PDC刀具高频感应钎焊的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PDC复合片(Polycrystalline Diamond Compact,简称PDC)的焊接是聚晶金刚石刀具制作的关键工序。高频感应钎焊凭借其环境污染小、生产效率高等优点成为目前世界各国主要采用的PDC刀具焊接方法。但是由于PDC复合片的钎焊工艺性差,且国内在这方面的研究和应用起步比较晚,与国外相比有较大差距,在国内的生产实践中经常会出现PDC复合片与刀具基体结合强度低,所焊刀具出现脱片现象。因而,为了尽快提高国产PDC刀具的制作水平,有必要对影响PDC刀具高频感应钎焊质量的因素进行系统、全面的研究。
     本文刀具基体材料选用45#钢和YG8硬质合金,使用GP15-CW6型高频感应焊机,在空气氛围下对PDC复合片进行了钎焊试验。采用自制的剪切力标定装置,同时借助扫描电镜及电子探针等手段研究了焊前处理、钎料、钎剂的搭配、钎焊工艺参数以及焊后冷却对PDC刀具钎焊质量的影响。
     首先,研究了焊前母材表面处理对焊缝剪切强度的影响,发现PDC复合片表面和刀槽的表面都经过锉削处理时可获得较好性能的PDC刀具钎焊接头,并且试件两钎焊表面锉削方向一致时性能更好。其次,采用石膏粉冷却和空气冷却两种方式对比试验。研究了焊后冷却对刀具性能的影响,认为石膏粉冷却可以阻碍钎焊接头的氧化及裂纹的产生,获得较好的钎焊效果。随后,进行了钎料、钎剂搭配对PDC刀具钎焊性能影响的试验,结果表明:PDC复合片与YG8硬质合金钎焊,采用1#钎料与QJ102钎剂搭配时钎焊接头剪切强度最高,2#钎料与QJ102钎剂搭配方式获得的钎焊接头性能最差;PDC复合片与45#钢钎焊时,2#钎料与F500A钎剂搭配效果最好,1#钎料与F500A钎剂搭配最差。然后对钎焊温度和钎焊压力等钎焊工艺参数进行定量研究,得出以下结论:钎焊温度越高,PDC刀具的剪切强度越大,焊缝厚度越小;为了获得综合性能较好的钎焊接头,PDC复合片与YG8硬质合金刀体的钎焊温度应控制在690℃左右,PDC复合片与45#钢刀体的钎焊温度最好控制在670℃左右;随着钎焊压力的增大,剪切强度先增大后减小,最后基本不变;而焊缝厚度却随着压力的增大而减小,最终趋于定值。最后,探讨了在钎料、钎剂及钎焊工艺参数不变的条件下,一些特殊措施对PDC刀具钎焊性能的影响,认为复焊和用陶瓷棒施加钎焊压力可进一步提高PDC刀具钎焊强度。
The polycrystalline diamond compact (PDC)'s brazing is a key procedure of making polycrystalline diamond cutting tools. Nowadays, the high-frequency induction brazing is the main technique used in the PDC's brazing around the world, due to its notable advantages such as less pollution to environment and higher production efficiency. However, because the PDC has poor brazing processability, and the research and application of the PDC in China still stays at a lower level currently. Compared to other countries, the PDC cutting tools sometimes can break off when it is used in practice for the low brazing intensity between the PDC and base materials. Therefore, it is necessary to investigate the influence factors on the hi-frequency induction brazing technique of PDC in detail as soon as possible, in order to upgrade the performance of PDC cutting tools.
     The PDC's brazing experiments were carried out in air atmosphere with two base materials (45# steel and YG8 cemented carbide), using high-frequency induction brazing machine GP15-CW6. The effect of pre-treatment before brazing, the arrangement of braze alloys and soldering flux, brazing parameters and coolant method after brazing on PDC tools' brazing quality were studied systematically by means of self-made shearing equipment, as well as scanning electron microscopy (SEM) and electronic probe microscopy (EPM).
     Firstly, the effects of base materials' surface pre-treatment on the shearing strength of brazing joints were investigated. It was indicated that high-strength brazing joints would be obtained when the surfaces of the PDC and base metal were both filed, and the brazing joint would reach the greatest effect especially when the filing strips on the compacts were aligned with that on base metals surface.
     Secondly, through comparison experiment with two cooling medium (air coolant and plaster powder coolant), the influence of the cooling on PDC tools' using performance was analyzed. The results showed that the plaster powder cooling could restrain brazing joints of PDC cutting tools from oxidation and microcracks, so the effect of the plaster powder cooling was much better than that of the air coolant.
     Subsequently, the effect of braze alloy and soldering flux matching in pairs on brazing performance was investigated, using two different braze alloys (1#、2#) and two different soldering fluxes (QJ102 and F500A). It was founded that the best brazing joint of the PDC and YG8 cemented carbide could be acquired in arrangements of braze alloy 1# and soldering
     flux QJ102, and the worst one was the compounding of braze alloy 2# and soldering flux QJ102. On the other hand, for the brazing of PDC and 45# steel, braze alloy 2# and soldering flux F500A was the best arrangement, while the braze alloy 1# with soldering flux F500A was the worst.
     By means of single factor experiments, the high-frequency induction brazing parameters of PDC tools such as brazing temperature and brazing pressure were analyzed quantitatively later. The results indicated that with the increase of brazing temperature, the shearing strength increased gradually, but the joint width diminished otherwise. To get a better integrated property of brazing joints, it was proposed that the brazing temperature of the PDC compact/ YG8 cemented carbide should be controlled at about 690℃, and the PDC compact/45# steel at 670℃. The results also showed that, with the increase of brazing pressure, the shearing strength increased first, decreased afterward, and became steady after reaching a certain value while the joint width just decreased all along with the increase of brazing pressure and reached a steady value at last.
     Finally, special technical measures such as the again-brazing technology and applying brazing pressure with ceramic bar were discussed in case of stationary braze alloy and brazing parameters, and they were considered as functional methods with an apparent enhancement of shearing strength of the PCD tools.
引文
[1] 张勤俭,曹风国,王先逵.聚晶金刚石的应用现状和发展趋势[J].金刚石与磨料磨具工程,2006(1):71-74.
    [2] 白清顺,姚英学,Grace Zhang,Phillip Bex.聚晶金刚石(PCD)刀具发展综述[J].工具技术,2002(3):7-10.
    [3] 陈伯蠡.焊接冶金原理[M].北京:清华大学出版社,1991.10.
    [4] 李亚江,王娟等.异种难焊材料的焊接及应用[M].北京:化学工业出版社,2004.01.
    [5] Memullan D. J, Bahrani A. S. The Mechanics of Friction Welding Dissimilar metals, Advanced Welding Technology. The Japan welding society, 1975.
    [6] Minyoung Lee, etal. Polycrystalline Diamond and Cemented Carbide Substrate and Synthesizing Process Therefore, USP 4219,339.
    [7] 中国机械工程学会焊接学会,焊接手册(第一卷)[M].北京:机械工业出版社,2001.
    [8] 王适.金刚石热稳定性及其刀具受热损伤的研究[D].大连:大连理工大学,2003(8).
    [9] 何鹏,刘多,冯吉才.高频感应钎焊中电源频率的优化选择[J].焊接学报,2005,26(11):27-29.
    [10] 吴丹,沈锦飞,颜文旭等.焊接电源中横向磁通感应线圈的研究与设计[J].焊接技术,2006(5):40-43
    [11] K. Landry, C. Rado, R. Voitovich. Mechanisms of Reactive Wetting: the Question of Triple Lline Configuration [J]. Acta Materialia, 1997(7): 3079-3085
    [12] J. A. Warren, W. J. Boettinger and A. R. Roosen. Modeling Reactive Wetting [J]. Acta Materialia, 1998(5): 3247-3264
    [13] E. Saiz, R. M. Cannon and A. P. Tomsia. Reactive Spreading: Adsorption, Ridging and Compound Formation [J]. Acta Materialia, 2000(12): 4449-4462
    [14] A. Meier, R. P. Chidambaram, R. G. Edwards. Modeling of the Spreading Kinetics of Reactive Brazing Alloys on Ceramic Substrates: Copper-titanium Alloys on Polycrystalline Alumina [J]. Acta Mater, 1998, 46(12):4453-4467.
    [15] G. Palasantzas and J. Th. M. de Hosson. Wetting on Rough Surfaces[J]. Acta Materialia, 2001(10): 3533-3538.
    [16] 白向钰,邹一心,王忠平等硬质合金钎焊接头的拘束强化[J].西北工业大学学报,1995,13(2):209-212.
    [17] A. C. Hall, F. M. Hosking, M. Reece. Visual Observations of Liquid Filler Metal Flow within Braze Gap [J]. Science and Technology of Welding and Joining. 2004(9):95-102.
    [18] M N Sani. Further developments in PCD-tipped drills [J]. Industrial Diamond Review, 1992(6): 6-7.
    [19] 范文捷,刘芳,刘建正等.高频感应钎焊钎料、钎剂对PCD刀具焊接性能的影响[J].工具技 术,2004(6):22-24
    [20] 张国榉,张汉斌.钎头的制造工艺与装备[J].凿岩机械气动工具,2000(3):50-60.
    [21] 龙伟民,朱坤,乔培新等.金刚石锯片焊接技术的研究[J].金刚石与磨料磨具工程,2002(3):27-31
    [22] 杨雄,刘昌明,吴文秀等.复合片与硬质合金刀柱间真空扩散焊的工艺研究[J].江汉石油学院学报,1995(3):71-75.
    [23] 董海,张弘弢,李嫂.聚晶金刚石复合片钎焊基础研究[J].金刚石与磨料磨具工程,2005(4):25-28
    [24] 王忠平,白向钰,汪维斌等.镍基钎料钎焊不锈钢的加压钎焊工艺[J].航空工艺技术,1994(3):33-34.
    [25] 张国榉,张汉斌.钎头的制造工艺与装备[J].凿岩机械气动工具,2000(4):17-29
    [26] 邹僖主编.钎焊[M].机械工业出版社,1989.
    [27] 唐旭宇.硬质合金的真空钎焊[J].硬质合金,1998,15(2):108-110.
    [28] 周建华,卢伟民.PO型矿用硬质合金钎焊前表面滚磨处理方法的研究[J].凿岩机械气动工具,2002(3):33-36.
    [29] 张超.聚晶金刚石复合片焊前处理方法[P].中国专利,CN88108188.4
    [30] 赵越.钎焊技术及应用[M].北京:化学工业出版社,2004.
    [31] Sengupta, S. N. Athavale and A. L. Pappachan. Brazing of Hot Isostatically Pressed Al_2O_3 to Stainless Steel(AISI 304L) by Mo-Mn Route Using 72Ag-28Cu Braze [J]. Metallurgical and Materials Transactions, 2005,36A(6):1487-1492.
    [32] R. K. Shiue, S. K. Wu and C. H. Chan. Infrared Brazing Cu and Ti Using a 95Ag-5A1 Braze Alloy [J]. Metallurgical and Materials Transactions, 2004,35A(10):3177-3185.
    [33] 刘中青,邸斌.异种材料的焊接[M].北京:科学出版社,1990.
    [34] 张启运,庄鸿寿.钎焊手册.北京:机械工业出版社,1999.
    [35] 美国焊接学会.焊接手册.北京:机械工业出版社,1985.
    [36] 王适,张弘弢,于宏图等.PCD高频感应钎焊模糊控制及同步数据采集系统[J].中国机械工程,2003,14(1):53-55.
    [37] 王娟,李亚江,吴会强等.Fe_3Al/Q235异种材料扩散焊工艺[J].焊接,2003(4):16-19.
    [38] 谢焕纲.钎缝致密理论[J].电子工艺技术,1981(6):26-33.
    [39] 陈定华,钱乙余,李严.钎焊填缝机理的研究——不等间隙钎焊时钎料填缝过程研究[J].焊接学报,1981,2(1):1-8.
    [40] 谢焕纲.银钎焊致密性理论探讨和实践[J].焊接,1979(6):31-34.
    [41] 陈定华,钱乙余,李严.不等间隙钎焊——提高钎缝致密性机理的研究[J].电子工艺技术,1981(7):18-28.
    [42] 熊柏青,楚建新.残余应力对Si3N4/金属钎焊接头性能的影响[J].中国有色金属学报,1998,8(2):183-186.
    [43] 刘寿荣.关于硬质合金中η相[J].硬质合金,1997,14(4):198-203.
    [44] 刘寿荣.关于硬质合金中η相、η_1相、显微η_2和显微κ相的研究和探讨[J].硬质合金,1998,10(3):146-149.
    [45] Jin Yong Kim, John S Hardy and K. Scott Weil. Effect of CuO Content on the Wetting Behavior and Mechanical Properties of Ag-CuO Braze for Ceramic Joining [J]. American Ceramic Society, 2005,88(9):2521-2528.
    [46] 路汉刚.硬质合金与钢钎焊接头的残余应力研究[D].哈尔滨:哈尔滨工业大学,2006(6).
    [47] 杨务滋,杨国庆,杨超等.焊接中残余应力的大小与分布及减小措施[J].上海有色金属,2003(24):152-154.
    [48] 王新洪,邹增大YT535硬质合金钎焊工艺的研究[J].焊接技术,2001(30):8-9.
    [49] 赵丽杰,王贵成,王冬.硬质合金刀具钎焊后性能变化的研究.哈尔滨工业大学学报,2001,2:265~269.
    [50] K. P. Tucker. Nitrongen Absorption from Welding Arcs [J], Thin Solid Films, 1984(118):73-91.
    [51] 张志明.WC-Co系便质合金抗热冲击疲劳性能的研究[J].金属热处理,1998(3):26-28.
    [52] 徐超,孙凤莲,秦优琼等.金刚石与硬质合金钎焊接头应力场分析.焊接学报,2003,2:47-50.
    [53] 龙伟氏,乔培新,李涛等.PCD用钎料及钎焊工艺的研究[J].金刚石与磨料磨具工程,2002,4(130):27-29.
    [54] 范文杰,刘芳,刘建正等.高频感应钎焊钎料、钎剂对PCD刀具焊接性能的影响[J].工具技术,2004,38(6):22-24.
    [55] 董海,张弘弢,李嫚等.聚晶金刚石复合片钎焊基础研究[J].金刚石与磨料磨具工程,2005,4(148):25-28.
    [56] 何鹏,贾进国,余泽兴等.高频感应钎焊的研究分析[J].机电工程技术,2003,32(1):23-25.
    [57] 白向钰.硬质合金钎焊接头扩散强化机理研究[D].西安:西北工业大学,1990(4).
    [58] 张云鹏.印刷电路板用微型刀具制造技术与设备的研究[D].西安:西北工业大学,2002.
    [59] 刘永涛,高科,安丽叶等.节银Ag-Cu-Zn-Cd钎焊料的研究[J].沈阳黄金学院学报,1994,13(4):349-354.
    [60] 何孝纯,马光辰.贵金属合金相图[M].北京:冶金工业出版社,1983.
    [61] 刘昌明,扬雄,吴文秀等.PDC钻头复合片真空扩散焊接头的显微分析[J].江汉石油学院学报,1995,17(3):76-80.
    [62] 邬占田,刘喜明,赵洪运.影响碳钢铜钎焊接头强度因素的试验研究[J].吉林工业学院学报,1995,16(1):1-7.
    [63] 葛廷刚,张旭东,刘文今等.YG8硬质合金激光钎焊接头显微组织的研究[J].应用激光.1999,19(5):282-284.
    [64] 葛廷刚,刘文今,张旭东等.YG18硬质合金激光焊接性能研究[J].应用激光.2000.20(4):152-154.
    [65] 陈芙蓉,刘军,董俊慧等.不锈钢真空钎焊焊接接头的组织和力学性能[J].焊接,2004(6):18-21.
    [66] 彭成章,陈安华,王文明.采用Cu-Sn合金镀层扩散焊焊接Q235钢[J].焊接,2006(4):25-28.
    [67] 王娟,李亚红,刘鹏.Fe_3Al/Q235扩散焊接头的抗剪强度及组织性能[J].焊接学报,2003,24(5):81-84.
    [68] 杨丽,王辉亭,崔约贤等.钎缝间隙对TC4与Ti_3Al-Nb合金钎焊接头组织的影响[J].材料开发与应用,2006,21(1):28-30.
    [69] 张新平,史耀武,任耀文.钎焊间隙对镍基非晶态钎料接头强度的影响[J].西安交通大学学报,1994,28(4):53-58.
    [70] 卢金斌,汤峰,王志新等.银基钎料钎焊金刚石的界面结构及TiC生长机制[J].焊接技术,2006,35(3):51-53.
    [71] 李岳.金刚石界面金属碳化物过渡层形成机理的研究(金刚石焊接机理研究之一)[J].探矿工程(岩土钻掘工程),2001(1):49-52.
    [72] 李岳.金刚石界面金属碳化物过渡层强度的研究(金刚石焊接机理研究之二)[J].探矿工程(岩土钻掘工程),2001(2):58-60.
    [73] 李岳.金刚石焊接机理的理论分析(金刚石焊接机理研究之四)[J].探矿工程(岩土钻掘工程),2001(4):58-61.
    [74] 马伯江,徐鸿钧,付玉灿等.两种金刚石工具微观结构的对比分析[J].机械工程材料,2005,29(7):10~13.
    [75] 周桂如.流体润滑理论[M].杭州:浙江大学出版社,1990.
    [76] 刘亮知,邹一心,薛崇貌.离子注入Ni对硬质合金扩散焊接接头强度的影响[J].西安工业学院学报,1990,10(3、4):99-104.
    [77] 伍成根,张露菁,柴艳倩.银钎剂中氟化物对钎料铺展性的影响[J].焊接,2003(12):29-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700