ht-PAm在山羊β-casein基因座定位整合与中靶体细胞核移植的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在以往的转基因动物研究中,由于基因表达调控元件的人工拼接和外源基因在动物基
    因组中随机整合所带来的“位置效应”,致使转基因动物外源基因的表达水平不高并且差异
    较大。在这种情况下,以基因同源重组为理论基础的基因打靶技术能全面克服此问题,将
    外源基因定位整合到家畜体细胞的乳蛋白基因座制备乳腺生物反应器,能够充分利用内源
    乳蛋白基因固有的高效表达调控机制。它借助体细胞核移植技术,在一定程度上能避开乳
    用家畜胚胎干细胞建系这一难题。由此可见,这是当前动物乳腺生物反应器生产的理想模
    式。本研究就是利用基因打靶技术将人组织型纤溶酶原激活剂突变体(ht-PAm)基因定位整
    合到山羊胎儿成纤维细胞的β-casein 基因座,然后将中靶细胞进行核移植,以期获得能稳
    定、高效表达 ht-PAm 的山羊乳腺生物反应器。
     克隆关中奶山羊β-casein 基因 5?端的 6.3 kb 片段,进行 DNA 序列分析并鉴定,从而
    获得了包含较完整乳蛋白基因调控元件的山羊β-casein 基因 5?调控序列。将其与改构的
    ht-PAm 连接,从而使该基因的 ATG 与β-casein 基因的 ATG 相重合。分别克隆了关中奶山
    羊β-casein 基因第 7 外显子和第 8、9 外显子,将两侧带有 loxP 位点的 neo 基因插入到内
    含子 7 中,tk 基因插入到外显子 9 外侧。从而构建了含有 neo 和 tk 正负筛选标记基因的β
    -casein 基因打靶载体 pGBC4htPAm,该载体可以用 NotI 位点进行切割,用于细胞的转染整
    合。利用细胞转染试验验证了 neo 基因、tk 基因的有效性,并利用 Cre 重组酶体外验证了
    Cre/loxP 系统的有效性。
     采集胚龄 35 d 的关中奶山羊胚胎,利用胰蛋白酶消化法得到关中奶山羊胎儿成纤维细
    胞。SRY-PCR 法进行胚胎性别鉴定,3 只为雄性,1 只为雌性。对胎儿成纤维细胞进行 40
    代连续培养,染色体核型分析跟踪证明了该细胞用于基因打靶的可行性。同时实验发现,
    LIF 和 EGF 等细胞因子对胎儿成纤维细胞生长有较明显的促进作用。
     将线性化pGBC4htPAm通过电击转染或脂质体转染整合到山羊胎儿成纤维细胞基因组
    中,利用 G418 和 GANC 进行抗性细胞克隆的药物筛选,共获得抗性细胞克隆 1204 个,其
    中生长状态较好的 656 个,3?同源臂重组区域 PCR 检测获得阳性细胞克隆 48 个,对其中
    的 7 个细胞克隆进行 3?同源重组区域基因序列测定,有 3 个克隆转基因整合位点重组后的
    基因序列正确,其中 2 个 5?端同源臂 PCR 产物的酶切分析验证为正确同源重组。比较分析
    认为,电击法比脂质体法更有利于山羊胎儿成纤维细胞的基因打靶。
    
    
    II ht-PAm 在山羊β-casein 基因座定位整合与中靶体细胞核移植的研究
     采集屠宰山羊卵巢获取卵母细胞并体外成熟培养,成熟率为 71.2%。经 0.5% FBS 饥饿
    1~3 d 的转基因体细胞做核供体,经去除第一极体和原核的 MII 期卵母细胞做核受体进行
    核移植。核移植胚电融合后用 Ionomycin 和 6-DMAP 进行激活处理。然后转移到 CR1aa
    培养液中与单层卵丘细胞共培养。重构胚的融合率 55.2%,其中用作核供体的 3 个细胞系
    的融合率存在差异, 体内卵的融合率(71%)与体外卵的融合率(48%)差异极显著。基
    因打靶体细胞核移植后共得到克隆胚 600 枚,其中部分体外发育到桑椹胚或囊胚。手术法
    将发生卵裂且形态正常的转基因克隆胚(2-细胞期或以上)移植到同期发情的山羊输卵管
    中,16 只受体山羊中有 6 只一直没有返情,其中 3 只可能妊娠。
     利用克隆的关中奶山羊β-casein 基因 5?调控序列、外显子 7 到外显子 9 以及 3?侧翼序
    列、改构的 ht-PAm 基因构建了 ht-PAm 基因的乳腺表达载体。利用脂质体转染法使 ht-PAm
    基因在泌乳期家兔的乳腺上皮细胞中进行了瞬间表达,纤溶实验结果表明乳腺细胞分泌的
    t-PA 突变体具有较强生物活性。利用不同来源的脂质体或 DMSO 作介质,利用睾丸介导制
    备转 ht-PAm 基因家兔,共得到乳腺生物反应器转基因兔模型 89 只(F1代仔兔共 184 只),
    阳性率为 48.4%,其中新利用的 DMSO 法的转基因阳性率为 56.3%。
     构建了通用型山羊β-casein 基因座基因打靶载体 pGBC-GFP-neo,载体包含了正负筛
    选标记基因 neo 和 tk,以及无启动子的 GFP 基因。打靶载体线性化后用脂质体包裹转染山
    羊乳腺上皮细胞,利用 G418 和 GANC 进行抗性细胞克隆的药物筛选,共得到抗性细胞克
    隆 51 个,对抗性克隆利用激素诱导β-casein 基因启动子指导 GFP 表达,得到 GFP 表达阳
    性细胞克隆 17 个,对其中 4 个生长状态良好的细胞克隆 PCR 检测验证后用于核移植,克
    隆胚发育率为 59.5%, 部分发育到桑葚胚或囊胚。
     山羊体细胞基因打靶过程中,靶受体细胞常出现过快衰老现象。对山羊打靶衰老细胞
    进行染色体端区的长度分析发现,衰老细胞的端区长度比原代细胞端区长度缩短了2.56 kb。
    以小鼠胎儿成纤维细胞为材料研究发现,打靶细胞染色体端粒的长度以每代 47 bp 碱基缩
    短。在打靶衰老细胞中,或细胞随着增龄,p16INK4a 5?-调控区 DNA 甲基化程度逐渐降低;
    利用 RT-PCR 与 Northern blot 证明,衰老细胞与年轻细胞中
The production of recombinant protein is one of the major successes of biotechnology; animal
    cells are required to synthesize proteins with the appropriate post-translational modifications.
    Transgenic animal mammary gland bioreactors are being used for this purpose. Producing
    mammary gland bioreactor showed great advantage over many years, but the level of transgenic
    expression was low in transgenic animals and the diversity was greater because of the position
    effect of transgene and the artificial recombination of the gene elements. Gene targeting based on
    the principle of gene homologous recombination had been studied and applied, because the
    transgene could be integrated precisely in the chromosome. Gene targeting is a more powerful
    method to produce mammary gland bioreactor, and nuclear transfer from cultured somatic cells
    provides an wonderful means of cell-mediated transgensis. Here we describe efficient and
    reproducible gene targeting in goat fetal fibroblasts to place the human tissue-type plasminogen
    activator mutant (ht-PAm) cDNA at the beta-casein locus, and would produce the transgenic goat
    by nuclear transfer.
     To construct the gene targeting vector pGBC4htPAm, the Guanzhong milk goat beta-casein
    genomic DNA sequence for homologous arms had been cloned firstly. The left arm was 6.3 kb
    fragment including goat beta-casein gene 5?flanking sequence, and the right arm was 2.4 kb
    fragment including beta-casein gene from exon 8 to exon 9. The ht-PAm cDNA was subcloned in
    the goat beta-casein gene exon 2. The bacterial neomycin (neo) gene as positive selection marker
    gene, was placed in the beta-casein gene intron 7, the thymidine kinase (tk) as the negative
    selection marker gene, was just outside the right arm. The validity of the positive-negative
    selection vector was tested , and targeting homologous recombination were elevated to 3.7-fold
    with the tk gene. The DNA fragment between two loxP sequences was deleted effectively using
    Cre recombinase in vitro.
     Goat fetal fibroblasts were isolated from day 35 fetuses of Guanzhong milk goats and
    cultured to subconfluence before transfection, about fibroblasts were electoporated with linear
    pGBC4htPAm. Transfected cells were cultured in 96-wellplate for 24 h without selection, then
    added the drug G418(600 μg/ml) and GANC(2 μmol/l). With LipefectaminTM-2000, cells were
    transfected with linear pGBC4htPAm. These transfected cells were cultured for 24 h without
    selection, then added the drug G418(800 μg/ml). After 12 days of selection, well separated clones
    were isolated and expanded in 24-wellplate, then added the drug G418(300 μg/ml) and GANC(2
    μmol/l). 1204 clones were selected, and only 656 clones could grow and be tested by PCR
    screening for targeting. The results demonstrated that 48 targeting cell clones with homologous
    recombination events were obtained using 3?-PCR, and 3 cell clones were verified by DNA
    
    
    IV ht-PAm 在山羊β-casein 基因座定位整合与中靶体细胞核移植的研究
    sequence analysis on the homologous recombination region, 2 ones were verified by 5?-PCR.
     Goat cumulus-oocyte complexes (COCs) recovered by surface-follicles cutting from
    breeding seasons were matured in vitro, and 71.2% COCs were matured. The 3 targeted cell
    clones were nuclear transfer as donor cell after 1~3 days culturing with 0.5% FCS, and the
    receptor cells were MII oocytes without nuclear and first polar bodies. These reconstructed
    embryos were fused for 40 μs under 1.2 kv/cm voltage, and activated using 5 μmol/l Ionomycin
    for 5 min,2 mmol/l 6-DMAP for 4 h. 55.2% reconstructed embryos were fused and co-cultured
    with cumulus cells in CR1aa. The results showed that the percentages of fused embryos were
    different from different oocyte types (matured in vivo or in vitro) and different transgenic somatic
    cell lines. 600 reconstructed embryos had been obtained, and some could develop to morula or
    blastocyst in vitro. These developed cloned embryos were transferred to 16 recipients, and 6
    recipients did not returned
引文
[1] 陈大元,李劲松,韩之明,等. 体细胞克隆牛:供体细胞和受体的影响. 科学通报,2003,
     48(8):768~773
    [2] 陈红星,程萱,杨晓,等. 牛β-乳球蛋白基因调控序列指导组织型纤溶酶原激活剂在
     小鼠乳腺中的表达. 生物工程学报,2001,17(2):135~139
    [3] 陈立栋. 牛 1,3α-半乳糖基转移酶基因敲除的研究. 中国农业大学博士学位论文. 北
     京,2003
    [4] 成勇,王玉阁,罗金平,等. 由成年转基因山羊体细胞而来的克隆山羊. 生物工程学报,
     2002,18(1):79~83
    [5] 段建明,刘平湖,张宗玉,等. P16 基因导入致人乳腺癌 MCF-7 细胞端区缩短及细胞
     周期阻滞. 中国生物化学与分子生物学报,2000,16:124~127
    [6] 龚国春,戴蕴平,樊宝良,等. 以不同类型的转基因细胞为核供体生产牛的转基因克隆
     胚胎. 中国科学(C 辑),2003,33(6):532~538
    [7] 龚振明,李坚,傅继梁. 小鼠胚胎干细胞 P16INK4a基因外显子 1a 打靶研究. 遗传学报,
     2002,29(1):21~25
    [8] 郭继彤. 成年体细胞克隆山羊的研究. 西北农林科技大学博士学位论文. 杨陵,2000
    [9] 郭淑贞,童坦君,张宗玉. 细胞衰老相关基因的探索. 生物化学与生物物理进展,2001,
     28:467~469
    [10] 胡建,覃文新,万大方,等. 端粒及端粒酶研究的最新进展. 生命科学,2001,13:133~
     138
    [11] 胡建成,雷颖,洪夏,等. P53 的过量表达能迅速诱导 NIH3T3 细胞衰老. 科学通报,
     2000,45(11):2306~2310
    [12] 胡炜,汪亚平,朱作言. 核移植后的细胞核再程序化机制研究进展. 遗传学报,2003,
     30(5):485~492
    [13] 黄淑帧,黄美珏,黄英,等. 试管牛和试管羊胚胎性别的鉴定. 遗传,2000,22(2):
     65~68
    [14] 黄赞,颜景斌,黄缨,等. 山羊β-酪蛋白基因启动子指导的转基因小鼠乳汁高效分泌
     表达人凝血因子 IX. 遗传学报,2002,29(3):206~211
    [15] 雷蕾,刘忠华,王鸿,等. 体细胞来源及培养代数对核移植重构胚发育的影响. 遗传学
     报,2003,30(3):215~220
    [16] 雷蕾,刘忠华,朱子玉,等. 不同类型核受体对小鼠体细胞重构胚胎发育能力的影响.
     科学通报,2003,48(2):171~173
    [17] 李劲松,陈大元. 哺乳动物核移植中供核与受体卵胞质细胞周期的相互关系. 生物化学
     与生物物理进展,2002,29(2):206~210
    [18] 刘士辉,黄培堂. 组织型纤溶酶原激活剂突变体的构建、表达及特性分析. 中国科学
    
    
    74 ht-PAm 在山羊β-casein 基因座定位整合与中靶体细胞核移植的研究
     (B辑) , 1995, 4: 399~405
    [19] 李湘萍. 绵羊体细胞 myostatin 基因敲除及定位整合 mAAT 基因的初步研究. 广西大学
     博士学位论文. 南宁,2002
    [20] 钱民章, 宋后燕. 人组织型纤溶酶原激活剂 (t-PA)基因. 生物工程学报, 1998, 4(1):
     1~4
    [21] 沈伟,黄粤,唐毅,等. BAC 介导的含 97 kb 人β-类珠蛋白基因簇转基因小鼠模型
     的建立. 中国医学科学院学报,2003,25(2):117~121
    [22] 沈伟,杨正田,邓继先. 体细胞基因打靶制备动物乳腺生物反应器的策略与应用. 生物
     工程学报,2003, 19(6): 767~770
    [23] 谭晓红,程萱,周江,等. 牛α-s1 酪蛋白基因序列指导 ht-PA 突变体小基因在小鼠乳
     腺中的表达. 遗传学报,2001,28(5):405~410
    [24] 杨晓青,王飞,王颖,等. 通过启动子同源重组研究人凝血因子 IX 的组成型表达. 中
     国科学(C 辑),2000,30(5):533~540
    [25] 杨正田,沈伟,邓继先. 体细胞核移植胚胎核重编程的研究进展. 遗传学报,2004,31
     (5):485~491
    [26] 周江,程萱,孙彦洵,等. 基于 Cre/LoxP 系统的 Smad2 条件基因打靶小鼠的建立. 中
     国科学(C 辑),2001,31(4):335~342
    [27] 周江,邓继先,程萱,等. BLG-LAtPA 和鼠 WAP 共注射提高 LAt-PA 在转基因小鼠
     乳腺中的表达水平. 生物工程学报,2001,17(1):64~67
    [28] 周江,邓继先,刘红,等. 组织纤溶酶原激活剂突变体在转基因小鼠乳腺中的表达.生
     物工程学报,1998,14(4):372~376
    [29] 周江,杨晓,黄培堂,等. Smad2 条件基因剔除载体的构建及 LoxP 位点有效性鉴定.
     生物技术通讯,2001,12(4):241~244
    [30]Andras D, Paul D S, Tim K, et al. Somatic cell nuclear transfer: recent progress and
     challenges. Cloning and Stem Cells, 2002, 4: 81~90
    [31]Andreas F K, Ray A, Jim M, et al. Insertion of a foreign gene into the β-casein locus by
     Cre-mediated site-specific recombination. Gene, 1999, 227: 21~31
    [32]Angelika E S, Alexander J K, William A R, et al. Human factor IX transgenic sheep
     production by transfer of nuclei from transfected fetal fibroblasts. Science, 1997, 278:
     2130~2133
    [33]Baguisi A, Behboodi E, Melican D T, et al. Production of goats by somatic cell nuclear
     transfer. Nature Biotechnology, 1999, 17: 456~461
    [34]Baldassarre H, Wang B, Kafidi N, et al. Advances in the production and propagation of
     transgenic goats using laparoscopic ovum pick-up and in vitro embryo production
     technologies. Theriogenology, 2002, 57: 275~284
    [35]Baldassarre H, Wang B, Kafidi N, et al. Production of transgenic goats by pronuclear
    
    
    参考文献 75
     microinjection of in vitro produced zygotes derived from oocytes recovered by laparoscopy.
     Theriogenology, 2003, 59: 831~839
    [36]Campbell K H S, McWhir J, Ritchie WA, et al. Sheep cloned by nuclear transfer from a
     cultured cell line. Nature, 1996, 389: 64~66
    [37]Celebi C, Auvray P, Benvegnu T, et al. Transient transmission of a transgene in mouse
     offspring following in vivo transfection of male germ cells. Molecular Reproduction and
     Development, 2002, 62: 477~482
    [38]Chan A W S, Chong K Y, Martinovich C, et al. Transgenic monkeys producted by retroviral
     gene transfer into mature oocytes. Science, 2001, 291: 309~312
    [39]Chen C M, Richard R B. CREating breakthroughs A cell-permeable Cre recombinase
     provides an alternative approach for genetically manipulating cell in culture and mice.
     Nature Biotechnology, 2001, 19: 921~922
    [40]Chen L H, Behboodi E, Reggio B C, et al. Production of transgenic goats from a transfected
     fibroblast cell line. Theriogenology, 2001, 55: 559
    [41]Cibelli J B. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science,
     1998, 280: 1256~1258
    [42]Clark A J, Burl S, Denning C, et al. Gene targeting in livestock: a preview. Transgenic
     Research, 2000, 9: 263~275
    [43]Daewoong J, Abudi N, Christie D, et al. Epigentic regulation of gene structure and function
     with a cell-permeable Cre recombinase. Nature Biotechnology, 2001, 19: 929~933
    [44]Dai Y F, Vaught T D, Boone J, et al. Targeted disruption of theα-1,3-galaclosyl transferase
     gene in cloned pigs. Nature Biotechnology, 2002, 20: 251~255
    [45]Daniel P P, Joseph P K, Eszter B W, et al. Transgenic milk as a method for the production of
     recombinant antibodies. Journal of Immunological Methods, 1999, 231: 147~157
    [46]De Sousa P A, King T, Harkness L, et al. Evaluation of gestational deficiencies in cloned
     sheep fetuses and placentae. Biology Reproduction, 2001, 65: 23~30
    [47]Denning C, Burl S, Ainsline A, et al. Deletion of the α(1,3) galactosyl transferase (GGTAI)
     gene and the prion protein (PrP) gene in sheep. Nature Biotechnology, 2001, 19: 559~562
    [48]Don P W, Shoukhrat M, Robert B N. Nuclear transfer technology in mammalian cloning.
     Archives of Medical Research, 2001, 32: 609~613
    [49]Dronkert M L, Beverloo H B, Johnson R D, et al. Mouse RAD 54 affects DNA double strand
     break repair and sisiter chromatid exchanges. Molecular and Cellular Biology, 2000, 20:
     3147~3156
    [50]Duan J M, Zhang Z Y, Tong T J. Senescence delay of human diploid fibroblast induced by
     anti-sense p16INK4a expression. The Journal of Biological Chemistry, 2001, 276(51): 48325~
     48331
    
    
    76 ht-PAm 在山羊β-casein 基因座定位整合与中靶体细胞核移植的研究
    [51]Ebert K M, Selgrath J P, DiTullio P, et al. Transgenic production of a variant of human
     tissue-type plasminogen activator in goat milk: Generation of transgenic goats and analysis
     of expression. Bio/Technology, 1991, 9: 835~838
    [52]Eggan K, Akutsu H, Loring J, et al. Hybrid vigor, fetal overgrowth, and viability of mice
     derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci
     USA, 2001, 98: 6209~6214
    [53]Eiichiro S, Minoru T, Yukiko M Y, et al. Homologous DNA recombination in vertebrate cells.
     Proc Natl Acad Sci USA, 2001, 98(15): 8388~8394
    [54]Errers J, HenDriks R W, Swagemakers S M, et al. Disruption of mouse Rad54 reduces
     ionizing radiation resistance and homologous recombination. Cell, 1997, 89: 195~204
    [55]Essers J, Van Steeg H, de Wit J, et al. Homologous and non-homologous recombination
     differentially affect DNA damage repair in mice. The EMBO Journal, 2000, 19: 1703~1710
    [56]Eynard N, Rols M P, Ganeva V, et al. Electrotransformation pathways of prokaryotic and
     eucaryotic cells: rencent development. Bioeletrochemistry and Bioenergetics, 1997, 44:
     103~110
    [57]Fradiani P A, Ascenzioni F, Lavitrano M, et al. Telomeres and telomerase activity in pig
     tissues. Biochimie, 2004, 86: 7~12
    [58]Gabriel M, Bettina L, Venugopal B, et al. The Rad50 signature motif: essential to ATP binding
     and biological function. J Mol Biol, 2004, 335: 937~951
    [59]Gall L, Gal F L, Smedt V D. Protein phosphorylation patterns during in vitro maturation of
     the goat oocyte. Molecular Reproduction and Development, 1993, 36: 500~506
    [60]Gandofi F. Sperm-mediated transgenesis. Theriogenology, 2000, 53: 127~137
    [61]Goberdhan P D, Xinhua L, George B, et al. A biomarker that identifies senescent human cells
     in culture and in aging skin in vivo. Proc Natl Acad Sci USA, 1995, 92: 9363~9367
    [62]Gordon K, Lee E, Vitale J A, et al. Production of human tissue plasminogen activator in
     transgenic mouse milk. Bio/Technology, 1987, 5: 1183~1187
    [63]Gu H, Jamey D M, Paul C O, et al. Deletion of a DNA Polymerase β Gene Segment in T
     Cells Using Cell Type-Specific Gene Targeting. Science, 1994, 7(265): 104~106
    [64]Guglielmi L, Truffinet V, Cogne M, et al. The beta-globin HS4 insulator confers copy-number
     dependent expression of IgH regulatory elements in stable B cell transfectants. Immunol Lett,
     2003, 89: 119~123
    [65]Heiner N, Wilfried A K. Application of transgenesis in livestock for agriculture and
     biomedicine. Animal Reproduction Science, 2003, 79: 291~317
    [66]Henry L, Carol P. Transgenic animal bioreactors-where we are. Transgenic Research, 2000, 9:
     301~304
    [67]Hill J R. Clinical and pathologic feature of cloned transgenic calves and fetuses (13 case
    
    
    参考文献 77
     studies). Theriogenology, 1999, 51: 1451~1465
    [68]Hill J R, Winger Q A, Burghardt R C, et al. Bovine nuclear transfer embryo development
     using cells derived from a cloned fetus. Animal Reproduction Science, 2001, 67: 17~26
    [69]Hollrigl A, Hergovish A, Gorzer I, et al. High-throughput site-directed mutagensis in ES cells.
     Biochem Biophys Res Commum, 2001, 289(2): 329~336
    [70]Holmes A M, Haber J E. Double-strand break repair in yeast requires both leading and lagging
     strand DNA ploymerases. Cell, 1999, 96: 415~424
    [71]Houdebine L M. The methods to generate transgenic animals and control transgene
     expression. Journal of Biotechnology, 2002, 98: 145~160
    [72]Huang S Z, Huang Y, Chen M J, et al. Selection of in vitro produced transgenic embryos by
     nested PCR for efficient production of transgenic goats. Theriogenology, 2001, 56: 545~556
    [73]Humpherys D, Eggan K, Akutsu H, et al. Epigenetic instability in ES cells and cloned mice.
     Science, 2001, 293: 95~97
    [74]Inusha U, Peter J M, Peter H C, et al. defining the roles of nucleotide excision repair and
     recombination in the repair of DNA interstrand cross-links in mammalian cells. Molecular
     and Cellular Biology, 2001, 20(21): 7980~7990
    [75]Isabell G, Louise G, Jacqueline P, et al. Development of a Constitutively Active Mutant Form
     of the Prolactin Receptor, a Member of the Cytokine Receptor Family. Endocrine Society,
     1996, 10(1): 45~56
    [76]Izquierdo D, Villamediana P, lopez-Bejar M, et al. Effect of in vitro and in vivo culture on
     embryo development from prepubertal goat IVM-IVF oocytes. Theriogenology, 2002, 57:
     1431~1441
    [77]Jessica A G, Kevin R J. Efficient bicistronic expression of Cre in mammalian cells. Nucleic
     Acids Research, 1999, 27(9): 2059~2061
    [78]Johnson R D, Liu N, Jasin M. Mammalian XRCC2 promotes the repair of DNA double-strand
     break by homologous recombination. Nature, 1999, 401: 397~399
    [79]Jose B C, Steve L S, Paul J G, et al. Cloned transgenic calves produced from nonquiescent
     fetal fibroblasts. Science, 1998, 280: 1256~1258
    [80]Karen M V, Kathleen M, Zsofia I, et al. Manipulating the mammalian genome by homologous
     recombination. Proc Natl Acad Sci USA, 2001, 98: 8403~8410
    [81]Keefer C L, Keyston R, Lazaris A, et al. Production of cloned Goat after nuclear transfer using
     adult somatic cells. Biology of Reproduction, 2002, 66: 199~203
    [82]Keefer C L, Baldassarre H, Keyston R, et al. Generation of Dwarf Goat (Gapra hircus) clones
     following nuclear transfer with transfected and nontransfected fetal fibroblasts and in
     vitro-matured oocytes. Biology of Reproduction, 2001, 64: 849~856
    [83]Kevin R S. Gene transfer in higher animals: theoretical considerations and key concepts.
    
    
    78 ht-PAm 在山羊β-casein 基因座定位整合与中靶体细胞核移植的研究
     Journal of Biotechnology, 2002, 99: 1~22
    [84]Kevin W. Toward knockout sheep. Nature Biotechnology, 2001, 19: 529~530
    [85]Kimura N, Kudo T, Muneta Y, et al. Development and reporter gene expression in transgenic
     mouse embryos after positive selection in culture. Journal of Reproduction and Development,
     1999, 45(1): 91~96
    [86]Kishi S, Zhou X Z, Ziv Y, et al. Telomeric protein Pin2/TRF1 as an important ATM target in
     response to double strand DNA breaks. J Biol Chem, 2001, 276(31): 29282~29291
    [87]Kogoma T. Stable DNA replication: interplay between DNA replication, homologous
     recombination and transcription. Microbiol Mol Biol Rev, 1997, 61: 212~238
    [88]Kolb A F, Siddell S G. Genomic targeting of a bicistronic DNA fragment by Cre-mediated
     site-specific recombination. Gene, 1997, 203: 209~216
    [89]Kono T. Influence of epigenetic changes during oocyte growth on nuclear reprogramming
     after nuclear transfer. Reprod Fertil Dev, 1998, 10: 593~598
    [90]Kubota C, Yamakuchi H, Todoroki et al. Six cloned calves productioned from adult
     fibroblast cell after long-term culture. Proc Natl Acad Sci USA, 2000, 97: 990~995
    [91]Kuznetsov A V, Kuznetsova I V, I Yu Schit. DNA interaction with rabbit sperm cells and its
     transfer into ova in vitro and in vivo. Molecular Reproduction and Development, 2000, 56:
     292~297
    [92]Lai L X, Kolber S D, Park K W, et al. Production of alpha-1,3-GT knockout pigs by nuclear
     transfer cloning. Science, 2002, 295: 1089~1092
    [93]Lai L X, Park K W, Cheong H T, et al. Transgenic pig expressing the enhanced green
     fluorescent protein produced by nuclear transfer using colochicine-treated fibroblasts as
     donor cells. Molecular Reproduction and Development, 2002, 62: 300~306
    [94]Lanza R P. Extension of cell life-span and telomere length in animals cloned from senescent
     somatic cells. Science, 2000, 288: 665~669
    [95]Li J L, Mark D B. Formation and repair of heteroduplex DNA on both sides of the
     double-strand break during mammalian gene targeting. J Mol Biol, 2000, 295: 505~516
    [96]Liang F, Han M, Romanienko P J, et al. Homology-directed repair is a major double-strand
     break repair pathway in mammalian cells. Proc Natl Acad Sci USA, 1998, 95: 5172~5177
    [97]Liao Y, Day K H, Damon D N, et al. Endothelial cell-specific knockout of connexin 43 causes
     hypotension and bradycardia in mice. Proc Natl Acad Sci USA, 2001, 98: 9989~9994
    [98]Lin Y, Lukacsovich T, Waldman A S. Multiple pathways of repair of DNA double- strand
     breaks in mammalian chromosomes. Molecular and Cellular Biology, 1999, 19: 8353~8360
    [99]Liu H C, He Z Y, Carol A M, et al. Expression of apoptosis-related genes in human oocytes
     and embryos. Journal of Assisted Reproduction and Genetics, 2000, 17(9): 521~533
    [100]Liu L,Oldenbourg R,Trimarchi J R, et al. Areliable, noninvasive technique for spindle
    
    
    参考文献 79
     imaging and enucleation of mammalian occytes. Nature Biotechnology, 2000, 18: 223~225
    [101]Louis M H. Transgenic animal bioreactor. Transgenic Research, 2000, 9: 305~320
    [102]Louis-Marie Houdebine. The methods to generate transgenic animals and to control
     transgene expression. Journal of Biotechnology, 2002, 98: 145~160
    [103]Macháty Z, Prather R S. Strategies for activating nuclear transfer oocytes. Reprod Fertil Dev,
     1998, 10: 599~613.
    [104]Magtouf G, Shaun P S, Igor F, et al. Role for ATM in DNA damage-induced phosphorylation
     of BRCA1. Cancer Research, 2000, 60: 3299~3304
    [105]Maione B, Lavitrano M, Spadafora C, et al. Sperm-mediated gene transfer in mice.
     Molecular Reproduction and Development, 1998, 50: 406~409
    [106]Manas K R, Shawn P F, Stefan M, et al. Beta cell-specific ablation of target gene using
     Cre-loxp system in transgenic mice. Journal of Surgical Research, 1999, 84: 199~203
    [107]Maria J, Marg E M, Christine R, et al. Targeted transgenesis. Proc Natl Acad Sci USA, 1996,
     93: 8804~8808
    [108]Marialusia L, Maria L B, Monica F, et al. Efficient production by sperm-mediated gene
     transfer of human decay accelerating factor (hDAF) transgenic pigs for xenotransplantation.
     Proc Natl Acad Sci USA, 2002, 99: 14230~14235
    [109]Marina B, Dana C, David J S, et al. Stimulation of homologous recombination through
     targeted cleavage by chimeric nucleases. Molecular and cellular biology, 2001, 21(1):
     289~297
    [110]McCreath K J, Howcroft J, Campbell K H S, et al. Production of gene-targeting sheep by
     nuclear transfer from cultured somatic cells. Nature, 2000, 405: 1066~1069
    [111]Melis E, Moons L, De M M, et al. Targeted delection of the cytosolic domain of tissue factor
     in mice does not affect development. Biochem Biophys Res Commum, 2001, 289(3):
     580~586
    [112]Milind S, Allan B. Genetics: targeting sheep. Nature, 2000, 405: 1004~1005
    [113]Ming Y Y, Rajadurai R. Expression of Bcl-2 and Bax proteins in relation to quality of bovine
     oocytes and embryos produced in vitro. Animal Reproduction Science, 2002, 70: 159~169
    [114]Minoru T, Masao S S, Eiichiro S, et al. The Rad51 paralog Rad51b promotes homologous
     recombinational repair. Molecular and Cellular Biology, 2001, 20(17): 6476~6482
    [115]Miyashita N, Shiga K, Yonai M, et al. Remarkable differences in telomere lengths among
     cattle derived from different cell types. Biology Reproduction, 2002, 66: 1649~1655
    [116]Ongeri E M, Bormann C L, Butler R E, et al. Development of goat embryos after in vitro
     fertilization and parthenogenetic activation by different methods. Theriogenology, 2001, 55:
     1933~1945
    [117]Onishi A, Iwamoto M, Akita T, et al. Pig cloning by microinjection of fetal fibroblast nuclei.
    
    
    80 ht-PAm 在山羊β-casein 基因座定位整合与中靶体细胞核移植的研究
     Science, 2000, 289: 1188~1190
    [118]Ozil J P, Huneau D. Activation of rabbit oocytes: the impact of the Ca++ signal regime on
     development. Development, 2001, 128: 917~928
    [119]Palanlyandl M, Jiri A, Samy S, et al. Restriction enzymes increase efficiencies of illegitimate DNA
     integration but decrease homologous integration in mammalian cells. Nucleic Acids Research, 2001, 29(23):
     4826~4833
    [120]Pandita T K, Lieberman H B, Lim D S, et al. Ionizing radiation activates the ATM kinase
     throughout the cell cycle. Oncogene, 2000, 19(11): 1386~1391
    [121]Pasqualino L, Grazyna P, Barbara B, et al. Genetic rescue of an endangered mammal by cross-species
     nuclear transfer using post-mortem somatic cells. Nature Biotechnology, 2001, 19: 962~964
    [122]Paul D, Seng H C, John M, et al. Production of cystic fibrosis transmembrane conductance
     regulator in the milk of transgenic mice. Biotechnology, 1992, 10: 754~758
    [123]Perry M K, Chris A, Brant M W, et al. Over-expression of human RAD51 and RAD52
     reduces double-strand break-induced homologous recombination in mammalian cells.
     Nucleic Acids Research, 2001, 29(21): 4352~4360
    [124]Polejaeva I A, Chen S H, Vaught T D, et al. Cloned pigs produced by nuclear transfer from
     adult somatic cells. Nature, 2000, 407: 86~90
    [125]R Geoffrey Sargent, James L M, Brian D P, et al. Role of the nucleotide excision repair gene
     ERCC1 in formation of recombination-dependent rearrangements in mammalian cells.
     Nucleic Acids Research, 2000, 28(19): 3771~3778
    [126]Roger D J, Maria J. Sister chromatid gene conversion is a prominent double-strand break
     repair pathway in mammalian cells. The EMBO Journal, 2000, 19(13): 3398~3407
    [127]Rudolph N S. Biopharmaceutical production in transgenic livestock. TIBTECH, 1999, 17:
     367~374
    [128]Schnieke A S. Human Factor IX transgenic sheep produced by transfer of nuclei from
     transfected fetal fibroblasts. Science, 1997, 278: 2130~213
    [129]Schultz R M, Davis W, Stein P, et al. Reprogramming of gene expression during
     preimplantation development. J Exp Zool, 1999, 285: 276~282
    [130]Sedivy J M, Dutriaux A. Gene targeting and somatic cell genetics: a rebirth or coming of age?
     Trends genet, 1999, 15: 88~90
    [131]Shiels P G, Kind A J, Campbell K H, et al. Analysis of telomere lengths in cloned sheep.
     Nature, 1999, 399: 316~317
    [132]Shiga K, Fujita T, Hirose K, et al. Production of calves by transfer of nuclei from cultured
     somatic cell obtained from Japanese black bulls. Theriogenology,1999, 52: 527~535
    [133]Simons J P, Wilmut I, Clark A J, et al. Gene transfer into sheep. Bio/Technology, 1988, 6:
     179~183
    
    
    参考文献 81
    [134]Sirah K B, Elizabeth G P, Kimbergly D K, et al. Single-copy transgenic mice with chosen-
     site integration. Proc Natl Acad Sci USA, 1996, 93: 9067~9072
    [135]Smih F, Rouet P, Romanienko P J, et al. Double-strand breaks at the target locus stimulate
     gene targeting in embryonic stem cells. Nucleic Acids Research, 1995, 23: 5012~5019
    [136]Sonoda E, Sasaki M S, Buerstedde J M, et al. Rad51-deficient vertebrate cells accumulate
     chromosomal breaks prior to cell death. The EMBO Journal, 1998, 17: 598~608
    [137]Sonoda E, Sasaki M S, Morrison C, et al. Sister chromatid exchanges are mediated by
     homologous recombination in vertebrate cells. Molecular and Cellular Biology, 1999, 19:
     5166~5196
    [138]Suzanne L M, Kirk R T, Mario RC et al. Disruption of the proto-oncogene int-2 in mouse
     embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes.
     Nature, 1988, 336(24): 348~352
    [139]Tali Braun, Shachar Dar, Dmitry Vorobiov, et al. Expression of Bcl-xs in Xenopus oocytes
     induces BH3-dependent and caspase-dependent cytochrome c release and apoptosis.
     Molecular Cancer Research, 2003, 1: 186~194
    [140]Tamashiro K LK, Wakayama T, Blanchard R J, et al. Postnatal growth and behavioral
     development of mice cloned from adult cumulus cells. Biology Reproduction, 2000, 63:
     328~334
    [141]Thompson E M, Legouy E, Christians E, et al. Progressive maturation of chromatin structure
     regulates HSP70.1 gene expression in the preimplantation mouse embryo. Development,
     1995, 121: 3425~3437
    [142]Tian X C, Xu J, Yang X. Normal telomere lengths found in cloned cattle. Nature Genet, 2000,
     26: 272~273
    [143]Tuc S O, Priscilla A F, Peter G. Temproal control of the Cre recombinase in transgenic mice
     by a tetracycline responsive prometer. Nucleic Acids Research, 1996, 24(19): 3875~3877
    [144]Verma, Marrs Mclean. Blocking transcription of the human rhodopsin gene by
     triplex-mediated DNA potocrosslinking. Nucleic Acids Research, 2000, 28(21): 4283~4290
    [145]Vladislav A M, Igor G P, Ronald D N, et al. Radioprobing of a RecA-3-stranded DNA
     complex with lodine 125: evidence for recognition of homology in the major groove of the
     target duplex. J Mol Biol, 2000, 299: 629~640
    [146]Wagner K U, Robert J W, Lcu S O, et al. Cre-mediated gene deletion in the mammary gland.
     Nucleic Acids Research, 1997, 25(21): 4323~4330
    [147]Wakayama T, Perry A C, Zuccotti M, et al. Full-term development of mice from enucleated
     oocytes injected with cumulus cell nuclei. Nature, 1998, 394: 369~374
    [148]Wall R J. Biotechnology for the production of modified and innovative animal products:
     transgenic livestock bioreactors. Livestock Production Science, 1999, 59:243~255
    
    
    82 ht-PAm 在山羊β-casein 基因座定位整合与中靶体细胞核移植的研究
    [149]Wall R J, Hawk H W, Nel N. Making transgenic livestock/genetic-engineering on a large-
     scale. J Cell Biochem, 1992, 49 (2): 113~120
    [150]Wang W S, Masayuki S, Yoshiyasu N, et al. Possible association of BLM in decreasing DNA
     double strand breaks during DNA replication. The EMBO Journal, 2000, 19(13): 3428~3435
    [151]Wang W, Wu J F, Zhang Z Y, et al. Characterization of regulatory elements on the promoter
     region of p16INK4a that contribute to overexpression of p16 in senescent fibroblasts. The
     Journal of Biological Chemistry, 2001, 276(52): 48655~48661
    [152]Wilmut I, Schnieke AE, McWhir J, et al. Viable offspring derived from fetal and adult
     mammalian cells. Nature, 1997, 385: 8101~8103
    [153]Wright G, Carver A, Cottom D, et al. High level expression of active human alpha-1
     -antitrypsin in the milk of transgenic sheep. Biotechnology (NY), 1991, 9: 830~834
    [154]Wyllie FS, Jones CJ, Skineer JW, et al. Telomerase prevents the accelerated cell ageing of
     Werner syndrome fibroblast. Nat Genet, 2000, 24: 16~17
    [155]Yamaguchi I Y, Sonoda E, Buerstedde J M, et al. Homologous recombination, but not DNA
     repair, is reduced in vertebrate cells deficient in Rad52. Molecular and Cellular Biology,
     1998, 18: 6430~6435
    [156]Yassmine M N, Raynard L B, Carol A R, et al. DNA replication is required to elicit cellular
     responses to psoralen-induced DNA interstrand cross-links. Molecular and Cellular Biology,
     2001, 20(17): 8283~8289
    [156]Young L E, Fernandes K, McEvoy T G, et al. Epigenetic change in IGF2r is associated with
     fetal overgrowth after sheep embryo culture. Nat Genet, 2001, 27: 153~154
    [157]Zhao R, Fahs S A, Weiler H, et al. An efficient method to successively introduce transgenes
     into a given genomic locus in the mouse. BMC Dev Biol, 2001, 1(1): 10
    [158]Ziomek CA. Commercialization of proteins produced in the mammary gland.
     Theriogenology, 1998, 49: 139~144
    [159]Zou X G, Wang Y G, Cheng Y, et al. Generation of cloned gouts (Gapra hircus) from
     transfected fetal fibroblast cell, the effect of donor cell cycle. Molecular Reproduction and
     Development, 2002, 61: 164~172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700