tPA乳腺特异性表达载体的构建及其瞬时表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管栓塞性疾病是当前危害人类健康导致死亡的主要原因之一。目前,国产正式应用于临床溶栓治疗的纤溶酶原激活剂主要有尿激酶(Urokinase,UK)和链激酶(Streptokinase,SK),而尿激酶和链激酶的溶栓效率有限且因无纤维蛋白结合特异性,易发生治疗性出血。组织型纤溶酶原激活剂(tissue-type plasminogen activator,tPA)是人体内生理性纤溶酶原激活剂,与尿激酶和链激酶相比,人tPA与血栓基质有很高的特异性亲和力。tPA能在血栓局部激活纤溶酶原,使其转化成具有生物活性的纤溶酶,后者可水解血栓的基质—纤维蛋白,使凝血块溶解,血管再通,并且不引起血纤溶酶原的系统性激活,因而大大降低了治疗过程中出血的危险,是一种用于治疗急性心肌梗死等血栓性疾病的特效药品。tPA除了参与体内溶血和凝血的平衡调控外,还与其它一些重要的生理与病理过程密切相关,如组织再造、细胞迁移、排卵、补体激活、激肽产生、肿瘤侵袭等。
     正常人体组织内,tPA分布广,但含量非常低,如在血液中只有4-20 μg/L。在人体内半衰期短,仅4~5 min。因此从天然材料中很难大量制备tPA,用于研究和治疗。通过基因工程手段获取大量tPA是一条很有希望的途径,但各有其优缺点。大肠杆菌缺乏修饰酶类,真核生物蛋白翻译后无法进行磷酸化、酰胺化等加工修饰,不能正确折叠,缺乏分泌作用形成无活性包含体。借助逆转录病毒载体将目的基因导入细胞有潜在致癌性,并有引起宿主病毒感染的可能性。酵母提纯工艺复杂、成本高,产品纯度达不到要求。而且,由于tPA的临床应用剂量(每次80—100mg)的要求,从高效表达tPA的细胞培养液中生产tPA也远远不能满足市场需要。
    
    郑州人学2004届博}刃「究生论文
    t以乳腺特异性表达载体的构建及其瞬时表达
     乳腺生物反应器(mamlnary gland bioreactor)技术是利用哺乳动物乳
    腺特异性表达的启动子元件构建转基因动物,指导外源基因在乳腺中表达,
    并从转基因动物的奶液中获取重组蛋白。利用乳腺生物反应器生产药用蛋
    白具有表达体系简单、可进行翻译后修饰及费用低廉等优点。乳腺生物反
    应器已成为生产重组蛋白的首选手段。
     建立乳腺生物反应器的关键在于构建乳腺特异性表达载体。乳腺特异
    性表达载体由乳腺特异性启动子、目的基因和加PolyA信号三部分组成。
    目前己克隆并用作构建载体的乳蛋白基因主要包括日一乳球蛋白基因
     (BLG)、酪蛋白基因和乳清酸蛋白基因(WAP)等。本研究中,首先将克隆
    的乳清酸蛋白基因(wAP)2.4kb启动子插入pBluescriPt质粒,构建质粒
    pw;然后将克隆的0.37kb加p01yA信号插入wAP启动子的下游,构建可
    指导外源基因在乳腺特异性表达的载体pwA;最后将克隆的目的基因2.Ikb
    tPA CDNA连接于wAP启动子和加p。lyA信号之间,构建tpA乳腺特异性表
    达载体pWTA。构建成功的pWTA表达载体通过脂质转染胺试剂
    LipofeC七amine山川()()转染乳腺癌细胞系,通过体外注射转移至妊娠期小鼠乳
    腺,以原位杂交技术检测tPA在乳腺癌细胞系和泌乳期小鼠乳腺中的瞬时
    表达,验证PWTA表达载体的表达能力。
    材料和方法:
    1.载体pw的构建:以含WAP启动子的质粒WapZhGH为模板,设计引物(上、
    下游引物分别带有Nhel和Hindlll酶切位点),PCR扩增WAP启动子DNA片
    段;以Nhel和Hindm对扩增产物进行双酶切,琼脂糖凝胶电泳回收2.4kb
    酶切片段。以Xbal和Hindlll双酶切pBlueseript质粒,琼脂糖凝胶电泳
    回收2.9了kb酶切片段。Nhel和Xbal粘性末端互补。以体外连接试剂盒连
    接2.4kb WAP启动子片段和2.97kb pBlueseript质粒DNA片段,16oC,连
    接过夜。重组体转化感受态JMIOg细菌。将转化菌涂于含Amp的培养皿,
    37℃,培养过夜。随机挑选10个克隆,接种于含AlnP的LB培养基,37℃,
    培养过夜。小提质粒,分别进行HindIJI单酶切和Hindlll/Sacll双酶切鉴
    定。构建成功的载体命名为pw。
    2.载体pwA的构建:以pcDNA3.O质粒为模板,设计引物(上、下游引物
    
    郑州人学2004届博日口}:究生论文
    t以乳腺特异性表达载体的构建及其瞬时表达
    分别带有Xhol和Kpnl酶切位点),PCR扩增加polyA信号DNA片段。以
    xhol和Kpnl对扩增产物和PW质粒进行双酶切,琼脂糖凝胶电泳回收
    0.37kb和5.4kb酶切片段。体外连接0.37kb加polyA信号DNA片段和
    5.4kb pw质粒DNA片段。获得含重组体DNA阳性菌的方法同上。小提质粒,
    分别进行Xhol单酶切、Xhol/Kpnl双酶切及Hindlll/Sae 11双酶切鉴定。
    构建成功的载体命名为pwA。
    3.载体pWTA的构建:以含t PA cDNA的质粒pETPFR为模板,设计引物(上、
    下游引物分别带Hindlll和Sall酶切位点),PCR扩增tPA eDNA片段。以
    Hindln和Sall对扩增产物及pWA质粒进行双酶切,琼脂糖凝胶电泳回收
    2.Ikb和5.skb酶切片段。体外连接2.Ikb tPA cDNA片段和5.skb pWA质
    粒DNA片段。获得含重组体DNA阳性菌的方法同上。小提质粒,分别以
    Hindlll单酶切、Hindlll/Sall双酶切、Hindlll/Sae 11双酶切及
    KPnl/SaCn双酶切进行鉴定。对插入片段进行序列测定。构建成功的载体
    命名为pwTA。
    4.载体pWTA的瞬时表达鉴定:以随机引物法地高辛标记tPA CDNA探针并
    进行灵敏度检测,一20℃保存。将表达?
Thrombosis is one of diseases resulting in death in mankind; and urokinase and streptokinase are currently applied to clinical therapy. However, they have side reaction, such as hemorrhage due to the limited solving efficiency and the unspecific properties of solving thrombus. Comparing with UK and SK, tissue-type plasminogen activator (tPA) is one kind of natural fibrinolysis substances and possesses high specific affinity to the thrombus. The tPA can convert locally the inactive plasminogen into plasmin which is capable of dissolving the fibrin in blood clots and renewing the circulation. Since tPA is not correlated with systemic activation of plasminogen, it significantly decreases the risk of haemorrhage during treatment. Therefore, it is a drug with special effect used to the treatment of acute thrombotic disorders, such as myocardial infarction. In addition to revolving in regulating the balance of hemolysis and coagulation, it is closely concerned to some important physiological and pathological cours
    es, such as tissue reforming, cell translocation, ovulation, activated peptide production, tumor invasion and so on.
    tPA is widely distributed in the normal tissue, yet the serum level is very low with a content of 4-20ug/L and the half life is very short for only 4-5 minutes. Therefore it is very difficult to obtain tPA from natural materials for research and therapy. It will be a promising way of gaining plenty of tPA
    
    
    
    
    through genetic engineering. Each method for producing recombinant proteins has its own virtues and defects. The proteins translated in the prokaryote, such as Escherichia coli, can not be modified by phosphorylation and acetaminolation because of lacking the modifying enzymes. Thus the proteins can not be secreted because they are folded incorrectly and formed into inactivated occlusion body. Purification of recombinant protein expressed in yeast is complicated and costly. The purity of produc can not meet the demands. The retroviral vector can transfer the exogenous gene into cell. Yet, it may activate oncogene and cause virus infection. According to the clinical dosage of tPA (80-1 OOmg/each t ime), p roduction t PA from m edium o f t he c ell 1 ine f or highly effective expression of tPA also can't satisfy the clinical demand.
    Mammary gland bioreactor technique is to establish the transgenic animals by using the mammalian mammary-specific promoter, which can express the target gene in mammary gland and produce the recombinant protein in milk. Using mammary gland bioreactor to produce recombinant protein possesses virtues of simple expressional system, post-translation modification, low cost and so on. The mammary gland bioreactor has been the first choice for production of recombinant protein.
    The key point of establishment of mammary gland bioreactor is the construction of mammary-specific vector. The mammary-specific vector is composed of mammary-specific promoter, target gene and poly adenylation signal. The milk protein genes which have been cloned and used to construct vector m ainly ine lude b eta-lactoglobulin gene (BLG), c asein gene a nd whey acidic protein (WAP) gene and etc. In this paper, the cloned 2.4kb WAP promoter was inserted into pBluescript plasmid to construct pW plasmid firstly. Then, the cloned 0.37kb polyadenylation signal was inserted into the downstream of WAP promoter to construct vector pWA. Finally, the cloned target gene 2.1kb tPA cDNA was ligated between WAP promoter and polyadenylation signal to construct mammary-specific vector pWTA. The successfully constructed pWTA expression vector was transfected into
    
    
    
    mammary carcinoma cell line MCF-7 mediated by Lipofectamine?000 and into mouse mammary glands by direct injection. The expression level of pWTA was identified by transient expression of tPA in MCF-7 cell line and in lactating mice mammary glands demonstrated in situ hybridization.
    Materials and methods:
    1. Construction of pW vector: The WAP promoter DNA fragment was amplified by PCR using the Wap2hGH plasmid containing WAP promo
引文
1. Pennica D, Holmes WE, Kohr WJ, et al. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coll. Nature, 1983, 301(5897): 214-221
    2. Serebruany VL, Malinin AI, Callahan KP, et al. Effect of tenecteplase versus alteplase on platelets during the first 3 hours of treatment for acute myocardial infarction: the Assessment of the Safety and Efficacy of a New Thrombolytic Agent (ASSENT-2) platelet substudy. Am Heart J. 2003, 145(4): 636-642.
    3. Verstraete M, Collen D. rhrombolytic therapy in the eighties. Blood ,1986,67(6): 1529~1541.
    4. Chia S, Ludlam CA, Fox KA, et al. Acute systemic inflammation enhances endothelium-dependent tissue plasminogen activator release in men. J Am Coil Cardiol, 2003, 41(2):333-339.
    5. Kuiper J, Otter M, Rijken DC, et al . Characterization of the interaction in vivo of tissue-type plasminogen activator with liver cells. J Biol Chem, 1988, 263(34): 18220-18224.
    6. Strick CA, James LC, O'Donnell MM, et al. The isolation and characterization of the pyruvate kinase-encoding gene from the yeast Yarrowia lipolytica. Gene, 1992 , 118(1): 65-72.
    7. Ekhterae D, Stanley JC. Retroviral vector-mediated transfer and expression of human tissue plasminogen activator gene in human endothelial and vascular smooth muscle cells. J Vasc Surg, 1995, 21(6) : 953-962.
    8. Palmiter RD, Brinster RL, Hammer RE, et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature, 1982, 300(5893): 611-615
    9. Archibald AL, McClenaghan M, Hornsey V, et al. High-level
    
    expression of biologically active human alpha 1-antitrypsin in the milk of transgenic mice. Proc Natl Acad Sci USA, 1990, 87(13): 5178-5182
    10.刘森,梁国栋.利用动物乳腺生物反应器生产药用蛋白.生物工程学报,2000, 16(4):421—424
    11. Wright G, Carver A, Cottom D, et al. High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Biotechnology, 1991, 9(9): 830-834
    12. Prunkard D, Cottingham I, Garner I, et al. High-level expression of recombinant human fibrinogen in the milk of transgenic mice. Nat Biotechnol, 1996, 14(7): 867-871
    13. Pan L, Chen J, Chen C. Cloning and sequence analysis of the 5' -flanking region of goat beta-lactoglobulin gene. Chin J Biotechnol, 1997, 13(2): 79-83
    14. Lagutin OV, Dobrovolsky VN, Vinogradova TV, et al. Efficient human INF-gamma expression in the mammary gland of transgenic mice. J Interferon Cytokine Res, 1999, 19(2): 137-144
    15. Niemann H, Halter R, Carnwath JW, et al. Expression of human blood clotting factor Ⅷ in the mammary gland of transgenic sheep. Transgenic Res, 1999, 8(3): 237-247
    16. Chen CM, WangCH, Wu SC, et al. Temporal and spatial expression of biologically active human factor Ⅷ in the milk of transgenic mice driven by mammary-specific bovine alpha-lactalbumin regulation sequences. Transgenic Res, 2002, 11(3): 257-268
    17. Meade H, Gates L, Lacy E, et al. Bovine alpha S1-casein gene sequences direct high level expression of active human urokinase in mouse milk. Biotechnology, 1990, 8(5): 443-446
    18. Platenburg GJ, Kootwi jk EP, Kooiman PM, et al. Expression of human lactoferrin in milk of transgenic mice. Transgenic Res, 1994,
    
    3(2) : 99-108
    19. Kim SJ, Sohn BH, Jeong S, et al. High-level expression of human lactoferrin in milk of transgenic mice using genomic lactoferrin sequence. J Biochem (Tokyo), 1999, 126(2): 320-325
    20. Coulibaly S, Besenfelder U, Miller I, et al. Expression and characterization of functional recombinant bovine follicle-stimulating hormone (boFSHalpha/beta) produced in the milk of transgenic rabbits. Mol Reprod Dev, 2002, 63(3) : 300-308
    21.黄赞,颜景斌,黄缨,等.山羊β-酪蛋白基因启动子指导的转基因小鼠乳汁高效表达人凝血因子Ⅸ.遗传学报,2002,29(3):206-211
    22. Yarus S, Rosen JM, Cole AM, et al. Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice. Proc Natl Acad Sci USA, 1996, 93(24): 14118-14121
    23. Andres AC, Schoenenberger CA, Groner B, et al. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice. Proc Natl Acad Sci USA, 1987, 84(5): 1299-1303
    24. Schoenenberger CA, Andres AC, Groner B, et al. Targeted c-myc gene expressionin mammary glands of transgenic mice induces mammary tumors with constitutive milk protein gene. EMBO J, 1988, 7(1): 169-175
    25. Buggiano V, Schere-levy C, Abe K, et al. Impairment of mammary lobular development induced by expression of TGFbetal under the control of WAP promoter does not suppress tumorigenesis in MMTV-infected transgenic mice. Int J Cancer. 2001, 92(4):568-76.
    26. Gordon JW, Ruddle FH. Integration and stable germ line transmission of genes injected into mouse pronuclei. Science, 1981, 214(4526): 1244-1246
    27. Houdebine LM. Transgenic animal bioreactors. Transgenic Res,
    
    2000, 9(4-5): 305-320
    28. Rajput B, Degen SF, Reich E, et al. Chromosomal locations of human tissue plasminogen activator and urokinase genes. Science, 1985, 230(4726): 672-674.
    29. Kalyan N K, Lee S G, Wilhelm J, et al .Structure- function analysis with tissue-type plasminogen activator. Effect of deletion of NH2-terminal domains on its biochemical and biological properties. J Biol Chem, 1988, 263(8): 3971-3978.
    30. Whitelaw CB, Archibald AL, Harris S, et al. Targeting expression to the mammary gland: intronic sequences can enhance the efficiency of gene expression in transgenic mice. Transgenic Res, 1991, 1(1): 3-13
    31. Palmiter RD, Sandgren EP, Avarbock MR, et al. Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci USA, 1991, 88(2): 478-482
    32. Mitchell PJ, Tjian R. Transcriptional regulation in mammalian ceils by sequence-specific DNA binding proteins. Science, 1989, 245(4916): 371-378
    33. Queen C, Baltimore D. Immunoglobulin gene transcription is activated by downstream sequence elements. Cell, 1983, 33(3): 741-748
    34. Banerji J, Olson L, Schaffner W. A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell, 1983, 33(3): 729-740
    35. Dreyfuss G, Swanson MS, Pinol-Roma S. Heterogeous nuclear ribonucleoprotein particles and the pathway of mRNA formation. Trends Biochem Sci, 1988, 13(3): 86-91
    36. Buchman AR, Berg P. Comparison of intron-dependent and intron-independent gene expression. Mol Cell Biol, 1988, 8(10):
    
    4395-4405
    37. Svaren J, Chalkley R. The structure and assembly of active chromatin. Trends Genet, 1990, 6(2): 52-56
    38. Townes TM, Behringer RR. Human globin locus activation region (LAR): role in temporal control. Trends Genet, 1990, 6(7): 219-223
    39. Kulmburg P, Veelken H, Schmoor C, et al. NST influence on transgene expression from mono-and bicistronic plasmid vectors after lipofectin in a human fibroblast cell line. J Mol Med, 1997, 75(3): 223-229
    40. Dale TC, Krnacik MJ, Schmidhauser C, et al. High level expression of the rat whey acidic protein gene is mediated by elements in the promoter and 3' untranslated region. Mol Cell Biol, 1992, 12(3): 905-914
    41. Mckenzie RM, Larson BL. Purification and partial characterization of a unique group of phosphoproteins from rat milk whey. J Dairy Sci, 1978, 61(6), 723-728
    42. Hennighausen LG. Sippel AE. Characterization and cloning of the mRNAs specific for the lactating mouse mammary gland. Eur J Biochem, 1982, 125(1): 131-141
    43. Hennighausen LG. Sippel AE. Mouse whey acidic protein is a novel member of the family of 'four-disulfide core' proteins. Nucleic Acids Res, 1982, 10(8): 2677-2684
    44. Grabowski H, Le Bars D, Chene N, et al. Rabbit whey acidic protein concentration in milk, serum, mammary gland extract and culture medium. J Dairy Sci, 1991, 74(12): 4143-4150
    45. Hobbs Am, Richards DA, Kessler DJ, et al. Complex hormonal regulation of casein gene expression. J Biol Chem, 1982, 257(7): 3598-3605
    
    
    46. Piletz JE, Heinlen M, Ganschow RE. Biochemical characterization of a novel whey protein from murine milk. J Biol them, 1981, 256(22): 11509-11516
    47. Dandekar AM, Robinson EA, Appella E, et al. Complete sequence analysis of cDNA clones encoding rat whey phosphoprotein: homology to a protease inhibitor. Proc Natl Acad Sci USA, 1982, 79(13): 3987-3991
    48. Bayna EM, Rosen JM. Tissue-specific, high level expression of the rat whey acidic protein gene in transgenic mice. Nucleic Acids Res, 1990, 18(10): 2977-2985
    49. Pittius CW, Sankaran L, Topper YJ, et al. Comparision of the regulation of the whey acidic protein gene with that of a hybrid gene containing the whey acidic protein gene promoter in transgenic mice. Mol Endocrinol, 1988, 2(11): 1027-1032
    50. Richards DA, Rodgers JR, Supowit SC, et al. Construction and preliminary characterization of the rat casein and alphalactalbumin cDNA clones. J Biol Chem, 1981, 256(1): 526-532
    51. Zamierowski MM, Ebner KE. A radioimmunoassay for mouse alpha-lactalbumin. J Immuno Methods, 1980, 36(3-4): 211-220
    52. Barash I, Faerman A, Richenstein M, Karl R, et al. In vivo and in vitro expression of human serum albumin genomic sequences in mammary epithelial cells with beta-lactoglobulin and whey acidic protein promoters. Mol Reprod Dev, 1999, 52(3): 241-252
    53. Velander WH, Johnson JL, Page RL, et al. High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C. Proc Natl Acad Sci USA, 1992, 89(24): 12003-12007
    54. Van Cott KE, Willams B, Velander WH, et al. Affinity purification of biologically active and inactive forms of recombinant human
    
    protein C produced in porcine mammary gland. J Mol Recognit, 1996, 9(5-6): 407-414
    55. Van Cott KE, Lubon H, Russell CG, et al. Phenotypic and genotypic stability of multiple lines of transgenic pigs expressing recombinant human protein C. Transgenic Res, 1997, 6(3): 203-212
    56. Paleyanda RK, Velander WH, Lee TK, et al. Transgenic pigs produce functional human factor Ⅷ in milk. Nat Biotechnol, 1997, 15(10): 971-975
    57. Lipinski D, Jura J, Kalak R, et al. Transgenic rabbit producing human growth hormone in milk. J APPL Genet, 2003, 44(2): 165-174
    58. Mikus T, Ma]y P, Poplstein M, et al. Expression of human erythropoietin gene in the mammary gland of a transgenic mouse. Folia Biol, 2001, 47(6): 187-195
    59. Morini M, Astigiano S, Mora M, et al. Hyperplasia and impaired involution in the mammary gland of transgenic mice expressing human FGF4. Oncogene, 2000, 19(52): 6007-6014
    60. Campbell SM, Rosen JM, Hennighausen LG, et al. Comparison of the whey acidic protein genes of the rat and mouse. Nucleic Acids Res, 1984, 12(22): 8685-8697
    61. Breathnach R, Chambon P. Organization and expression of eukaryotic split genes coding for proteins. Annu Rev Biochem, 1981, 50:349-383
    62. Hobbs AA, Richards DA, Kessler DJ, et al. Complex hormonal regulation of rat casein gene expression. J Biol Chem, 1982, 257(7): 3598-3605
    63. Welte T, Philipp S, Cairns C, et al. Glucocorticoid receptor binding sites in the promoter region of milk protein genes. J Steriod Biochem Mol Biol, 1993, 47(1-6): 75-81
    64. Inuzuka H, Yamanouchi K, Tachi C, et al. A transgenic mouse model
    
    for investigating the response of the upstream region of whey acidic protein (WAP) gene to various steroid hormones. Exp Anim, 2001, 50(1): 1-7
    65. Salmons B, Gunzburg WH. Current perspectives in the biology of mouse mammary tumor virus. Virus Res, 1987, 8(2): 81-102
    66. Pfahl M. Specific binding of the glucocorticoid-receptor complex to the mouse mammary tumor proviral promoter region. Cell, 1982, 31(2 Pt 1): 475-482
    67. Payvar F, DeFranco D, Firestone GL, et al. Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region. Cell, 1983, 35(2 Pt 1): 381-392
    68. Li S, Rosen JM. Gluocorticoid regulation of rat whey acidic protein gene expression involves hormone-induced alterations of chromatin structure in the distal promoter region. Mol Endocrinol, 1994, 8(10): 1328-1335
    69. Li S, Rosen JM. Distal regulatory elements required for rat whey acidic protein gene expression in transgenic mice. J Biol Chem, 1994, 269(19): 14235-14243
    70. Mulvihill ER, LePennec JP, Chambon P. Chicken oviduct progesterone .receptor: location of specific regions of high-affinity binding in cloned DNA fragments of hormone-responsive genes. Cell, 1982, 28(3): 621-632
    71. Gunzburg WH, Salmons B, Zimmermann B, et al. A mammary-specific promoter directs expression of growth hormone not only to the mammary gland, but also to Bergman glia cells in transgenic mice. Nol Endocrinol, 1991, 5(1): 123-133
    72.张钦宪,何丽娅,李平法.医学分子生物学.郑州,郑州大学出版社.2003.
    
    
    73. Mason PJ, Elkington JA, Lloyd MM, et al. Mutations downstream of the polyadenylation site of a Xenopus beta-globin mRNA affect the position but not the efficiency of 3' processing. Cell, 1986, 46(2): 263-270
    74. Whitelaw E, Proudfoot N. Alpha-thalassaemia caused by a poly (A) site mutation reveals that transcriptional termination is linked to 3' end processing in the human alpha 2 globin gene. EMBO J, 1986, 5(11): 2915-2922

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700