无网格自然邻接点Petrov-Galerkin法及其在结构分析和拓扑优化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拓扑优化是一个相对较新但急速发展的研究领域,目前,在连续体结构拓扑优化中主要的分析方法是有限元法(FEM:Finite Element Method),而且主要集中在静力柔度的拓扑优化,涉及动力问题的拓扑优化研究相对较少。然而,有限元法有其固有的缺点,有限元法在处理诸如大变形和移动边界问题时需要不断重新划分和重构网格以解决网格畸变和网格移动等问题。无网格方法克服了对网格的依赖性,彻底或部分消除了网格的划分,因此无网格方法在处理裂纹扩展问题,超大变形问题,高速冲击等问题中具有明显的优势。本文基于自然邻接点Petrov-Galerkin (NNPG)法主要研究了连续体结构的静力、动力响应及其拓扑优化设计问题。
     首先综述了拓扑优化和无网格法的发展历史和国内外研究现状,对各种典型的拓扑优化方法进行了回顾。基于SIMP(Solid Isotropic Material with Penalization)密度-刚度插值模型和优化准则法,以最小柔度的连续体拓扑优化设计为例,介绍了优化模型的建立、求解方法、计算步骤等基本理论;讨论了数值计算的稳定性问题和目前存在的解决方法,提出了一种连续的密度插值方法,有效消除了棋盘格现象;为了获得网格独立的拓扑优化设计,在连续密度场的基础上引入密度和刚度之间的“非局部关系”,构造修正的连续密度场一并解决了传统基于FEM的拓扑优化数值方法普遍存在的棋盘格现象和网格依赖性问题。
     对于连续体结构的拓扑优化问题,精确的结构响应分析是至关重要的。在将自然邻接点Petrov-Galerkin法应用于连续体结构的拓扑优化设计之前,有必要对NNPG法的求解精度和收敛性问题进行验证。采用自然邻接点Petrov-Galerkin法相继分析平面问题、Mindlin板问题的静力响应和动力响应问题。在求解过程中,利用成熟的Delaunay三角形剖分技术,采用FEM三节点三角形单元的形函数作为权函数,可以减少域积分中被积函数的阶次,提高了计算效率。基于自然邻接点插值构造的试函数,具有Kronecker delta函数性质,能够方便地施加本质边界条件和处理不连续面问题。数值算例表明:对于平面问题、Mindlin板问题的静力、动力问题,NNPG法具有精度高、稳定性好和实现简单的特点。
     利用无网格NNPG法和所提出的连续密度场方法,基于SIMP拓扑优化模型和优化准则法研究了平面问题、Mindlin板问题的最小柔度拓扑优化设计。采用自然邻接点插值形函数构造连续的名义密度场,有效消除了棋盘格现象,获得无棋盘格的高分辨率解的设计。在连续密度场的基础上,考虑非局部效应,通过引入半径为Rmin的影响域对原密度场进行重构,以约束设计变量空间(这对于确保解的存在性是十分必要的)。通过影响域半径Rmin控制优化结构的复杂性,从而一并解决了传统基于FEM的拓扑优化数值方法普遍存在的棋盘格现象和网格依赖性问题。
     利用无网格NNPG法,研究了平面问题、Mindlin板问题的动力拓扑优化设计,其中包括自由振动结构的特征值优化和受迫振动结构的频率响应优化问题。对动力拓扑优化模型的建立、低密度区域可能存在的局部模态、特征值优化目标函数的振荡问题以及非结构质量对拓扑优化设计的影响等问题进行了讨论和研究。对于特征值优化存在的目标函数振荡的问题,提出了修改灵敏度信息,控制优化路径的方法,一定程度上可以解决目标函数的振荡问题,获得与最优解比较接近的拓扑优化设计。
     对于连续体结构的最小柔度拓扑优化设计、自由振动结构的特征值优化和受迫振动结构的频率响应拓扑优化设计,数值算例表明本文方法均能获得合理的、无棋盘格的、节点分布独立的、黑白的拓扑优化设计,证明了本文方法的有效性和可行性。
Topology optimization is a relatively new but extremely rapidly expanding research field. Up to now, the prevailing analysis method in the topology optimization is the finite element method (FEM), and the bulk part of the work focus on static compliance optimization, while limited efforts were put into the dynamic topological optimization. However, for the FEM, there are some shortcomings such as mesh distortion, frequent remeshing when dealing with large deformation or moving boundary problems, etc. The meshless method avoids the dependence of meshes, and thoroughly or partly eliminates meshing. It makes this kind of methods possess great advantages when dealing with crack propagation problems, super-large deformation problems and high velocity impact problems, etc. In this dissertation, the natural neighbor Petrov-Galerkin method (NNPG) is used to study the elasto-static, dynamic problems and the topology optimization of the continuum structures.
     At the beginning of the dissertation, the history and recent developments of the topology optimization and meshless method are overviewed, and several typical topology optimization methods are introduced particularly. The fundamental theory of topology optimization of continuum structure is discussed, including the formulation and solution of the optimization model, implementation and computational procedure, which based on the SIMP (Solid Isotropic Material with Penalization) density-stiffness interpolation model and the optimality criteria method. Numerical instabilities such as checkerboard and mesh-dependence as well as the available ways to circumvent them are also discussed. A continuous bulk density fields is proposed to eliminate the checkerboard patterns of the material distribution. In order to achieve mesh-independent designs by the topology optimization, a non-local relationship between the density and stiffness is introduced, based on the proposed modified continuous bulk density fields, both of the checkerboard and mesh-dependence problems which pertaining to the conventional numerical FEM-based topology optimization methods are circumvented simultaneously.
     When dealing with topology optimization problems, it is vital to obtain accurate structural responses. It's very important to testify the accuracy and convergence of the NNPG method before applying the method to study the topology optimization of the continuum structure. To this end, both of the elasto-static and dynamic problems in2D plane problems as well as the Mindlin plate problems are studied by the natural neighbor Petrov-Galerkin method. In the implementation, based on the well established Delaunay triangulation, the FEM shape functions of three nodes triangular are taken as test functions, which reduce the order of integrands involved in domain integrals and improves the computational efficiency of the method. The trial functions which are constructed based on the natural neighbor interpolations have the Kronecker Delta function property, which facilitate imposition of essential boundary conditions and dealing with discontinuity problems. Numerical examples show that the present method possesses high accuracy and good performance of stability, and is easy to implement.
     The topology optimization for plane and Mindlin plate problems based on the meshless NNPG method and the proposed continuous bulk density fields, where the objective is to minimize compliance, is investigated. The numerical approach presented here is based on the SIMP approach and the optimality criteria method. A continuous bulk density fields constructed by the natural neighbor interpolation shape functions is proposed to eliminate the checkerboard pattern. This approach is used to get higher resolution solutions with mesh refinement and the checkerboard control. Based on the continuous bulk density fields, the non-local effect is considered. To this end, the original bulk density fields is reconstructed by introducing a influence domain whose radius is Rmin, in this way, the design space is restricted, which is very necessary to ensure the existence of solution. By adjusting Rmin, the complication of the optimized structures is controlled by the proposed method. In this way, the checkerboard and mesh-dependence problems which pertaining to the conventional numerical FEM-based topology optimization methods are all circumvented.
     The dynamic topological optimization for plane and Mindlin plate problems based on the meshless NNPG method is also studied, which include the eigenvalue optimization problems for free vibration of structures and the frequency response optimization problems for forced vibration of structures. The formulation of the dynamic topological optimization and the possibility of localized modes in low density areas are discussed. While the oscillation of the objective function during the eigenvalue optimization process and the effect of the non-structural mass to optimized structures by the topology optimization are investigated particularly. A heuristic approach, which modifies the sensitivity information to control the optimization path, is presented to avoid the oscillation of the objective function in eigenvalue optimization. By this way, some "optimized" design which closing to the global optimum of the original problem can be obtained.
     Numerical results show that the present method obtains reasonable, checkerboard controlled, node independent and black-white optimization results for the topology optimization of the continuum structures including the minimum compliance topology optimization, the eigenvalue optimization for the free vibration of structures and the frequency response optimization for the forced vibration of structures, which demonstrate the feasibility and validity of the present method for these problems.
引文
[1]Michell AGM. The limits of economy of material in frame structures. Philosophical Magazine,1904, Series 6,8(47):589-597
    [2]Cox H L. The design of structures of least weight. Oxford:Pergamon.1965
    [3]Hegeminer GA., Prager W. On Michell trusses. Int. J. Mech. Sci.1969,11(2): 209-215
    [4]Hemp WS. Michell framework for uniform load between fixed supports. Engng. Opt.,1974,1(1):61-69
    [5]Hemp WS. Michell framework for a force in any definite direction at the mid-point between two supports. Engng. Opt.,1976,2(3):183-187
    [6]Rozvany GIN. Grillages of maximum strength and maximum stiffness. Int J Mech Sci,1972,14:1217-1222
    [7]Rozvany GIN and Prager W. Optimal design of partially discretized grillages. J. Mech. Phys. Solids,1976,24:125-136
    [8]Prager W. and Rozvany GIN., Optimal layout of grillages. J. Struct. Mech.,1977, 5:1-18
    [9]Dorn WS, Gomory RE. Greenberg HJ. Automatic design of optimal structures. J. Mechanique,1964,3(1):25-52
    [10]Rossow MP, Taylor JE. A finite element method for the optimal design of variable thickness sheets. AIAA J,1973,11:1566-1569
    [11]Cheng KT. and Olhoff N., An investigation concerning optimal design of solid elastic plates, Int. J. Solids Structures,1981,17:305-323
    [12]Bendsoe MP and Kikuchi N. Generating optimal topologies in structural design using a homogenization method, Comp. Meths. Appl. Mech. Engrg.1988,71:197-224
    [13]Bends(?)e MP. Optimal shape design as a material distribution problem, Struct. Optim.,1989,1:193-202
    [14]Kirsch U. On optimal topology of grillage, structures. Eng. Comput.,1986,1: 229-243
    [15]Kirsch U. Optimal topology of flexural systems. Eng. Comput.1987,11:141-149
    [16]Kirsch U. On singular topologies in optimum structural design. Struct. Optim. 1990,2:39-45
    [17]Cheng GD and Jiang Z. Study on topology optimization with stress constraints. Eng. Opi.,1992,20:129-148
    [18]Cheng GD and Guo X. ε-relaxed approach in structural topology optimization. Struct. Optim.,1997,13:258-266
    [19]Rozvany GIN, Bendsoe MP, and Kirsch U. Layout Optimization of Structures, Appl. Mech. Rev.,1995,48:41-119
    [20]Bends(?)e MP. Optimization of Structural Topology, Shape and Material. Springer, 1995, Heidelberg
    [21]Bourgat JF. Numerical experiments of the homogenization method for operators with periodic coefficients. Berlin:Springer-Verlag,1977
    [22]Bensoussan A, Lions JL, Papanicolaou G. Asymptotic analysis for periodic structures. Armsterdam:North Holland,1978
    [23]Sanchez-Palencia E. Non-homogeneous media and vibration theory. Berlin: Springer,1980
    [24]Cheng GD, Olhoff N. An investigation concerning optimal design of solid elastic plates. International Journal of Solids and Structures,1981,17:305-323
    [25]Cheng GD, Olhoff N. Regularized formulation for optimal design of axisymmetric plates. International Journal of Solids and Structures,1982,18:153-170
    [26]Guedes JM, Kikuchi N. Preprocessing and Post processing for Materials Based on the Homogenization Method with Adaptive Finite Element Method. Computer Methods in Applied Mechanics and Engineering,1990,83:143-198
    [27]Suzuki K, Kikuchi N. A Homogenization Method for Shape and Topology Optimization. Method. Computer Methods in Applied Mechanics and Engineering, 1991,93:291-318
    [28]Hassani B, Hinton E. A review of homogenization and topology Ⅰ —homogenization theory for media with periodic structure. Computers and structures, 1998,69:707-717
    [29]Hassani B, Hinton E. A review of homogenization and topology Ⅱ—analytical and numerical solution of homogenization equations structure. Computers and structures,1998,69:719-738
    [30]Hassani B, Hinton E. A review of homogenization and topology Ⅲ—topology optimization using optimality criteria. Computers and structures,1998,69:739-756
    [31]Diaz A, and Kikuchi N. Solutions to shape and topology eigenvalue optimization problem using a homogenization method. International Journal for Numerical Methods in Engineering,1992,35:1487-1502
    [32]Ma ZD, Kikuchi N, Cheng HC. Topological design for vibrating structures. Computational Methods in Applied Mechanics and Engineering,1995,121:259-280
    [33]Fernandes P, Guedes JM, Rodrigues H. Topology Optimization of Three-Dimensional linear Elastic Structure with a Constraint on "perimeter" Computer Methods in Applied Mechanics and Engineering,1999,73:583-594
    [34]Nishiwaki S, Frecker MI, Min S, Kikichi N. Topology optimization of compliant mechanisms using the homogenization method. International Journal for Numerical Methods in Engineering,1998,42:535-559
    [35]Diaz AR. and Bendsoe MP. Shape optimization of structures for multiple loading conditions using a homogenization method. Structural Optimization,1992,4:17-22
    [36]Michel JC., Moulinec H. and Suquet P. Effective properties of composite materials with periodic microstructure:a computational approach. Comput Methods ApplMech Engrg.,1999,172:109-143
    [37]Giuseppe CA. Hierarchical solution of large-scale three-dimensional topology optimization problems [D]. Michigan:Michigan State University,1996
    [38]袁振,吴长春.复合材料周期性线弹性微结构的拓扑优化设计.固体力学学报,2003,24(1):40-45
    [39]刘书田,程耿东.复合材料应力分析的均匀化方法.力学学报,1997,29(3)306-313
    [40]谢先海,廖道训.基于均匀化方法的柔顺机构的设计.中国机械工程,2003,14(11):953-956
    [41]王晓明,刘震宇,郭东明.基于均匀化理论的微小型柔性结构拓扑优化的敏度分析.中国机械工程,1999,10(11):1264-1266
    [42]Rozvany GIN, Zhou M, Birker T. Generalized shape optimization without homogenization. Struct Optim.,1992,4:250-254
    [43]Zhou M, Rozvany GIN. The COC algorithm, Part Ⅱ:topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng,1991,89:309-336
    [44]Zhou M, Rozvany GIN. DCOC:an optimality criterion method for large systems. Part I:theory. Struct Optim,1992,5:12-25
    [45]Zhou M, Rozvany GIN. DCOC:an optimality criterion method for large systems. Part Ⅱ:algorithm. Struct Optim,1993,6:250-262
    [46]Sigmund O. A 99 line topology optimization code written in Matlab. Struct Multidisc Optim,2001,21:120-127
    [47]Tcherniak D, Sigmund O. A web-based topology optimization program. Struct Multidisc Optim,2001,22:179-187
    [48]Sigmund O. On the design of compliant mechanisms using topology optimization. Mech Struct Mach,1997,25:493-524
    [49]Buhl T, Pedersen CBW, Sigmund O. Stiffness design of geometrically nonlinear structures in topology optimization. Struct Multidisc Optim,2000,19:93-104
    [50]Sigmund O. Design of multiphysics actuators using topology optimization. Part Ⅱ:two-material structures. Comput Methods Appl Mech Eng,2001,190:6605-6627
    [51]Jensen JS, Sigmund O. Systematic design of photonic crystal structures using topology optimization:low-loss waveguide bends. Appl Phys Lett,2004, 84:2022-2024
    [52]Sigmund O, Jensen JS. Systematic design of phononic band gap materials and structures by topology optimization. Philos Trans R Soc A Math Phys Eng Sci,2003, 361:1001-1019
    [53]Kharmanda G, Olhoff N. Reliability based topology optimization. Struct Multidisc Optim,2004,26:295-307
    [54]Du J, Olhoff N. Minimization of sound radiation from vibrating bi-material structures using topology optimization. Struct Multidisc Optim,2007,33:305-321
    [55]Du J, Olhoff N. Topological design of freely vibrating continuum structures for maximum values of single and multiple eigenfrequencies and frequency gaps. Struct Multidisc Optim,2007,34:91-110
    [56]Hammer VB, Olhoff N. Topology optimization of continuum structures subject to pressure loading. Struct Multidisc Optim,2000,19:85-92
    [57]Du J, Olhoff N. Topological optimization of continuum structures with design-dependent surface loads—Part Ⅰ:New computational approach for 2D problems. Struct Multidisc Optim,2004,27:151-165
    [58]Du J, Olhoff N. Topological optimization of continuum structures with design-dependent surface loads—Part Ⅱ:Algorithm and examples for 3D problems. Struct Multidisc Optim,2004,27:166-177
    [59]Maute K, Ramm E. Adaptive topology optimization of shell structures. AIAA J, 1997,37:1767-1777
    [60]Maute K, Ramm E. Adaptive topology optimization. Struct Optim,1998, 10:100-112
    [61]Maute K, Schwarz S, Ramm E. Adaptive topology optimization of elastoplastic structures. Struct Optim,1998,15:81-90
    [62]Bendsoe MP, Sigmund O. Topology optimization:theory, methods and applications. Springer, Berlin,2003
    [63]Rozvany GIN. Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidisc Optim,2001,21:90-108
    [64]Martinez JM. A note on the theoretical convergence properties of the SIMP method. Struct Multidisc Optim,2005,29:319-323
    [65]Luo Z, Chen L, Yang J, et al. Compliant mechanism design using multi-objective topology optimization scheme of continuum structures. Struct Multidisc Optim,2005, 30(2):142-154
    [66]袁振,吴长春,庄守兵.基于杂交元和变密度法的连续体结构拓扑优化设计.中国科学技术大学学报,2001,31(6):694-699
    [67]罗震,郭文德,蒙永立等.全柔性微型机构的拓扑优化设计技术研究.航空学报,2005,26(5):617-625
    [68]罗震,陈立平,张云清,黄玉盈等.多工况下连续体结构的多刚度拓扑优化设计和二重敏度过滤技术.固体力学学报,2005,26(1):29-36
    [69]Stolpe M, Svanberg K. An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidisc Optim,2001,22:116-124
    [70]Tenek LH, Hagiwara I. Optimal rectangular plate and shallow shell topologies using thickness distribution or homogenization. Computer Methods in Applied Mechanics and Engineering,1994,115(1/2):111-124
    [71]程耿东,张东旭.受应力约束的平面弹性体的拓扑优化.大连理工大学学报,1995,35(1):1-9
    [72]王健,程耿东.具有应力和厚度约束的平面弹性体结构拓扑优化设计.机械科学与技术,2002,19(4):741-744
    [73]隋允康,叶红玲,杜家政.结构拓扑优化的发展及其模型转化为独立层次的迫切性.工程力学,2005,22卷增刊:107-118
    [74]隋允康,杨德庆,孙焕纯.统一骨架与连续体的结构拓扑优化的ICM理论与方法.计算力学学报,2000,17(1):28-33
    [75]隋允康,任旭春,龙连春等.基于ICM方法的刚架拓扑优化.计算力学学报,2003,20(3):286-289
    [76]隋允康,于新,叶宝瑞.应力和位移约束下桁架拓扑优化的有无复合体方法.固体力学学报,2004,25(3):355-359
    [77]隋允康,于新.平面膜结构拓扑优化的有无复合体方法.力学学报,2001,33(3):357-364
    [78]叶红玲,隋允康.应力约束下连续体结构的拓扑优化.北京工业大学学报,2006,32(4):301-305
    [79]彭细荣,隋允康.用ICM法拓扑优化静位移及频率约束下连续体结构.计算力学学报,2006,23(4):391-396
    [80]Xie YM, Steven GP. A simple evolutionary procedure for structural optimization. Comput. Struct.,1993,49:885-896
    [81]Xie YM, Steven GP. Evolutionary structural optimization. Springer, London, 1997
    [82]谢亿民,杨晓芙,Steven GP, Querin OM.渐进结构优化法的基本理论及应用.工程力学,16(6):70-81
    [83]Querin OM, Steven G.P and Xie YM. Evolutionary structural optimization (ESO) using bi-directional algorithm. Engineering Computations.1998,15(8):1031-1048
    [84]Xie YM, Steven GP. Evolutionary structural optimization for dynamic problems. computers and structures,1996,58(6):1067-1073
    [85]Chu DN, Xie YM, Steven GP. Evolutionary structural optimization for problems with stiffness constraints. finite elements in analysis and design,1996,21:239-251
    [86]Young V, Querin OM, Steven G P and Xie YM.3D bi-directional evolutionary structural optimization(BESO). proceedings of the Austalian conference on structural optimization,Sydney,1998:275-282
    [87]Zhao CB, Steven GP, Xie YM. Evolutionary optimization of maximizing the difference between two natural frequencies of a vibrating structure. Structural Optimization,1997,13:148-154
    [88]Chu DN, Xie YM, Steven GP. An evolutionary structural optimization method for sizing problems with discrete design variables. Computers and Structures,1998,68: 419-431
    [89]Manickarajah D, Xie YM, Steven GP. Optimum design of flames with multiple constraints using an evolutionary method. Computers and Structures,2000,74: 731-741
    [90]Steven GP, Li Q, Xie YM. Multicriteria optimization that minimizes maximum stress and maximizes stiffness. Computers and Structures,2002,8:2433-2448
    [91]Zhou M, Rozvany GIN. On the validity of ESO type methods in topology optimization. Struct Mulfidisc Optim,2001,21:80-83
    [92]荣见华,姜节胜,徐飞鸿等.一种基于应力的双方向结构拓扑优化算法.计算力学学报,21(3):322-329
    [93]荣见华,姜节胜,颜东煌等.基于人工材料的结构拓扑渐进优化设计.工程力学,21(5):64-71
    [94]荣见华,唐国金,杨振兴等.一种三维结构拓扑优化设计方法.固体力学学报,26(3):289-296
    [95]郭中泽,陈裕泽,张卫红.基于单元材料属性更改的结构渐进拓扑优化方法.机 械科学与技术,25(8):928-931
    [96]罗志凡,荣见华,杜海珍.一种基于主应力的双方向渐进结构拓扑优化方法.应用基础与工程科学学报,2003,1:98-105
    [97]Eschenauer HA, Kobelev HA and Schumacher A. Bubble method for topology and shape optimization of structures. Structural Optimization,1994,8:142-151
    [98]Sethian JA, Wiegrnann A. Structural boundary design via level set and immersed interface methods. Journal of computational physics,2000,163(200):489-528
    [99]Michael YW, Wang XM, Guo DM. A level set for structural topology optimization. Computer Methods in Applied Mechanics and Engineering,2003,192: 227-246
    [100]Allaire G, Jouve F, Toader AM. Structural optimization using sensitivity analysis and a level-set method, Journal of Computational Physics,2004,194: 363-393
    [101]Jakiela MJ, Chapman C, DUda J, et al. Continuum structural topology design with genetic algorithms, Computer Methods in Applied Mechanics and Engineering, 2000,186(4):339-356
    [102]Nakanishi Y. Application of homology theory to topology optimization of three-dimensional structures using genetic algorithm, Computer Methods in Applied Mechanics and Engineering,2001,190(29):3849-3863
    [103]Beckers M and Fleury C. A primal-dual approach in truss topology optimization. Computers and Structures.1997,64(1-4):77-88
    [104]Jog CS and Haber RB. Stability of finite element models for distributed parameter optimization and topology design. Computer Methods in Applied Mechanics and Engineering.1996,130(3/4):203-226
    [105]郭旭,赵康.基于拓扑描述函数的连续体结构拓扑优化方法.力学学报.2004,36(5):520-526
    [106]Zhou M, Rozvany GIN. An efficient DCOC algorithm based on high-quality approximation for problems including eigenvalue constraints. Computer Methods in Applied Mechanics and Engineering,1995,128:383-394
    [107]Fleury C, Braibant V. Structural optimization-a new dual method using mixed variables.International Journal for Numerical Methods in Engineering,1986,24: 359-373
    [108]Svanberg K. The method of moving asymptotes:a new method for structural optimization. International Journal for Numerical Methods in Engineering,1987,24: 359-373
    [109]Svanberg, K. A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM Journal on Optimization.2002, 12:555-573
    [110]Diaz A, Lipton R, and Soto CA. A new formulation of the problem of optimum reinforcement of Reissner-Midlin plates. Comp.Meth. Appl. Mechs. Eng,1994,123: 121-139
    [111]Krog LA and Olhoff N. Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Comput Struct, 1999,72:535-563
    [112]Larsen AA, Laksafoss B, Jensen JS, Sigmund O. Topological material layout in plates for vibration suppression and wave propagation control. Struct Multidisc Optim, 2009,37:585-594
    [113]Diaz A and Lipton R. Optimal material layout for 3D elastic structures, Struct. Optim.,1997,13:60-64
    [114]Cherkaev AV and Palais R. Optimal design of three dimensional axisymmetric elastic structures, Struct. Optim.,1996,12:35-45
    [115]Olhoff N, Roholt, E, and Scheel J. Topology optimization of three-dimensional structures using optimum microstructures. Struct. Optim.,1998,16:1-18
    [116]Olhoff N, Thomsen J, and Rasmussen J. Topology optimization of bi-material structures, In:Pedersen P (ed):Optimal Design with Advanced Materials, Lyngby, Denmark, Amsterdam:Elsevier,1993,191-206
    [117]Burns T and Cherkaev A. Optimal distribution of multimaterial composites for torsional beams. Struct. Optim.1997,13:4-11
    [118]Maute K, Schwarz S and Ramm E. Adaptive topology optimization of elastoplastic structures, Struct. Optim.,1998,15:81-91
    [119]Yuge K and Kikuchi N. Optimization of a frame structure subjected to a plastic deformation. Struct. Optim.,1995,10:197-208
    [120]Jog C and Haber RB. Stability of finite element models for distributed parameter optimization and topology design, Comp. Meth. Appl. Mech. Eng.,1996, 130:203-226
    [121]Diaz AR and Kikuchi N. Solutions to shape and topology eigenvalue optimization problems using a homogenization method, Int. J. Num. Math. Eng,1992, 35:1487-1502
    [122]Ma ZD, Kikuchi N, and Cheng HC. Topological design for vibrating structures, Comp. Meth. Appl. Mech. Eng.,1995,121:259-280
    [123]Pedersen NL. Maximization of eigenvalues using topology optimization. Struct. Multidisc. Optim.,2000,20:2-11
    [124]N.L. Pedersen. Designing plates for minimum internal resonances. Struct Multidisc Optim,2005,30:297-307
    [125]Duysinx P and Bends(?)e MP. Topology optimization of continuum structures with local stress constraints. Int. J. Num. Meths. Eng.,1998,43(18):1453-1478
    [126]Yang RJ and Chen CJ. Stress-based topology optimization. Struct. Optim.,1998, 12:98-105
    [127]叶红玲,隋允康.应力约束下三维连续体结构拓扑优化分析.力学季刊.2006,27(4):621-627
    [128]Bends(?)e MP and Diaz A. A method for treating damage related criteria in optimal topology design of continuum structures. Struct. Optim.1998,16 (2/3): 108-115
    [129]Min S, Kikuchi N, Park YC, Kim S, and Chang S. Optimal reinforcement design of structures under impact loads, In:Gutkowski W and Mro'z Z (eds):ECSMO-2: Second World Congress of Structural and Multidisciplinary Optimization, Inst of Fundamental Technological Research, Warsaw, Poland,1997,2:583-588
    [130]Chen B, Kikuchi N. Topology optimization with design-dependent loads, Finite Element Anal. Des.,2001,37:57-70
    [131]Fuchs MB, Shemesh NNY. Density-based topological design of structures subjected to water pressure using a parametric loading surface. Struct. Multidisciplinary Optim.,2004,28 (1):11-19
    [132]Bourdin B, Chambolle A. Design-dependent loads in topology optimization, ESAIM:Control, Optim. Calculus Variations,2003,9:19-48
    [133]Sigmund O, Clausen PM. Topology optimization using a mixed formulation:An alternative way to solve pressure load problems. Comput. Methods Appl. Mech. Engrg.,2007,196:1874-1889
    [134]Lin CY and Hajela P. Genetic search strategies in multicriterion optimal design. Struct Optim,1992,4:144-156
    [135]Ma ZD, Cheng HC, and Kikuchi N. Structural design for obtaining desired eigenfrequencies by using the topology and shape optimization method. Comput. Syst. Eng.,1994,5:77-89
    [136]Krog LA and Olhoff N. Topology optimization of integral rib reinforcement of plate and shell structures with weighted-sum and max-min objectives, In:Bestle D and Schiehlen W (eds):Optimization of Mechanical Systems, Stuttgart, Germany,1995, Kluwer Academic Publ, Dordrecht, The Netherlands,1996:171-179
    [137]Frecker M, Kikuchi N and Kota S. Topology optimization of compliant mechanisms with multiple outputs Structural Optimization,1999,17:269-278
    [138]Wang MY, Chen SK, Wang XM, et al. Design of multi-material compliant mechanisms Using level set methods. Journal of Mechanical Design,2005,127(5): 941-956
    [139]Sigmund O. On the design of compliant mechanisms using topology optimization. Mechanics of Structures and Machines,1997,25(4):493-524
    [140]Pedersen CBW, Buhl T, Sigmund O. Topology synthesis of large-displacement compliant mechanisms. International Journal for Numerical Methods in Engineering, 2001,50:2683-2705
    [141]杜义贤,陈立平,罗震.基于无网格Galerkin方法的整体式柔性机构的多准则拓扑优化设计.固体力学学报,2007,28(1):102-108
    [142]Florin B, Subrata M. Shape sensitivity analysis and shape optimization in plannar elasticity using the element-free Galerkin method. Comput. Methods Appl. Mech. Engrg.2001,190:4319-4337
    [143]Zhang ZQ, Zhou JX, Zhou N et al. Shape optimization using reproducing kernel particle method and an enriched genetic algorithm. Comput Methods Appl Mech Eng, 2005,194:4048-4070
    [144]Zhou JX, Wang XM, Zhang ZQ et al. On the enhancement of computation and exploration of discretization approaches for meshless shape design sensitivity analysis. Struct Multidis Optim,2006,31:96-104
    [145]Kim NH, Choi KK and Botkin ME. Numerical method for shape optimization using meshfree method. Struct Multidisc Optim,2003,24:418-429
    [146]Kim NH, Choi KK, Chen JS et al. Meshfree analysis and design sensitivity analysis for shell structures. Int. J. Numer. Meth. Engng 2002,53:2087-2116
    [147]Grindeanu I, Chang KH, Choi KK et al. Design Sensitivity Analysis of Hyperelastic Structures Using a Meshless Method. AIAA JOURNAL,1998, 36(4):618-627
    [148]Yi KY, Choi KK, Kim NH et al. Continuum-based design sensitivity analysis and optimization of nonlinear shell structures using meshfree method. Int. J. Numer. Meth. Engng,2006,68:231-266
    [149]Zhang JP, Gong SG and Huang YQ et al. Structural dynamic shape optimization and sensitivity analysis based on RKPM. Struct Multidisc Optim,2008,36:307-317
    [150]Cho S, Kwak J. Topology design optimization of geometrically non-linear structures using meshfree method. Comput. Methods Appl. Mech. Engrg,2006,195: 5909-5925
    [151]Zheng Juan, Long Shuyao, Xiong Yuanbo et al. A Topology Optimization Design for the Continuum Structure Based on the Meshless Numerical Technique. CMES,2008,34(2):137-154
    [152]Zheng Juan, Long Shuyao, Xiong Yuanbo et al. A Finite Volume Meshless Local Petrov-Galerkin Method for Topology Optimization Design of the Continuum Structures. CMES,2009,42(1):19-34
    [153]Zheng Juan, Long Shuyao, Li Guangyao. The Topology Optimization Design for Continuum Structure Based on the Element Free Galerkin Method. Engineering Analysis with Boundary Elements,2010,34(7):666-672
    [154]Li SL, Long SY and Li GY. A topology optimization of moderately thick plates based on the meshless numerical method. CMES:Computer Modeling in Engineering&Sciences,2010,60(1):73-94
    [155]Zienkiewicz OC, Taylor KL. The finite element method. Fifth Edition: Butterworth Heinemann,2000:15-20
    [156]王勖成,邵敏.有限单元法基本原理和数值方法(第2版).北京:清华大学出版社,1997:483-508
    [157]Thomas JW. Numeral partial differential equations finite difference methods. New York:Spinger-Verlag New York Inc,1995:13-18.
    [158]布瑞比亚,泰勒斯,诺贝尔.边界单元法的理论和工程应用.龙述尧等译.北京:国防工业出版社,1988:13-18
    [159]龙述尧.边界单元法概论.北京:中国科学文化出版社,2002:15-20
    [160]Lucy LB. A numerical approach to the testing of the fission hypothesis. The Astron J,1977,8(12):1013-1024
    [161]Gingold RA, Moraghan JJ. Smoothed particle hydrodynamics:theory and applications to non-spherical stars. Mon Not Roy Astrou Soc,1977,18(2):375-389
    [162]Belytschko T, Lu YY, Gu L. Element free Galerkin methods. International Journal for Numerical Methods in Engineering,1994,37:229-256
    [163]Belytschko T, Krongauz Y, Organ D, et al. Meshless methods:An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 1996,139(1):3-47
    [164]张雄,宋康祖,陆明万.无网格法研究进展及其应用.计算力学学报,2003,20(6):730-742
    [165]张雄,刘岩,马上.无网格法的理论及应用.力学进展,2009,39(1):1-36
    [166]Nayroles B, Touzot G, Villon P. Generalizing the finite element method:diffuse approximation and diffuse elements. Computational Mechanics,1992,10(5):307-318
    [167]Onate E, Idelsohn S, Zienkiewicz OC et al. A finite point method in computational mechanics:Applications to convective transport and fluid flow. Int. J. Numer. Methods Engr.,1996,39(1):3839-3866
    [168]Duarte CA, Oden JT. Hp clouds:a meshless method to solve boundary-value problems. Technical Report 95-05. Texas Institute for Computational and Applied Mathematics. University of Texas at Austin.1995
    [169]Liu WK, Jun S, Zhang YF. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluid,1995,20:1081-1106
    [170]Braun J, Sambridge M. A numerical method for solving partial differential equations on highly irregular evolving grids. Nature,1995,376:655-660
    [171]Atluri SN, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech.,1998,22:117-127
    [172]Atluri S N, Zhu T. New concepts in meshless methods. International Journal for Numerical Methods in Engineering,2000,47:537-556
    [173]Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods. Math Comput,1981,37(1):141-158
    [174]Lancaster P, Salkauskas K. Curve and Surfaces Fitting, an introduction. London: Academic Press,1986:1-21
    [175]Monaghan JJ. Why particle methods work. Siam J Sci Sat Comput,1982, 3(4):423-433
    [176]Babuska I, Melenk JM. The partition of unity method. Int J Numer Meth Eng, 1997,40(4):727-758
    [177]Sibson R. A vector identity for the Dirichlet tessellation. Mathematical Proceedings of the Cambridge Philosophical Society,1980,87:151-155
    [178]Liu GR, Gu YT. A point interpolation method for two dimensional solids. Int J Numer Meth Engng,2001,50:937-951
    [179]Liu MB, Liu GR, Zong Z, Lam KY. Smoothed particle hydrodynamics for numerical simulation of underwater explosions. Computational Mechanics,2003, 30(2):106-118
    [180]Liu MB, Liu GR, Zong Z, Lam KY. Computer simulation of the high explosive explosion using smoothed particle hydrodynamics methodology. Computers & Fluids, 2003,32(3):305-322
    [181]贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用.计算物理, 1997,14(2):155-166
    [182]Belytschko T, Gu L, Lu YY. Fracture and Crack growth by element-free Galerkin method. Modellingcand in Simulation Material Science and Engineering, 1994,2:519-534
    [183]Krysl P. Belytschko T. The Element Free Galerkin Method for Dynamic Propagation of Arbitrary 3-D Cracks, International Journal for Numerical Methods in Engineering,1999,44 (6):767-800
    [184]周维垣,寇晓东.无单元法及其工程应用.力学学报,1998,30(2):193-202
    [185]Belytschko T, Mish K. Computability in non-linear solid mechanics. International Journal for Numerical Methods in Engineering,2001,52:3-21
    [186]李卧东,王元汉,谭国焕.无网格法在弹塑性问题中的应用.固体力学学报,2001,22(4):351-367
    [187]Ouatouati A El, Johnson DA. New approach for numerical modal analysis using the element-free method. International Journal for Numerical Methods in Engineering, 1999,46:1-27
    [188]Ohs R R, Aluru N R. Meshless analysis of piezoelectric devices. Comput. Mech., 2001,27:23-36
    [189]Liu WK, Jun S, Li SF et al. Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Methods Engrg.,1995,38:1655-1679
    [190]Chen JS, Pan C, Wu CT et al. Reproducing kernel particle methods for large deformation analysis of non-linear structures, Comput. Methods Appl.Mech.Engrg. 1996,139:195-227
    [191]Lee SH, Kim HJ, Jun S. Two scale meshfree method for the adaptivity of 3-D stress concentration problems. Comput. Mech.,2000,26:376-387
    [192]Chen JS, Pan C et al. A Lagrangian reproducing kernel particle method for metal forming analysis. Comput. Mech.,1998,22:289-307
    [193]Zhang X, Liu XH, Song KZ, Lu MW. Least-square collocation meshless method. Int. J. Numer. Methods Engrg.,2001,51(9):1089-1100
    [194]张雄,胡炜,潘小飞等.加权最小二乘无网格法.力学学报,2003,35(4):425-431
    [195]Sukumar N, Moran B, Belytschko T. The natural element method in solid mechanics. International Journal for Numerical Methods in Engineering,1998,43: 839-887
    [196]Gu YT, Liu GR. A meshless local Petrov-Galerkin (MLPG) formulation for static and free vibration analysis of thin plates. Computer Modeling in Engineering & Sciences (CMES),2001,2(4):463-476
    [197]龙述尧.弹性力学问题的局部Petrov-Galerkin方法.力学学报,2001,33(4):508-518
    [198]龙述尧.用无网格局部Petrov-Galerkin法分析弹性地基上的梁.湖南大学学报,2001,28(5):11-15
    [199]Liu KY, Long SY, Li GY. A simple and less-costly meshless local Petrov-Galerkin (MLPG) method for the dynamic fracture problem. Engineering Analysis with Boundary Elements,2006,30:72-76
    [200]蔡永昌,朱合华,王建华.基于Voronoi结构的无网格局部Petrov-Galerkin方法.力学学报,2003,35(2):187-193
    [201]Liu GR, Gu YT. A local point interpolation method for stress analysis of two-dimensional solids. Structural Engineering and Mechanics,2001,11(2):221-236
    [202]Liu GR, Gu YT. A local radial point interpolation method (LR-PIM) for free vibration analyses of 2-D solids. J. of Sound and Vibration,2001,246(1):29-46
    [203]Liu GR, Yan L, Wang JG, Gu YT. Point interpolation method based on local residual formulation using radial basis function. Structural Eng and Mech,2002, 14(6):713-732
    [204]Mukherjee YX, Mukherjee S. The boundary node method for potential problems. Int. J. Numer. Methods Engrg.,1997,40(5):797-815
    [205]张见明,姚振汉.一种新型无网格法一杂交边界点法.见:袁明武,孙树立主编.工程与科学中的计算力学.北京:北京大学出版社,2001:339-343
    [206]Chen W. RBF-based meshless boundary knot method and boundary particle method, Proc. of China Congress on Comput. Mechanics, Guangzhou, China,2001: 319-326
    [207]Diaz A. and Sigmnund O. Checkerboard patterns in layout optimization. Structural Optimization,1995,10:40-45
    [208]袁振,吴长春.采用非协调元的连续体拓扑优化设计.力学学报,2003,3(35):176-180
    [209]Haber RB, Jog CS and Bendsoe MP. A new approach to variable-topology shape design using a constraint on perimeter. Structural Optimization,1996,1(1):1-11
    [210]Petersson J. Some convergence results in perimeter-controlled topology optimization. Computer Methods in Applied Mechanics and Engineering,1999, 171(12):123-140
    [211]Petersson J and Sigmnund O. Slope constrained topology optimization. International for Numerical Method in Engineering,1998,41(8):1417-1434
    [212]Borrvall T. Topology optimization of elastic continua using restriction. Archives of Computational Methods in Engineering,2001,8(4):351-385
    [213]Sigmund O and Petersson J. Numerical instabilities in topology optimization:A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural and Multidiscipline Optimization,1998,16:68-75
    [214]Bourdin B. Filters in topology optimization. International Journal for Numerical Methods in Engineering,2001,50:2143-2158
    [215]Guo X and Gu Y. A new density-stiffness interpolation scheme for topology optimization of continuum structures. Engineering Computation,2004,21(1):9-22
    [216]Poulsen TA. A new scheme for imposing a minimum length scale in topology optimization. International Journal for Numerical Methods in Engineering,2003,57: 741-760
    [217]Zhou M, Shyy YK, Thorns HL. Checkerboard and minimum member size control in topology optimization. Structural and Multidiscipline Optimization,2001, 21:152-158
    [218]Rozvany GIN. A critical review of established methods of structural topology optimization. Struct Multidisc Optim,2009,37:217-237
    [219]Lurie KA. Applied Optimal Control Theory of Distributed Systems. New York, Plenum Press,1993
    [220]Wang K, Zhou SJ, Shan GJ. The natural neighbour Petrov-Galerkin method for elasto-statics. International Journal for Numerical Methods in Engineering,2005,63: 1126-1145
    [221]Aurenhammer. Voronoi diagrams-a survey of a fundamental geometric data structure, ACM Trans. Math. Software,1996,23:469-483
    [222]Delaunay B,'Sur la sphere vide. A la memoire de Georges Voronoi', Izv. Akad. Nauk SSSR, Otdelenie Matematicheskih i Estestvennyh Nauk,1934,7:793-800
    [223]Green PJ and Sibson RR,'Computing Dirichlet tessellations in the plane', Comput. J.,1978,21:168-173
    [224]Timoshenko SP and Goodier JN. Theory of Elasticity,3rd edn, McGraw Hill, New York,1970
    [225]Reissner E. The effect of transverse shear deformation on the bending of elastic plates. Journal of Applied Mechanics ASME.1945,12:69-77
    [226]Mindlin R. D. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics ASME.1951,18:31-38
    [227]Donning B.; Liu W.K. Meshless methods for shear-deformable beams and plates. Comput Methods Appl Mech Eng.1998,152:47-72
    [228]Belinha J.; Dinis L.M.J.S. Elasto-plastic analysis of plates by the element free Galerkin method. International Journal for Computer-Aided Engineering and Software. 2006,23 (5):525-551
    [229]Wen P. H.; Hon Y. C. Geometrically Nonlinear Analysis of Reissner-Mindlin Plate by Meshless Computation. CMES:Computer Modeling in Engineering and Sciences.2007,21(3):177-191
    [230]曲庆璋,章权,季求知等.弹性板理论.人民交通出版社:北京,2000
    [231]Soto C.A.; Diaz A.R. On modelling of ribbed plates for shape optimization, structural Optimization.1993,6:175-188
    [232]Lipton R.; Diaz A.R. Reinforced Mindlin plates with extremal stiffness, International Journal of Solids and Structures.1997,24(28):3691-3704
    [233]Tenek L.H.; Hagiwara I. Eigenfrequency maximization of plates by optimization of topology using homogenization and mathematical programming. JSME Int. J.1994,37:667-677
    [234]Pedersen N.L. On topology optimization of plates with prestress. International Journal of Numerical Methods in Engineering.2001,51(2):225-240
    [235]Z.D. Ma, H.C. Cheng, N. Kikuchi and I. Hagiwara, Topology and shape optimization technique for structural dynamic problems, Recent Advances in Structural Problems,1992, PVP-248/NE-10:133-143
    [236]Z.D. Ma, N. Kikuchi and I. Hagiwara, Structural topology and shape optimization for a frequency response problem. Computational Mech.1993, 13(3):157-174
    [237]Kosaka, I.; Swan, C.C.1999:A symmetry reduction method for continuum structural topology optimization. Comp. & Struct.1999.70:47-61
    [238]Seyranian, A.P.; Lund, E.; Olhoff, N. Multiple eigenvalues in optimization problems. Struct. Optim.1994,8:207-226
    [239]Neves, M.M.; Rodrigues, H.; Guedes, J.M. Generalized topology design of structures with a buckling load criterion. Struct. Optim.1995,10:71-78
    [240]Olhoff, N.; Du J.B. Topological design of continuum structures subjected to forced vibration. In:6th World Congresses of Structural and Multidisciplinary Optimization. Rio de Janeiro:2005,1-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700