梯度异质材料实体优化设计及成型规划方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梯度异质材料实体是一种由多相组分材料光滑过渡形成的功能材料零件,其由于能够同时利用多相组分材料的优良属性而在航空航天、过程装备、光学工程、生物医学工程等领域获得了广泛的应用,以分层制造为特点的快速成型技术的兴起使得低成本、大批量制备梯度异质材料实体成为可能。在这样的背景下,梯度异质材料实体的开发越来越受到专家和学者的关注,这一研究热点涉及到数学、材料学、计算机科学等多个学科,论文系统地研究了梯度异质材料实体的优化设计和制造过程规划的理论和方法,完善了基于有限元方法的梯度异质材料实体的计算机辅助开发流程,具有重要的理论和实践意义。
     针对温度场中产生热量最小化以及温度最均匀化的材料设计问题,对温度场中的材料热传递性能进行了有限元分析,深入研究了温度场中的材料分布优化的插值模型、设计目标和约束条件,提出了基于单纯形法和序列线性规划的优化计算模型,设计了基于海维赛函数的体积分数过滤器来保证计算的数值稳定性,并对平面单元和壳单元的热传递行为进行了分析和探讨,通过实例验证了计算模型的可行性和有效性。
     传统的材料分布优化所采用的均质单元不能有效地描述连续分布的异质材料,在结构场中提出了基于梯度单元的梯度异质材料实体有限元表达模型,得到在设计空间中连续的材料体积分数函数,为了在优化中体现设计者的意图,提出了基于自适应设计变量下限更新算法对材料的梯度进行局部控制,在有限元网格节点的邻域内实施该算法,结合移动渐近线算法将优化问题转化为一序列的优化子问题进行迭代求解,提出了统一的梯度异质材料实体优化设计方法,通过实例验证了该梯度材料轻量化设计方法的有效性和实用性。
     对具有多个冲突的设计目标的材料分布优化问题的特点进行了分析,探讨了异质材料的遗传算法编码方式,针对材料分布优化设计变量的高维特点,提出了基于外部存档式微遗传算法的梯度材料进化方法,通过拉丁超立方抽样和随机排列技术形成初始种群,构造外部存档来保存进化中的精英个体,基于等均值最近邻搜索剪枝方法确定精英个体保留和删除的原则,运用模拟二进制交叉和多项式变异技术对实值编码的个体实施遗传操作,建立了多目标材料分布优化遗传算法的模型,通过实例验证了该模型的可行性和适用性。
     为了充分利用计算机软硬件资源提高设计和计算的效率,分析和探讨了梯度异质材料实体优化算法的并行化方案,在单目标优化中对有限元网格进行区域分解,构造预处理共轭梯度方法迭代求解实体平衡方程,将计算任务按照子区域分配至并行的进程分别处理,在多目标优化中采用锥形分割模型对遗传算法的搜索空间进行分解,并将计算任务分配至并行的进程,最终汇总结果,提出了基于消息传递接口的梯度异质材料实体优化设计的并行计算方法,通过实例验证了该方法。
     为了对梯度异质材料实体的设计环节和制造环节进行数据集成和并行,提出了基于分层梯度有限元方法的实体制造信息模型,运用标准三角化语言将实体的几何设计模型转换为平面三角形面片格式,采用可扩展标记语言表达实体的几何信息和材料信息,运用均匀切片技术将实体几何模型分层,根据材料的分布特点选择和设计扫描模式,在取样点通过形函数对几何和材料进行插值,提出了面向激光近净成型技术的梯度异质材料实体的制造过程规划方法,并结合仿真实例验证了该方法的有效性。
A graded heterogeneous object is a type of functional material part composed of multi-phasematerials which transition smoothly in the design space. Because they are capable of using desirableproperties of different constituent materials simultaneously, graded heterogeneous objects have beenused in a wide range of applications in aeronautics and astronautics, process equipments, opticalengineering and biomedical engineering etc. The emergence of rapid prototyping technologies whichare characterized by layered manufacturing has made it possible to fabricate graded heterogeneousobjects with low cost and high volume. In this context, the development of graded heterogeneousobjects, which involves mathematics, material science and computer science, has received increasingattention from specialists and scholars. This dissertation investigates the theories and methodologiesof the optimal design and manufacturing process planning of graded heterogeneous objectssystematically. Computer aided development of graded heterogeneous objects based on finiteelement method is perfected, which has both theoretical and practical significance.
     Aiming at designing material structure that generate least heat and most uniform temperature inthe temperature field, heat transfer performance of material in temperature field is analyzed withfinite element method. The interpolation model, design objective and constraint conditions for theoptimization of material distribution are studied thoroughly. An optimization model based onsimplex method and sequential linear programming is proposed. Volume fraction filters based onHeaviside function are designed to ensure the numerical stability. The thermal behavior of planeelements and shell elements in heat transfer is analyzed and discussed. The feasibility andeffectiveness of the proposed method are verified with examples.
     Traditional homogeneous elements used in material distribution optimization are not capable ofeffectively describing heterogeneous objects with continuously distributing materials. Arepresentation model of graded heterogeneous object based on graded elements is proposed in thestructural field, and continuous volume fraction functions of constituent materials in the design spaceare obtained. An algorithm for locally controlling the material gradient by means of adaptivelyupdating the lower limits of design variables is proposed and applied in the neighborhood of the gridnodes. The intent of the designer for the optimization is embodied in this way. The optimizationformulation is transformed into a sequel of sub-problems by method of moving asymptotes andsolved iteratively. A unified methodology for the optimal design of graded heterogeneous objects isproposed. An example is given to demonstrate the applicability and effectiveness of the proposedmethodology for designing lightweight heterogeneous objects.
     The characteristics of material distribution optimization with conflicting objectives areanalyzed. The encoding of heterogeneous object for genetic algorithm is discussed. Because material distribution optimization has a high-dimension design variable vector, a graded material evolutionmethod based on Archive-based Micro Genetic Algorithm (AMGA) is proposed accordingly. Latinhypercube sampling and random shuffle method are used to generate the initial population. Anexternal population is created to store the elite solutions during the evolution. The principle forkeeping and deleting solutions in the external population based on equal average nearest neighborsearch is established. Simulated binary crossover and polynomial mutation are implemented for theoperations of the solutions encoded with real numbers. The model for the multi-objective geneticalgorithm for material distribution optimization is proposed, an example is given to verify thefeasibility and applicability of the proposed model.
     In order to make full use of both the software and hardware of the available resources toenhance the efficiency of design and computing, the scheme for the parallelization of materialdistribution optimization is analyzed and discussed. In single objective optimization, the finiteelement mesh is decomposed into sub-domains, preconditioned conjugate gradient method isconstructed on the sub-domains and then the equilibrium equation is solved with it. Computing tasksare distributed to the parallel processes in accordance with the sub-domains. In multi-objectiveoptimization, cone separation method is used to decompose the search space of the genetic algorithm.Computing tasks are distributed to the parallel processes in accordance with the cones and the resultsare collected in the end from the processes. Parallel computing methodology for material distributionoptimization based on message passing interface is proposed and validated with examples.
     In order to integrate the design and manufacturing of graded heterogeneous objectsconcurrently, solid manufacturing information model is proposed based on layered graded finiteelements. Standard triangulated language is used to transform the geometric design model intoplanar triangular facets. Extensible markup language is used to represent both the geometric andmaterial information. Uniform slicing method is used to divide the geometric model of the solid intolayers. Scanning pattern is chosen or designed in line with the characteristics of material distribution.Geometric and material data on sampling points are interpolated with shape functions. Amethodology of manufacturing process planning for graded heterogeneous objects conforming tolaser engineered net shaping technology is proposed. Simulation results are given to verify theeffectiveness of the methodology.
引文
[1]Siu YK, Tan ST. Modeling the material grading and structures of heterogeneous objectsfor layered manufacturing[J]. Computer-Aided Design,2002,34(10):705-716.
    [2]吴晓军,刘伟军,王天然.三维CAD零件异质材料建模方法[J].机械工程学报,2004,40(05):111-117.
    [3]Moore JJ, Feng HJ. Combustion synthesis of advanced materials: Part II. Classification,applications and modelling[J]. Progress in Materials Science,1995,39(4–5):275-316.
    [4]Koizumi M. FGM activities in Japan[J]. Composites Part B: Engineering,1997,28(1–2):1-4.
    [5]Shon I-J, Munir ZA. Synthesis of TiC, TiC-Cu Composites, and TiC-Cu Functionally GradedMaterials by Electrothermal Combustion[J]. Journal of the American Ceramic Society,1998,81(12):3243-3248.
    [6]朱信华,孟中岩.梯度功能材料的研究现状与展望[J].功能材料,1998,29(02):10-16.
    [7]Kieback B, Neubrand A, Riedel H. Processing techniques for functionally gradedmaterials[J]. Materials Science and Engineering: A,2003,362(1–2):81-106.
    [8]张幸红,韩杰才,董世运,等.梯度功能材料制备技术及其发展趋势[J].宇航材料工艺,1999,29(02):1-5.
    [9]Hu Y. Optimal design for additive manufacturing of heterogeneous objects[D]. Clemson:Clemson University,2005.
    [10]Griffith ML, Halloran JW. Freeform Fabrication of Ceramics via Stereolithography[J].Journal of the American Ceramic Society,1996,79(10):2601-2608.
    [11]魏增敏,张永忠,高士友,等.激光快速成形技术的发展及其在功能梯度材料制备上的应用[J].材料导报,2005,19(05):77-80.
    [12]Arcaute K, Mann B, Wicker R. Stereolithography of Three-Dimensional BioactivePoly(Ethylene Glycol) Constructs with Encapsulated Cells[J]. Annals of BiomedicalEngineering,2006,34(9):1429-1441.
    [13]Morvan SM. MMa-Rep, a representation for multimaterial solids[D]. Clemson: ClemsonUniversity,2002.
    [14]Safari A. Novel piezoelectric ceramics and composites for sensor and actuatorapplications[J]. Materials Research Innovations,1999,2(5):263-269.
    [15]Kou XY, Tan ST. Heterogeneous object design: an integrated CAX perspective[M].Heterogeneous objects modelling and applications; Springer-Verlag.2008:42-59.
    [16]周曦亚,方培育.现代陶瓷刀具材料的发展[J].中国陶瓷,2005,41(01):51-53.
    [17]Vanmeensel K, Anné G, Jiang D, et al. Processing of a Graded Ceramic Cutting Tool inthe Al2O3-ZrO2-Ti (C, N) System by Electrophoretic Deposition[J]. Materials Science Forum,2005,492:705-710.
    [18]朱建国,孙小松,李卫.电子与光电子材料[M].北京:国防工业出版社,2007.
    [19]Kenta T, Jing-Feng L, Shohei Y, et al. Design and fabrication of functionally gradedPZT/Pt piezoelectric bimorph actuator[J]. Science and Technology of Advanced Materials,2002,3(2):217.
    [20]林文松.功能梯度材料涂层制备技术的研究进展[J].表面技术,2004,33(04):7-9.
    [21]Mortensen A, Suresh S. Functionally graded metals and metal-ceramic composites: Part1Processing[J]. International Materials Reviews,1995,40(6):239-265.
    [22]金延.用于电极中的梯度材料[J].金属功能材料,2002,(03):33.
    [23]Umemoto A, Hayashi K, Nakashima K, et al. Mo-SiO2Functionally Graded Materials forHigh Intensity Discharge Lamp[M]. Developments and Applications of Advanced EngineeringCeramics and Composites; John Wiley&Sons, Inc.2006:53-58.
    [24]Pompe W, Worch H, Epple M, et al. Functionally graded materials for biomedicalapplications[J]. Materials Science and Engineering: A,2003,362(1–2):40-60.
    [25]朱景川,储成林,尹钟大.羟基磷灰石/钛生物功能梯度材料种植体与骨的结合强度[J].稀有金属材料与工程,2003,32(06):432-435.
    [26]Kou XY, Tan ST. Heterogeneous object modeling: A review[J]. Computer-Aided Design,2007,39(4):284-301.
    [27]Wu Z, Soon SH, Feng L. NURBS-based volume modeling: proceedings of the Internationalworkshop on volume graphics, Swansea,[C].1999.
    [28]Chandru V, Manohar S, Prakash CE. Voxel-Based Modeling for Layered Manufacturing[J].IEEE Comput Graph Appl,1995,15(6):42-47.
    [29]Vinod K, Sanjay R, Mark C, et al. Representation and Processing of HeterogeneousObjects for Solid Freeform Fabrication [M].2008.
    [30]Shin KH, Dutta D. Constructive Representation of Heterogeneous Objects[J]. Journalof Computing and Information Science in Engineering,2001,1(3):205-217.
    [31]吴晓军,刘伟军,王天然,等.距离场定义下异质材料CAD信息建模方法[J].计算机辅助设计与图形学学报,2005,17(02):313-319.
    [32]寇欣宇,王以忠,彭一准.基于非流形几何与特征树的异质材料实体可视化方法[J].计算机辅助设计与图形学学报,2008,20(04):532-539.
    [33]Shin KH, Cheong SK. FEA-based design and fabrication of functionally gradedmaterials[J]. Key Engineering Materials,2006,326-328:1681-1684.
    [34]Yang P, Qian X. A B-spline-based approach to heterogeneous objects design andanalysis[J]. Computer-Aided Design,2007,39(2):95-111.
    [35]Prager W, Rozvany G. Optimization of structural geometry[J]. Dynamical systems,1977:265-293.
    [36]Bends e MP, Kikuchi N. Generating optimal topologies in structural design using ahomogenization method[J]. Computer Methods in Applied Mechanics and Engineering,1988,71(2):197-224.
    [37]王晓明,刘震宇,郭东明.基于均匀化理论的微小型柔性结构拓扑优化的敏度分析[J].中国机械工程,1999,10(11):72-74.
    [38]Huang J, Fadel GM. Heterogeneous flywheel modeling and optimization[J]. Materials&Design,2000,21(2):111-125.
    [39]Bends e MP, Sigmund O. Material interpolation schemes in topology optimization[J].Archive of Applied Mechanics (Ingenieur Archiv),1999,69(9):635-654.
    [40]Rozvany GIN, Zhou M, Birker T. Generalized shape optimization withouthomogenization[J]. Structural and Multidisciplinary Optimization,1992,4(3):250-252.
    [41]Eschenauer HA, Olhoff N. Topology optimization of continuum structures: A review[J].Applied Mechanics Reviews,2001,54(4):331-390.
    [42]Sigmund O. A99line topology optimization code written in Matlab[J]. Structural andMultidisciplinary Optimization,2001,21(2):120-127.
    [43]Tcherniak D, Sigmund O. A web-based topology optimization program[J]. Structural andMultidisciplinary Optimization,2001,22(3):179-187.
    [44]Pedersen C, Allinger P. Industrial Implementation and Applications of TopologyOptimization and Future NeedsIUTAM Symposium on Topological Design Optimization of Structures, Machines andMaterials[M]//BENDS E M P, OLHOFF N, SIGMUND O. Springer Netherlands.2006:229-238.
    [45]罗震,陈立平,张云清,等.多工况下连续体结构的多刚度拓扑优化设计和二重敏度过滤技术[J].固体力学学报,2005,26(01):29-36.
    [46]Xie YM, Steven GP. A simple evolutionary procedure for structural optimization[J].Computers& Structures,1993,49(5):885-896.
    [47]Querin OM, Steven GP, Xie YM. Evolutionary structural optimisation (ESO) using abidirectional algorithm[J]. Engineering Computations,1998,15(8):1031-1048.
    [48]Liang QQ, Steven GP. A performance-based optimization method for topology design ofcontinuum structures with mean compliance constraints[J]. Computer Methods in AppliedMechanics and Engineering,2002,191(13–14):1471-1489.
    [49]荣见华,姜节胜,颜东煌,等.基于人工材料的结构拓扑渐进优化设计[J].工程力学,2004,21(05):64-71.
    [50]Tanskanen P. The evolutionary structural optimization method: theoretical aspects[J].Computer Methods in Applied Mechanics and Engineering,2002,191(47–48):5485-5498.
    [51]Huang X, Xie Y. A new look at ESO and BESO optimization methods[J]. Structural andMultidisciplinary Optimization,2008,35(1):89-92.
    [52]Wang MY, Wang X, Guo D. A level set method for structural topology optimization[J].Computer Methods in Applied Mechanics and Engineering,2003,192(1–2):227-246.
    [53]Allaire G, Jouve F, Toader A-M. Structural optimization using sensitivity analysisand a level-set method[J]. Journal of Computational Physics,2004,194(1):363-393.
    [54]Amstutz S, Andr H. A new algorithm for topology optimization using a level-setmethod[J]. Journal of Computational Physics,2006,216(2):573-588.
    [55]Wang MY, Wang X.“Color” level sets: a multi-phase method for structural topologyoptimization with multiple materials[J]. Computer Methods in Applied Mechanics andEngineering,2004,193(6–8):469-496.
    [56]左孔天,陈立平,张云清,等.用拓扑优化方法进行热传导散热体的结构优化设计[J].机械工程学报,2005,41(04):13-16.
    [57]Gersborg-Hansen A, Bends e M, Sigmund O. Topology optimization of heat conductionproblems using the finite volume method[J]. Structural and Multidisciplinary Optimization,2006,31(4):251-259.
    [58]乔赫廷,张永存,刘书田.散热结构拓扑优化目标函数的讨论[J].中国机械工程,2011,22(09):1112-1117.
    [59]Gao T, Zhang WH, Zhu JH, et al. Topology optimization of heat conduction probleminvolving design-dependent heat load effect[J]. Finite Elements in Analysis and Design,2008,44(14):805-813.
    [60]Evgrafov A, Maute K, Yang RG, et al. Topology optimization for nano-scale heattransfer[J]. International Journal for Numerical Methods in Engineering,2009,77(2):285-300.
    [61]李冬梅,张宪民,王念峰,等.基于可靠性约束的热固耦合结构拓扑优化[J].华南理工大学学报(自然科学版),2011,39(06):42-46.
    [62]Huang JH, Fadel GM, Blouin VY, et al. Bi-objective optimization design of functionallygradient materials[J]. Materials&Design,2002,23(7):657-666.
    [63]Cho JR, Ha DY. Volume fraction optimization for minimizing thermal stress in Ni-Al2O3functionally graded materials[J]. Materials Science and Engineering A,2002,334(1-2):147-155.
    [64]Hu Y, Blouin VY, Fadel GM. Design for manufacturing of3D heterogeneous objects withprocessing time consideration[J]. Journal of Mechanical Design,2008,130(3).
    [65]Carbonari RC, Silva E, lio CN, et al. Topology optimization design of functionallygraded bimorph-type piezoelectric actuators[J]. Smart Materials and Structures,2007,16:2605-2620.
    [66]Stump F, Silva E, Paulino G. Optimization of material distribution in functionallygraded structures with stress constraints[J]. Communications in Numerical Methods inEngineering,2007,23(6):535-551.
    [67]Díaz A, Sigmund O. Checkerboard patterns in layout optimization[J]. Structural andMultidisciplinary Optimization,1995,10(1):40-45.
    [68]Jog CS, Haber RB. Stability of finite element models for distributed-parameteroptimization and topology design[J]. Computer Methods in Applied Mechanics and Engineering,1996,130(3–4):203-226.
    [69]Duysinx P. Layout Optimization: A Mathematical Programming Approach [M].1997.
    [70]Bourdin B. Filters in topology optimization[J]. International Journal for NumericalMethods in Engineering,2001,50(9):2143-2158.
    [71]Sigmund O, Petersson J. Numerical instabilities in topology optimization: A surveyon procedures dealing with checkerboards, mesh-dependencies and local minima[J].Structural and Multidisciplinary Optimization,1998,16(1):68-75.
    [72]Sigmund O. Morphology-based black and white filters for topology optimization[J].Structural and Multidisciplinary Optimization,2007,33(4):401-424.
    [73]Petersson J, Sigmund O. Slope constrained topology optimization[J]. InternationalJournal for Numerical Methods in Engineering,1998,41(8):1417-1434.
    [74]Zhou M, Rozvany GIN. DCOC: An optimality criteria method for large systems Part I:theory[J]. Structural and Multidisciplinary Optimization,1992,5(1):12-25.
    [75]Svanberg K. The method of moving asymptotes: A new method for structuraloptimization[J]. International Journal for Numerical Methods in Engineering,1987,24(2):359-373.
    [76]Zillober C. A globally convergent version of the method of moving asymptotes[J].Structural and Multidisciplinary Optimization,1993,6(3):166-174.
    [77]张云清,罗震,陈立平,等.基于移动渐近线方法的结构多刚度拓扑优化设计[J].航空学报,2006,27(06):1209-1216.
    [78]Rozvany G. A critical review of established methods of structural topologyoptimization[J]. Structural and Multidisciplinary Optimization,2009,37(3):217-237.
    [79]黄冬明,武殿梁,范秀敏,等.圆锥破碎机的多目标规划设计[J].机械工程学报,2007,43(03):204-211.
    [80]郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(07):187-192.
    [81]Knowles J, Corne D. The Pareto Archived Evolution Strategy: A New Baseline Algorithmfor Pareto Multiobjective Optimisation: proceedings of the Congress on EvolutionaryComputation,1999[C]. IEEE Press.
    [82]David WC, Nick RJ, Joshua DK, et al. PESA-II: Region-based Selection in EvolutionaryMultiobjective Optimization [M]. Morgan Kaufmann Publishers.2001.
    [83]Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. Evolutionary Computation, IEEE Transactions on,2002,6(2):182-197.
    [84]周树荃,邓绍忠.有限元结构分析并行计算的若干研究进展[J].南京航空航天大学学报,1995,27(01):27-32.
    [85]郑哲明,程建钢,姚振汉.有限元并行计算中网格自动区域划分的研究[J].工程力学,2002,19(06):54-57.
    [86]周洪伟,吴舒,陈璞.有限元分析快速直接求解技术进展[J].力学进展,2007,37(02):175-188.
    [87]李海江.基于集群的并行有限元分析研究[J].计算力学学报,2007,24(01):117-123.
    [88]Makinen R, Neittaanmaki P, Periaux J, et al. Parallel genetic solution formultiobjective mdo [M].1997.
    [89]Deb K, Zope P, Jain A. Distributed computing of Pareto-optimal solutions withevolutionary algorithms: proceedings of the2nd international conference on Evolutionarymulti-criterion optimization, Faro, Portugal,[C].1760147: Springer-Verlag,2003.
    [90]Branke J, Schmeck H, Deb K, et al. Parallelizing multi-objective evolutionaryalgorithms: cone separation: proceedings of the Evolutionary Computation,2004CEC2004Congress on,19-23June2004,2004[C].
    [91]Shin K-H, Dutta D. Process-Planning for Layered Manufacturing of Heterogeneous ObjectsUsing Direct Metal Deposition[J]. Journal of Computing and Information Science inEngineering,2002,2(4):330-344.
    [92]Chen K-Z, Feng X-Y, Wang F, et al. A virtual manufacturing system for components madeof a multiphase perfect material[J]. Comput Aided Des,2007,39(2):112-124.
    [93]Wang S, Zhu Y, Chen C-S, et al. Digital design for functionally graded materialcomponents rapid prototyping manufacturing: proceedings of the5th internationalconference on Advances in geometric modeling and processing, Hangzhou, China,[C].1792319:Springer-Verlag,2008.
    [94]Choi SH, Cheung HH. A topological hierarchy-based approach to layered manufacturingof functionally graded multi-material objects[J]. Computers in Industry,2009,60(5):349-363.
    [95]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [96]Bends e MP, Sigmund O. Topology optimization: theory, methods, and applications[M].Berlin: Springer Verlag,2003.
    [97]Guest JK, Prévost JH, Belytschko T. Achieving minimum length scale in topologyoptimization using nodal design variables and projection functions[J]. InternationalJournal for Numerical Methods in Engineering,2004,61(2):238-254.
    [98]张建中,许绍吉.线性规划[M].北京:科学出版社,2002.
    [99]王曙光,郭德志. Nelder-Mead单纯形法的推广及其在自动历史拟合中的应用[J].大庆石油地质与开发,1998,17(04):22-24.
    [100]Davis TA. Algorithm832: UMFPACK V4.3---an unsymmetric-pattern multifrontalmethod[J]. ACM Trans Math Softw,2004,30(2):196-199.
    [101]Cook RD. Concepts and applications of finite element analysis[M]. New York: John Wiley&Sons,1989.
    [102]Hirano T, Teraki J, Yamada T. On the Design of Functionally Gradient Materials:proceedings of the First International Symposium of FGM, Sendai,[C].1990.
    [103]Antich P, Vázquez A, Mondragon I, et al. Mechanical behavior of high impactpolystyrene reinforced with short sisal fibers[J]. Composites Part A: Applied Science andManufacturing,2006,37(1):139-150.
    [104]王基才,尤显卿,郑玉春,等.颗粒增强金属基复合材料的研究现状及展望[J].硬质合金,2003,20(01):51-55.
    [105]Paulino G, Le C. A modified Q4/Q4element for topology optimization[J]. Structuraland Multidisciplinary Optimization,2009,37(3):255-264.
    [106]Santare MH, Lambros J. Use of Graded Finite Elements to Model the Behavior ofNonhomogeneous Materials[J]. Journal of Applied Mechanics,2000,67(4):819-822.
    [107]Kim J-H, Paulino GH. Isoparametric Graded Finite Elements for NonhomogeneousIsotropic and Orthotropic Materials[J]. Journal of Applied Mechanics,2002,69(4):502-514.
    [108]Walpole LJ. On bounds for the overall elastic moduli of inhomogeneous systems--I[J].Journal of the Mechanics and Physics of Solids,1966,14(3):151-162.
    [109]Duff IS, Grimes RG, Lewis JG. User’s guide for Harwell-Boeing sparse matrix testproblems collection[J]. Technical Rep RAL-92-086, Rutherford Appleton Laboratory,1992.
    [110]Miyamoto Y. Functionally graded materials: design, processing, and applications[M].Chapman&Hall,1999.
    [111]于建伟.多目标进化算法研究综述[J].海南大学学报(自然科学版),2005,23(04):378-382.
    [112]Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviourof multiphase materials[J]. Journal of the Mechanics and Physics of Solids,1963,11(2):127-140.
    [113]Purshouse RC, Fleming PJ. On the Evolutionary Optimization of Many ConflictingObjectives[J]. Evolutionary Computation, IEEE Transactions on,2007,11(6):770-784.
    [114]蓝艇,刘士荣,顾幸生.基于进化算法的多目标优化方法[J].控制与决策,2006,21(06):601-605.
    [115]Kukkonen S, Deb K. A Fast and Effective Method for Pruning of Non-dominated Solutionsin Many-Objective ProblemsParallel Problem Solving from Nature-PPSN IX[M]//RUNARSSON T, BEYER H-G, BURKE E, etal.; Springer Berlin/Heidelberg.2006:553-562.
    [116]Ra SW, Kim JK. A fast mean-distance-ordered partial codebook search algorithm forimage vector quantization[J]. Circuits and Systems II: Analog and Digital SignalProcessing, IEEE Transactions on,1993,40(9):576-579.
    [117]Tiwari S, Fadel G, Deb K. AMGA2: improving the performance of the archive-basedmicro-genetic algorithm for multi-objective optimization[J]. Engineering Optimization,2010,43(4):377-401.
    [118]王勇,蔡自兴,周育人,等.约束优化进化算法[J].软件学报,2009,20(01):11-29.
    [119]Deb K, Sindhya K, Okabe T. Self-adaptive simulated binary crossover forreal-parameter optimization: proceedings of the9th annual conference on Genetic andevolutionary computation, London, England,[C].1277190: ACM,2007.
    [120]张晓菲,张火明.精英策略的改进非支配遗传算法[J].中国计量学院学报,2010,21(01):52-58.
    [121]文诗华,郑金华,李密青.多目标进化算法中变异算子的比较与研究[J].计算机工程与应用,2009,45(02):74-78.
    [122]黎康保,陶文正,许丽华,等.用PC机群组构并行超级计算机[J].计算机工程,2000,26(09):1-3.
    [123]陈国良,孙广中,徐云,等.并行计算的一体化研究现状与发展趋势[J].科学通报,2009,54(08):1043-1049.
    [124]吴吉义,平玲娣,潘雪增,等.云计算:从概念到平台[J].电信科学,2009,25(12):23-30.
    [125]Johnson EE. Completing an MIMD multiprocessor taxonomy[J]. SIGARCH Comput Archit News,1988,16(3):44-47.
    [126]曾丽芳,杨灿群,胡子昂. MPP数据并行FORTRAN汇编代码模拟环境的设计与实现[J].国防科技大学学报,1999,21(01):83-87.
    [127]杨梦梦,卢凯,卢锡城.内存管理系统对NUMA的支持及优化[J].计算机工程,2005,31(16):80-82.
    [128]Dagum L, Menon R. OpenMP: an industry standard API for shared-memory programming[J].Computational Science&Engineering, IEEE,1998,5(1):46-55.
    [129]Hill MD, Marty MR. Amdahl's Law in the Multicore Era[J]. Computer,2008,41(7):33-38.
    [130]庞一,张凤妍,孙立峰,等.面向多核处理器的视频编码并行加速算法综述[J].计算机科学与探索,2009,3(04):337-346.
    [131]Gropp W. MPICH2: A New Start for MPI ImplementationsRecent Advances in Parallel Virtual Machine and Message Passing Interface[M]//KRANZLM LLERD, VOLKERT J, KACSUK P, et al.; Springer Berlin/Heidelberg.2002:37-42.
    [132]李璐,陈宝国.基于Linux的MPI并行环境的配置[J].计算机与数字工程,2007,35(11):47-48.
    [133]李秀梅,吴锋,黄哲华. PCG法的理论解释及在结构分析中的应用[J].广西大学学报(自然科学版),2009,34(04):463-468.
    [134]宋岱才,姜凤利,田秋菊.某些迭代法的一个收敛性定理[J].山东大学学报(工学版),2009,39(02):146-150.
    [135]卫加宁,王仲君,王伟沧,等.网格方程组并行计算预条件迭代若干性质及应用[J].海军工程大学学报,2001,13(05):1-4.
    [136]张健飞,姜弘道.适合于求解边界元方程组的GMRES算法的实用化和并行化研究[J].计算力学学报,2004,21(05):620-624.
    [137]沈焕锋,李平湘,张良培.不完全乔莱斯基分解预优共轭梯度的模型[J].计算机工程,2006,32(17):15-18.
    [138]Kaporin IE. New convergence results and preconditioning strategies for the conjugategradient method[J]. Numerical Linear Algebra with Applications,1994,1(2):179-210.
    [139]Zhou X, Hon YC, Li J. Overlapping domain decomposition method by radial basisfunctions[J]. Applied Numerical Mathematics,2003,44(1–2):241-255.
    [140]Dryja M, Widlund OB. Some domain decomposition algorithms for elliptic problems[M].Iterative methods for large linear systems; Academic Press Professional, Inc.1990:273-291.
    [141]Cai X-C, Saad Y. Overlapping Domain Decomposition Algorithms for General SparseMatrices[J]. Numerical Linear Algebra with Applications,1996,3(3):221-237.
    [142]段西发,吕全义,齐培艳.稀疏线性方程组并行解法的优化[J].昆明理工大学学报(理工版),2008,33(02):100-107.
    [143]杨际祥,谭国真,王荣生.并行与分布式计算动态负载均衡策略综述[J].电子学报,2010,38(05):1122-1130.
    [144]Streichert F, Ulmer H, Zell A. Parallelization of Multi-objective EvolutionaryAlgorithms Using Clustering AlgorithmsEvolutionary Multi-Criterion Optimization[M]//COELLO COELLO C, HERN NDEZ AGUIRRE A,ZITZLER E. Springer Berlin/Heidelberg.2005:92-107.
    [145]While L, Bradstreet L, Barone L, et al. Heuristics for optimizing the calculationof hypervolume for multi-objective optimization problems: proceedings of the EvolutionaryComputation,2005The2005IEEE Congress on,2-5Sept.2005,2005[C].
    [146]While L. A New Analysis of the LebMeasure Algorithm for Calculating HypervolumeEvolutionary Multi-Criterion Optimization[M]//COELLO COELLO C, HERN NDEZ AGUIRRE A,ZITZLER E. Springer Berlin/Heidelberg.2005:326-340.
    [147]Alexander P, Allen S, Dutta D. Part orientation and build cost determination inlayered manufacturing[J]. Computer-Aided Design,1998,30(5):343-356.
    [148]Prashant K, Anne M, Debasish D. A review of process planning techniques in layeredmanufacturing[J]. Rapid Prototyping Journal,2000,6(1):18-35.
    [149]赵萍,蒋华,周芝庭.熔融沉积快速成型工艺的原理及过程[J].机械制造与自动化,2003,(05):17-18.
    [150]史玉升,黄树槐,陈绪兵,等.三维CAD模型直接切片技术及其在快速成型中的应用[J].计算机辅助设计与图形学学报,2002,14(12):1172-1178.
    [151]Li WD, Jin G, Gao L, et al. The current status of process planning for multi-materialrapid prototyping fabrication[J]. Advanced Materials Research,2010,118:625-629.
    [152]Ron J, Herbert H. Direct slicing of CAD models for rapid prototyping[J]. RapidPrototyping Journal,1995,1(2):4-12.
    [153]ASTM F2915-11-Standard Specification for Additive Manufacturing File Format(AMF)[S].
    [154]Cho W, Maekawa T, Patrikalakis NM, et al. Topologically Reliable Approximation ofTrimmed Polynomial Surface Patches[J]. Graphical Models and Image Processing,1999,61(2):84-109.
    [155]Bray T, Paoli J, Sperberg-McQueen CM. Extensible markup language[J]. World Wide WebJournal,1997,2(4):29-66.
    [156]Jonathan H, Hod L. Design and analysis of digital materials for physical3D voxelprinting[J]. Rapid Prototyping Journal,2009,15(2):137-149.
    [157]Nee AYC, Fuh JYH, Miyazawa T. On the improvement of the stereolithography (SL)process[J]. Journal of Materials Processing Technology,2001,113(1–3):262-268.
    [158]Kou X. Computer-aided design of heterogeneous objects[D]. Hong Kong: University ofHong Kong,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700