)给出了波模数目的计算方法及公式;(3)考虑基模和各个高次模的共同作用,进一步推导了多波模作用下的介质波导、散射、倾斜、分支的损耗公式;(4)增大电磁波传输频率,介质波导损耗趋于收敛值;(5)考虑散射与倾斜损耗,给出最佳频率选择参考公式,以及参考表。通过仿真分析电磁波的传输衰落以及电波强度的分布情况,与文献所述实验数据基本相符。
     运用几何光学方法――帐篷定律,分析了无线信道的小尺度衰落。(1)定义了帐篷第三定律,把原先的标量建模发展成为矢量建模;(2)建立了巷道内MIMO信道模型。(3)对巷道内MIMO信道相关性进行了公式推导。通过仿真分析在巷道内信道的角度扩展较小,电波传输有较强的方向性,角度功率谱接近于拉普拉斯分布;巷道内的MIMO信道的相关性与天线阵列的布置密切相关,天线阵列最佳位置是垂直于轴心。天线间距达到10l时,可认为信道不相关。仿真结果与实验数据相吻合。
     MIMO要求天线阵列单元之间有足够的间距,使相关系数较小,才能够提供有效的子信道。矿井巷道横截面大小是否能够满足此空间要求,是一个关键性的问题。本文运用数学理论——本征模理论,研究分析在隧道受限空间本身(排除工程设计的因素)能够提供的空间自由度,给出了巷道内空间自由度的计算公式,得到了隧道空间能够提供的信道容量上限。通过仿真分析,只要合理的设计通信体,巷道内可提供一定的空间自由度,在距离300m处时,空间自由度为3。
Electromagnetic waves will be attenuated greatly by the wall in mine tunnels, mostly come into multi-path because of continual reflections and dispersions. It is still a hard work to study the characteristics of Electromagnetic waves propagation in tunnels in the field of wireless communication. Wave-mode theory is going to study the large-scale fading and geometrical optics to the small-scale fading and build the MIMO channel model of wireless channel in tunnel in our work, considering their personal strongpoint.
     Medium-guide multi wave-mode theory is advanced from wave-mode theory during studying large-scale fading in our work.(1) Higher-mode loss formula owing to medium-guide, surface roughness, tilt, corner and antenna insertion are deduced.(2) Calculate the number of wave-modes in tunnels.(3)Various loss of above (1) covering overall modes is formularized because the fading is the result of not only fundamental mode but also every higher modes.(4) Medium-guide loss is converging to a value with increasing frequency. (5)Optimal frequency of propagation in tunnel is proposed by formula and tables according to the parameter of roughness and tilt. The simulation is well consistent with the experiment data of some conferences, about propagation fading and field strength distribution.
     The Tent Law theory part of geometrical optics is to analyze the small-scale fading of wireless channel. (1) Define the 3rd Tent Law to vector model from scalar model. (2)Build MIMO channel model in mine tunnel. (3) Formularize the correlation of MIMO channel of tunnel. By simulating according to above, azimuth spread is small, and power is close to the Laplacian distribution, in other words, propagation is directional strongly. Channel correlation has close relations with the placement of antenna array, which optimal placement is perpendicular to the axis of tunnel, and the correlation taken for zero with space between antennas to10l .Simulation of theory answers for the measured data.
     The effective sub channels are provided on condition of low correlation which requires enough space between antenna array elements of MIMO. Then it is a key that cross section of mine tunnel is large enough filled with antenna array. The eigen-mode theory is to analyze degrees of freedom provided by the tunnel space taking no account of engineering, thereby bring forward a formula calculating the degrees of freedom in tunnel which is the upper limit of MIMO capacity in tunnels. Tunnel space can provide some freedoms with designing communication volume reasonably. Degrees of freedom can reach to 3 with distance of 300 meters.
引文
[1]徐钊,武增,肖功宝.煤矿井下信息高速公路的研究[J].煤炭学报,1998,23(6):649-653
    [2]徐钊.光纤通信在我国煤矿的应用[J].通信世界, 1997(9):17-18.
    [3]张林.煤矿下一代网络体系结构和传输层关键技术研究[D].中国矿业大学2007.6
    [4]张林,徐钊,杨芬.矿井互逆双环光纤主干通信网研究[J].光通信技术,2007,32(4):8-11.
    [5]徐钊,郑红党,刘玉东.基于CAN总线的煤矿监测监控系统研究[J].中国矿业大学学报,2004,33(4):421-423
    [6] Xu Zhao, Zhai Wenyan, Cao Shanshan. New Certificate Status Verification Scheme Based on OCSP for Wireless Environment[C]. International Forum on Computer Science-Technology and Applications, 2009:195 - 198
    [7]保罗·德隆涅.王椿年,戴耀森,高怀珍等译.漏泄馈线和地下无线电通信[M].北京:人民邮电出版社, 1988.
    [8]郭进伟,武先利.数字矿山系统分析与建模[J].煤炭经济研究,2009,8:57-61.
    [9]吴立新,殷作如,钟亚平.再论数字矿山:特征、框架与关键技术[J].煤炭学报, 2003, 28(1): 1-7.
    [10]杨维,冯锡生,程时昕,孙继平.新一代全矿井无线信息系统理论与关键技术[J].煤炭学报,2004,29(4):506-509.
    [11] Mahmoud. S. Characteristics of Electromagnetic Guided Waves for Communication in Coal Mine Tunnels [J]. IEEE Transactions on communications, 1974, 22(10):1547-1555.
    [12]苏静明.矿井数字移动通信系统研究与设计[M].安徽理工大学.2007
    [13] Serhan Y, Sabih G, and Huseyin A. Underground mine communications: a survey [J]. IEEE Communications Surveys & Tutorials, 2009,11(3):125-142.
    [14]孙继平.矿井移动通信的特点及现有系统分析[J].煤矿自动化.1997,4:21-24.
    [15]冯新军,浅析PED系统在矿井中的应用[J].煤矿安全,2003年11月:40-43
    [16] Ghosh D., HongSik Moon, Sarkar. Design of through-the-earth mine communication system using helical antennas[C]. Antennas and Propagation Society International Symposium, 2008:1-4.
    [17] Barkand. T.D., Damiano. N.W., Shumaker. W.A. Through-the-Earth, Two-Way, Mine Emergency, Voice Communication Systems[C]. Industry Applications Conference, 2006. 41st IAS Annual Meeting. Conference Record of the 2006 IEEE:955-958
    [18]张清毅,朱建铭.透地通信信道特性的研究[J].电波科学学报,1993,14(1):36-40.
    [19]熊艳荣.低频透地通信系统机理研究[M].成都理工大学.2007..
    [20]李波,张毅.煤矿井下无线通信技术分析[J].科技信息,2008,8:311-312.
    [21] Seidel. D., Wait. J. Role of controlled mode conversion in leaky feeder mine communication systems [J]. IEEE Transactions on Antennas and Propagation , 1978, 26(5):690-695
    [22] Martin. D.J.R. Leaky-feeder radio communication: A historical review[C]. . IEEE 34th Vehicular Technology Conference,1984:25-30
    [23] Yang Xiao-dong; Jia Yan-fei; Chi Hai-yu; Research on the Resonance Points of Leaky Coaxial Cable for Mobile Communication[C] .Wireless Communications, Networking and Mobile Computing,2007.2007:1008-1011
    [24]张平方.无线电漏泄通信技术在煤矿井下的应用和展望[J].煤,2003,12(3):45-46.
    [25]王福增,于富强,王雪东,李郴,韩澎.矿井隧道漏泄通信系统的改进[J].通信技术,2007,40(11):123-126
    [26]周剑玲,李鹏.煤矿漏泄通信系统中漏泄电缆的选择与配置[J].华北科技学院学报,2007,4(3):23-26.
    [27]王文华,孙继平.矿井中频感应通信系统研究[J].煤矿自动,2000,4.2000:9-12.
    [28]孙继平,石庆冬.矿井感应通信机车插入损耗及专用线理论研究[J].电波科学学报,2001, 16(3):318-323.
    [29]赵跟党.煤矿井下小灵通无线通讯系统优化[J].电子设计工程,2009,17(5):47-49
    [30]陈文周.WiFi技术研究及应用[J].数据通信,2008,2:14-17
    [31]蒋峰,张凌涛,贺超英.WiFi技术在矿井远程监控系统中的应用[J].煤矿安全,2010,3:62-65
    [32] Zhang Xiaoguang, Tian Zhijian, Zheng Hongdang, Zhu Liping, Ma Xiao. Performance of adaptive OFDM transceiver in wireless channels with loading algorithm[C]. Intelligent Computing and Intelligent Systems, 2009. ICIS 2009: 13- 16
    [33] Wang Wenxing, Yang Gongxun, Wang Wenjing. A new communication system based on OFDM in coal mine underground[C]. Microwave Conference Proceedings, 2005. APMC 2005
    [34] Da Silva, A.V.B. Nakagawa, M. Performance investigation of OFDM communication systems in tunnels[C]. Vehicular Technology Conference, 1999. VTC 1999: 2908– 2912
    [35]张靖,姚善化.基于OFDM技术的矿井通信抗多径衰落方案的研究.煤炭工程,2009,12:22-25.
    [36]刘晓阳,程来奇,孙继平.超宽带技术在矿井通信中的应用.中国矿业,2006,15(4):52-55.
    [37]彭丽,孙彦景,钱建生.UWB矿井巷道无线信道模型.华中科技大学学报,2008,36(1):247-251.
    [38] Volos. H.I., Anderson C.R., Headley W.C., Buehrer R.M. Da Silva C.R.C., Nieto A. Preliminary UWB Propagation Measurements in an Underground Limestone Mine[C]. Global Telecommunications Conference, 2007. GLOBECOM '07: 3770– 3774.
    [39] De Angelis A., Dionigi M., Moschitta A., Carbone P. A Low-Cost Ultra-Wideband Indoor Ranging System [J] .IEEE Transactions on Instrumentation and measurement, 2009, 58(12):3935-3943.
    [40]哈米德.贾法哈尼著,任品毅译.空时编码的理论与实践[M].西安:西安交通大学出版社.2007.7
    [41] Telatar E. Capacity of multi-antenna Gaussian channels [J].European Transactions on Telecommunications.1999,10(6).585-595.
    [42] Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas [J].Wireless Personal Communications,1998,6(3):311-335.
    [43] Tarokh V, Seshadri N , Calderbank A R. Space-time codes for high data wireless communication: Performance criteria and code construction[J].IEEE Transactions Information Theory , 1998,44(2):744-765.
    [44] Su H-J, Geraniotis E. Space-time turbo codes with full antenna diversity [J].IEEE Transactions on Communications, 2001,49(1):47-57.
    [45] Stefanov A, Duman T M. Turbo Coded modulation for systems with transmit and receive diversity over block fading channels: System model, decoding approaches, and practical considerations[J].IEEE Journal on Selected Areas in Communications, 2001, 19(5):958-968
    [46] Abe T., Tomisato S., Matsumoto T. A MIMO turbo equalizer for frequency-selective channels with unknown interference. IEEE Transactions on Vehicular Technology, 2003,52(3): 476 - 482.
    [47] Hochwald S B.M. Brink S T. Achieving near-capacity on a multiple antenna channel [J].IEEE Transactions on Communications, 2003,51(3):389-399.
    [48] Lin Xiaotong and Blum R S. Guidelines for serially concatenated space-time code design in Raleigh fading channels[C].IEEE Workshop on Signal Processing Advances in Wireless Communications, Taiwan, China, 2001, 1:247-250.
    [49] Marinkvic S,Vucetic B,Ushirokawa A. Space-time iterative and multistage receiver structures for CDMA mobile communications System[J].IEEE Journal on Selected Areas in Communications,2001, 44(8),:1451-1458
    [50] Foschini G J, Golden G D, Valenzuela R A, Woniansky P W. Simplified processing for high spectral efficiency wireless communications systems[J].IEEE Journal on Selected Areasin Communications,,1999,17(11):1841-1852
    [51] Golden G D,Foschini G J, Valenzuela R A , Woniansky P W. Detection algorithms and initial laboratory results using thd V-BLAST space-time communications architecture [J].Electronics Letters,1999,35(1):14-15
    [52] Woniansky P W., Foschini G J, Golden G D, Valenzuela R A .V-BLAST: An architecture for realizing very high data rates over the rich scattering wireless channel[C].IEEE International Symposium on Signals, Systems, and Electronics,1998,1:295-300.
    [53] Gesbert D., Shafi M., Da-shan Shiu, Smith P.J., Naguib A. From theory to practice: an overview of MIMO space-time coded wireless systems [J]. IEEE Journal on Selected Areas in Communications ,2003,21(3): 281 - 302
    [54] Nabar R.U., Bolcskei H., Paulraj A.J. Diversity and outage performance in space-time block coded Ricean MIMO channels [J]. IEEE Transactions on Wireless Communications, 2005,4(5): 2519 - 2532
    [55] Hsiao-Hwa Chen, Yu-Ching Yeh, Qi Bi, Abbas Jamalipour. On a MIMO-based open wireless architecture: space-time complementary coding [J]. IEEE Communications Magazine ,2007,45(2): 104 - 112
    [56] Yeong-Luh Ueng,Chia-Jung Yeh,Mao-Chao Lin,Chung-Li Wang. Turbo coded multiple-antenna systems for near-capacity performance [J]. IEEE Journal on Selected Areas in Communications, 2009,27(6): 954 - 964
    [57] Foschini G J., Gans M. On the limits of wireless communication in a fading environment when using multiple antennas [J].Wireless Personal communication, 1998,6(3):311-315.
    [58] Chizhik D, Foschini G.J., Gans M.J., Valenzuela R.A. Keyholes, correlations and capacities of multi element transmit and receive antennas [J]. IEEE Transactions on Wireless Communications,2002,1(2): 361 - 368
    [59] Kermoal J.P., Schumacher L., Mogensen P.E. Pedersen, K.I. Experimental investigation of correlation properties of MIMO radio channels for indoor Pico cell scenarios[C]. Vehicular Technology Conference, 2000: 14– 21
    [60] Hammoudeh A., Kermoal J.-P., Sanchez M.G. Coherence bandwidth measurements in an indoor microcell at 62.4 GHz [J]. Electronics Letters,1998,34(5) : 429 - 431
    [61] Kermoal J.P., Mogensen P.E., Jensen S.H., Andersen J.B., Frederiksen F., Sorensen T.B., Pedersen, K.I.. Experimental investigation of multipath richness for multi-element transmits and receives antenna arrays[C]. Vehicular Technology Conference Proceedings, 2000. VTC 2000, Tokyo: 2004 - 2008
    [62] Kermoa J.P., Schumacher L., Pedersen K.I., Mogensen P.E., Frederiksen F. A stochastic MIMO radio channel model with experimental validation. IEEE Journal on Selected Areas in Communications ,2002,20(6):1211-1226
    [63] Gesbert D., Bolcskei H., Gore D.A., Paulraj A.J. Performance evaluation for scattering MIMO channel models[C].Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, 2000. 2000: 748 - 752
    [64] Gesbert D., Bolcskei H., Gore D.A., Paulraj A.J. Outdoor MIMO wireless channels: models and performance prediction [J] IEEE Transactions on Communications, 2002,50(12): 1926– 1934
    [65] Svantesson T. A double-bounce channel model for multi-polarized MIMO systems[C]. Vehicular Technology Conference 2002.2002: 691 - 695
    [66] Svantesson T., Jensen M.A., Wallace J.W. Analysis of electromagnetic field polarizations in multiantenna systems [J]. IEEE Transactions on Wireless Communications, 2004,3(2):641 - 646
    [67] Svantesson T., Swindlehurst A.L. A performance bound for prediction of MIMO channels [J]. IEEE Transactions on Signal Processing, 2006,54(2): 520 - 529
    [68]杨大成著.移动传播环境-理论基础、分析方法和建模技术[M].北京:机械工业出版社.2003,8
    [69] Zajic A.G., Stuber G.L. Three-dimensional modeling and simulation of wideband MIMO mobile-to-mobile channels[J].IEEE Transactions on Wireless Communications , 2009,8(3): 1260 - 1275
    [70] Cheng-Xiang Wang, Xuemin Hong, Xiaohu Ge, Xiang Cheng, Gong Zhang, Thompson J. Cooperative MIMO channel models: A survey [J]. IEEE Communications Magazine. 2010: 80– 87
    [71] Karedal J., Almers P., Johansson A., Tufvesson F., Molisch, A. A MIMO channel model for wireless personal area networks [J] .IEEE Transactions on Wireless Communications , 2010,9,(1): 245 - 255
    [72]黄韬,袁超伟,杨睿哲,刘鸣.MIMO相关技术与应用.北京:机械工业出版社.2006.10
    [73]康桂华著.MIMO无线通信原理及应用[M].北京:电子工业出版社.2009,7
    [74] Alameda Hemanodez E, Melernon D.C. Orozeo-Lugo A.G., Lera M., Ghogho M. Frame/training sequence synchronization and DC-offset remove for (data-dependent) superimposed training based channel estimation[J].IEEE Transactions on Signal Processing, 2007,55(6):2557-2569
    [75]张骞.MIMO天线选择技术研究[D].电子科技大学.2008
    [76]颜罡,杜正伟,王蔷,龚克.MIMO天线方向图辐射鲁棒性设计[J].微波学报,2007,23(6):10-16
    [77] Molisch A.F, Win M.Z.MIMO Systems with antenna selection[J].IEEE Microwave Magazine ,2004,5(1):46-56
    [78] Dudley D.G., Lienard M., Mahmoud S.F., Degauque P. Wireless propagation in tunnels [J]. IEEE Antennas and Propagation Magazine.2007,49(2): 11 - 26
    [79] Lienard M. MIMO channels in tunnels: experimental approach and stochastic model[C]. 10th International Conference on Telecommunications.2003: 1531 - 1535 vol.2
    [80] Pardo J.M.M., Lienard M., Degauque P. Propagation channel and MIMO capacity in arched tunnels[C]. 7th International Caribbean Conference on Devices, Circuits and Systems, 2008. (ICCDCS 2008. l).2008: 1 - 4
    [81] Molina-Garcia-Pardo J.-M, Lienard M., Degauque, P., Simon E., Juan-Llacer L. On MIMO Channel Capacity in Tunnels [J]. IEEE Transactions on Antennas and Propagation, 2009,57(11): 3697– 3701
    [82] Lienard M., Degauque P., Degardin D., Baudet J. Theoretical and experimental analysis of the channel capacity enhancement based on MIMO techniques in subway tunnels[C]. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, : 2002: 1326 - 1329 vol.3
    [83] Lienard M., Degauque P., Baudet J., Degardin D. Investigation on MIMO channels in subway tunnels [J]. IEEE Journal on Selected Areas in Communications, 2003,21(3) : 332 - 339
    [84] Lienard M., Degauque P. MIMO communication in tunnels: influence of the range and of the tunnel geometry on system performances[C]. 1st International Symposium on Wireless Communication Systems, 2004: 290– 293
    [85] Molina-Garcia-Pardo, J.-M., Lienard M., Degauque P., Simon, E., Juan-Llacer L, On MIMO Channel Capacity in Tunnels [J]. IEEE Transactions on Antennas and Propagation , 2009,57(11): 3697 - 3701
    [86] Cocheril Y., Combeau P. Berbineau M., Pousset, Y. MIMO propagation channel characteristics in tunnels[C].7th International Conference on Telecommunications,2007: 1 - 6
    [87] Cocheril Y., Langlais C., Berbineau M., Moniak G.; Advantages of Simple MIMO Schemes for Robust or High Data Rate Transmission Systems in Underground Tunnels[C] .Vehicular Technology Conference 2008: 1 - 5
    [88] Boukantar Kamel, Langlais Charlotte, Cocheril Yann, Berbineau Marion. Impact of spatial correlation on orthogonal precoding for MIMO transmissions in tunnels[C].Intelligent Transport Systems Telecommunications,(ITST 2009).2009: 170– 175
    [89] Loyka S. Multiantenna capacities of waveguide and cavity channels [J]. IEEE Transactions on Vehicular Technology ,2005,54(3): 863 - 872
    [90] Molina-Garcia-Pardo J.-M., Lienard M., Degauque P., Garcia-Pardo C., Juan-Llacer L. MIMO Channel Capacity With Polarization Diversity in Arched Tunnels[J] . IEEE Antennas and Wireless Propagation Letters ,2009,8: 1186– 1189
    [91] Molina-Garcia-Pardo J.-M., Rodriguez J.-V., Juan-Llacer, L. MIMO capacity at 2.1 GHz while entering tunnels[C].Vehicular Technology Conference, 2004.2004: 14 - 16 Vol. 1
    [92] Molina-Garcia-Pardo J.-M., Rodriguez J.-V., Juan-Llacer L. MIMO Measurements in a Small Tunnel[C]. 3rd International Symposium on Wireless Communication Systems.2006: 510 - 511
    [93] Izquierdo B., Capdevila S., Jofre L., Romeu J. Evaluation of MIMO capacity in train tunnels[C]. Antennas and Propagation Society International Symposium, 2007: 1365
    [94] Poitau G., Kouki A. Analysis of MIMO capacity in waveguide environments using practical antenna structures for selective mode excitation[C].Canadian Conference on Electrical and Computer Engineering, 2004,1: 349 - 352
    [95] Rong-Yu Chao, Kah-Seng Chung. A low profile antenna array for underground mine communication[C] .Conference Proceedings Singapore (ICCS '94) ,1994,2.: 705 - 709.
    [96]康桂华.无线MIMO信道的模型、容量、估计和实现算法的研究[D].浙江大学,2004
    [97]杨大成等.现代移动通信中的先进技术[M].北京:机械工业出版社.2005.7
    [98]张申.帐篷定律与隧道无线数字通信信道建模[J].通信学报,2002,23(11):41~50
    [99] Kasashima Y., Hirai J. Analysis of Propagation Characteristics of Radio Waves in Tunnels[C]. IEEE International Symposium on Electromagnetic Compatibility, 2003: 664 - 667 Vol.1
    [100] Xuexia Yang,Yimin Lu. Propagation Characteristics of Millimeter Wave in Circular Tunnels[C] . 7th International Symposium on Antennas, Propagation & EM Theory, 2006: 1 - 5
    [101] Youngmoon Kim, Minseok Jung, Bomson Lee. Analysis of radio wave propagation characteristics in rectangular road tunnel at 800 MHz and 2.4 GHz[C]. Antennas and Propagation Society International Symposium, 2003: 1016 - 1019 vol.3
    [102] Emslie A, Lagace R, Strong P. Theory of the propagation of UHF radio waves in coal mine tunnels [J]. IEEE Transactions on Antennas and Propagation, March, 1975,23(2):192-205.
    [103]斯耐德著,周幼威等译.光波导理论.北京:清华大学出版社,1991
    [104]余守宪.导波光学物理基础.北京:北方交通大学出版社.2002
    [105]秦秉坤,孙雨男.介质光波导及其应用.北京:北京理工大学出版社.1991
    [106]成凌飞,孙继平.矩形隧道围岩电参数对电磁波传播的影响[J].电波科学学报, 2007,22(3):513-517
    [107]杨维,李滢,孙继平.类矩形矿井巷道中UHF宽带电磁波统计信道建模[J].煤炭学报,2008,33(4):467-472
    [108]孙继平,成凌飞,张长森.电导率对巷道中电波传播的影响[J].辽宁工程技术大学学报, 2007,26(1):96-98
    [109]孙继平,张宏炜,张龙.矩形弯曲隧道中电磁波的传输特性分析[J].工矿自动化,2007,4:4-6
    [110]孙继平,李继生,雷淑英.煤矿井下无线通信传输信号最佳频率选择[J].辽宁工程技术大学学报,2005,24(3):378-380
    [111]孙继平,成凌飞.矩形隧道中电磁波传播模式的分析[J].电波科学学报, 2005,20(4):522-525
    [112] Dudley D.G., Lienard M., Mahmoud S.F., Degauque P. Wireless propagation in tunnels [J]. IEEE Antennas and Propagation Magazine, 2007,49(2): 11 - 26
    [113]张申.隧道无线电射线传输规律的研究[J].电波科学学报, 2002,17(2):114-119
    [114]张跃平,郑国莘,张文梅,盛剑桓.隧道中UHF窄带无线电波传播信道的特性[J].通信学报, 1998,19(12):47-53
    [115]孙继平,成凌飞.截面尺寸对矩形隧道中电磁波传播的影响[J].中国矿业大学学报,2005,34(5):596~599
    [116]孙继平.矿井无线传输的特点[J].煤矿设计,1999,4:20-22.
    [117]李永华,张瀚峰,龚萍,吴伟陵.频率选择性MIMO信道几何模型及容量分析[J].北京邮电大学学报,2007,30(5):86-90
    [118]罗飞,杜明辉.一种改进的椭圆散射空-时无线信道模型[J].电子学报,2006,34(12):2200-2203.
    [119]高凯,张尔扬.MIMO信道的三维互相关模型及其相关特性分析[J].国防科技大学学报,2006,28(6):63-67.
    [120]题正义,贺爱萍,霍丙杰.井下巷道无线电波传输规律的matlab仿真分析[J].煤矿安全,2008,8:99-101
    [121]赵华,郭平文,李传岗,戴树良.基于Ray Tracing理论的海洋信道分析方法[J].舰船电子工程,2009,29(5):127-130
    [122]杨维,牛丽.多音CDMA调制在矿井巷道中通信性能分析[J].中国矿业大学学报,2009,38(1):56-61
    [123]刘平,李国民.一种用于井下人员定位的TOA定位算法研究[J].西安科技大学学报.2007,27(3):439-442
    [124]张申.煤矿井下综合业务数字网网络结构及其无线接入关键技术的研究[D].徐州:中国矿业大学,2001.
    [125]李晶.井下巷道超高频无线电波传播及定位算法的研究[D],天津:天津大学,2006.
    [126]张跃平,张文梅,盛剑桓,王永强.宽带UHF无线电波在隧道中的传播信道的特性[J].通信学报,1998,19(8):61-66.
    [127] Nasr A., Molina, J.M., Lienard, M.; Degauque, P. Optimization of Antenna Arrays for Communication in Tunnels[C].3rd International Symposium on Wireless Communication Systems .2006: 522– 524
    [128] Lienard M., Baudet J., Degardin D., Degauque P. Capacity of multi-antenna array systems in tunnel environment[C]. IEEE 55th Vehicular Technology Conference,2002:552-555
    [129] Molina-Garcia-Pardo J., Lienard M., Degauque P., Dudley D.G., Juan-Llacer L. Interpretation of MIMO Channel Characteristics in Rectangular Tunnels from Modal Theory [J]. IEEE Transactions on Vehicular Technology,2008,57(3):1974-1979
    [130]伍裕江.多天线通信中的天线与信道空间域研究[D].电子科技大学,2007.
    [131] Da-Shan Shiu, Foschin G.J., Gans M.J., Kahn J.M. Fading correlation and its effect on the capacity of multielement antenna systems[J]. IEEE Transactions on Communications, 2000,48(3): 502 - 513
    [132] Ada S Y Poon, Robert W .Brodersen, David N C Tse. Degrees of Freedom in Multiple-Antenna Channels: A Signal Space Approach [J]. IEEE Transactions on Information Theory,2005,51(2): 523-536
    [133] Ovidio M. Bucci, Giorgio Franceschetti. On the degrees of freedom of scattered Fields[J].IEEE Transactions on Antennas and Propagation,1989,37(7):919-926
    [134] Migliore M D. On the Role of the Number of Degrees of Freedom of the Field in MIMO Channels [J]. IEEE Transactions on Antennas and propagation,2006,54(2): 620-628
    [135] Leif Hanlen, Minyue Fu. Wireless Communication Systems with Diversity: A Volumetric Model [J]. IEEE Transactions on Wireless Communication, 2006,5(1): 133-142
    [136] Xiao Peng Yang, Qian Chen, Kunio Sawaya. Effect of Antenna Locations on Indoor MIMO Systems[J].IEEE Antennas and Wireless Propagation Letters, 2007,6:165-167

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700