17-甲氧基-7-羟基-苯并呋喃查尔酮逆转压力超负荷大鼠心血管重构的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     对于高血压,不单是血压升高造成心血管病危险,而应看作是多种病理生理异常构成的症候群,包括左心室重构、尿蛋白和内皮功能紊乱等,其主要病理生理学特征表现为压力超负荷(pressure overload)和心血管重构(cardiovascular remodeling),包括血管重构(vascular remodeling)和心脏重构(cardiac remodeling)。这些功能和结构改变如果不能及时有效地控制和治疗,后果将会更加复杂,甚至导致心源性猝死和心衰死亡。因此,是否能够和如何逆转高血压所致的心血管重构,已成为高血压治疗的关键,开发新的抗高血压和抗心血管重构的药物是心血管研究领域的热点之一。玉郎伞系蝶形花科植物疏叶崖豆Millettia pulchra (Benth.) Kurz var. Laxior (Dunn)Z.Wei的块根,是广西壮族的特色药材之一,具有广泛的心血管药理活性,17-甲氧基-7-羟基-苯并呋喃查尔酮(17-methoxyl-7-hydroxy-benzene-furanchalcone,简称MHBFC)是从玉郎伞中提取的黄酮化合物,课题组前期研究证实,MHBFC在体外具有较强的清除自由基、抗凝血能力,对H2O2和缺氧/复氧所致的心肌细胞损伤有明显的保护作用,在体内具有抗大鼠心肌缺血再灌注损伤的作用,该显著的心脏保护作用,让我们想到其对压力超负荷心血管重构是否亦有逆转作用。为此,本实验采用压力超负荷大鼠模型,研究MHBFC逆转压力超负荷大鼠心血管重构的作用及机制,为进一步的新药研发提供理论和实验依据。
     目的:
     研究MHBFC逆转压力超负荷大鼠心血管重构的作用及机制,为进一步的新药研发提供理论和实验依据。
     方法:
     雄性SD大鼠,体重130-160g。麻醉后于左肋弓下缘行纵切口,游离腹主动脉,将外径为0.7mm的小圆棒和腹主动脉平行放置,用丝线将其一起结扎,然后迅速抽出小圆棒,致使腹主动脉被缩窄到外径约0.7mm,形成腹主动脉缩窄模型,诱导心肌肥大和重构。假手术组大鼠只行手术通路,不缩窄腹主动脉,其余手术操作均和模型组相同。
     第一部分MHBFC对压力超负荷大鼠心血管重构的作用
     术后,大鼠随机分为5组,每组6只:(1)假手术组;(2)模型组;(3)Lisinopril15mg/kg组;(4)MHBFC6mg/kg组;(5)MHBFC12mg/kg组。于手术后第4天开始灌胃给药,给药容积为0.2ml/l00g体重,每天给药1次,连续6周,假手术组和模型组仅给予等量溶媒。实验最后一天,采用多通道生物信号分析系统检测血流动力学和心功能的变化,Masson’s染色和HE染色观察心血管组织病理学改变,透射电子显微镜下观察心肌超微结构变化。RT-PCR检测心肌肥大的Marker基因-心房利钠肽(atrial natriureticpeptide,ANP)的表达。
     第二部分:MHBFC逆转压力超负荷大鼠心血管重构的内皮机制研究
     实验一基于内皮素系统的作用机制研究
     本部分实验标本来自于实验的第一部分,分为4组:(1)假手术组;(2)模型组;(3)MHBFC6mg/kg组;(4)MHBFC12mg/kg组。收集到相关标本后,采用ELISA法测定血浆中内皮素-1(endothelin-1,ET-1)的含量,RT-PCR观察心肌组织ET-1和内皮素转化酶(endothelin converting enzyme,ECE)的表达,免疫组化法检测心肌组织内皮素A型受体(endothelin-1receptor A type,ETA)和内皮素B型受体(endothelin-1receptor B type,ETB)的表达。
     实验二基于eNOS-NO信号通路的作用机制研究
     术后,大鼠随机分为5组,每组6只:(1)假手术组;(2)模型组;(3)MHBFC12mg/kg组;(4)左旋硝基精氨酸甲酯(NG-nitro-L-argininemethyl ester, L-NAME)50mg/kg(L-NAME50)组;(5)MHBFC12mg/kg+L-NAME50mg/kg (MHBFC12+L-NAME50)组。其中第(1)-(3)组同第一部分。实验最后一天,采用多通道生物信号分析系统检测大鼠血流动力学和心功能的变化,Masson’s染色和HE染色观察心肌组织的病理学改变,免疫组化法检测心肌组织内皮型一氧化氮合酶(endothelial nitricoxide synthase,eNOS)的蛋白表达,生化法检测血浆中一氧化氮(nitricoxide,NO)含量的变化。
     实验三基于前列环素(prostacyclin, PGI2)的作用机制研究
     术后,大鼠随机分为5组,每组6只:(1)假手术组;(2)模型组;(3)MHBFC12mg/kg组;(4)吲哚美辛(indomethacin)2mg/kg(Indo2)组;(5)MHBFC12mg/kg+Indo2mg/kg(MHBFC12+Indo2)组。其中第(1)-(3)组同第一部分。实验最后一天,采用多通道生物信号分析系统观察血流动力学和心脏功能的变化,Masson’s染色和HE染色观察心肌组织病理学改变,ELISA法检测血浆中PGI2含量的变化。
     结果:
     第一部分MHBFC对压力超负荷大鼠心血管重构的作用
     1.血压的变化:实验期间,假手术组大鼠尾动脉收缩压(systolic bloodpressure,SBP)基本保持稳定,模型组大鼠尾动脉SBP呈时间依赖性增加。经MHBFC6,12mg/kg治疗后,自试验第4周起,大鼠尾动脉SBP明显降低(P<0.05或P<0.01vs model group)。缩窄腹主动脉6周后,与假手术组相比,模型组大鼠颈动脉收缩压(aorta systolic blood pressure,ASBP)、颈动脉舒张压(aorta diastolic blood pressure,ADBP)和颈动脉平均动脉压(aorta mean blood pressure,AMBP)均明显增高(P<0.01)。经MHBFC6,12mg/kg治疗后,大鼠颈动脉ASBP、ADBP和AMBP呈剂量相关性降低(P<0.05或P<0.01vs model group)。
     2.心功能的改变:缩窄腹主动脉6周后,模型组大鼠的左室收缩压(leftventricular systolic pressure, LVSP)、左室压力最大上升速率(maximal rate ofleft ventricular systolicpressure,+dp/dtmax)和左室压力最大下降速率(maximalrate of left ventriculardiastolic pressure,-dp/dtmax)均明显增加(P<0.01vssham group),而左室舒张末期压(left ventricular end diastolic pressure,LVEDP)明显降低(P<0.01vs sham group)。而经MHBFC6,12mg/kg治疗后,大鼠的心室舒缩功能明显改善(P<0.05或P<0.01vs model group)。
     3.心血管重构的程度:缩窄腹主动脉6周后,与假手术组相比,模型组大鼠的全心指数(heart weight/body weight,HW/BW)、左心指数(leftventricular weight/body weight,LVW/BW)、右心指数(right ventricularweight/body weight,RVW/BW)和肺指数(lung weight/body weight,LW/BW)均明显增加(P<0.01),表明模型大鼠的心脏发生了大体上的重构。模型组大鼠心肌细胞横截面积、心肌间质胶原容积分数(collagen volume fraction,CVF)、心肌血管周围胶原面积(perivscular collagen area,PVCA)和心肌组织羟脯氨酸(hydroxyproline)的含量均明显增加(P<0.01vs sham group)。血管HE染色检测结果发现,模型组大鼠腹主动脉的管腔总面积(lumenarea,LA)、血管总面积(total aorta area,TAA)、血管管壁横截面积(aortacross-section area,ACSA)、ACSA/TAA、血管平均直径(aorta diameter,AD)、血管管壁平均厚度(Media)、血管腔平均直径(Lumen)以及Media/Lumen等均明显增加(P<0.01vs sham group),表明模型组大鼠的主动脉发生了明显的重构。另外,模型组大鼠心肌组织ANP mRNA的表达明显上调(P<0.01vs sham group)。经MHBFC6,12mg/kg治疗后,心脏指数和肺指数明显降低,可明显抑制心肌细胞横截面积的增加,抑制CVF、PVCA和羟脯氨酸含量的升高(P<0.05或P<0.01vs model group),下调大鼠心肌组织ANP mRNA的表达(P<0.05或P<0.01vs modelgroup)。心肌超微结构检测发现,模型组大鼠心肌细胞发生了亚细胞结构的重构,表现为线粒体数量和体积的增加,经过MHBFC12mg/kg治疗后,大鼠心肌纤维呈有序地平行排列,肌小节由Z线均匀分隔,线粒体的形状呈较规则的卵圆形,且呈列分布在肌纤维之间,提示MHBFC可一定程度改善这种亚细胞结构的重构。
     第二部分MHBFC逆转大鼠心血管重构的内皮机制研究
     实验一基于内皮素系统的作用机制研究
     缩窄腹主动脉6周后,与比假手术组相比,模型组大鼠血浆ET-1的含量明显升高(P<0.01),心肌组织ET-1mRNA、ECE mRNA、ETA和ETB的表达均明显上调(P<0.05或P<0.01)。MHBFC6,12mg/kg治疗6周后,可明显抑制大鼠血浆ET-1的升高,下调大鼠心肌组织ET-1mRNA、ECE mRNA、ETA和ETB的表达(P<0.05或P<0.01vs model group)。血浆NO含量检测发现,模型组大鼠血浆NO含量明显低于假手术组(P<0.01)。MHBFC6,12mg/kg可明显提高血浆中NO含量(P<0.05或P<0.01vs model group),并且血浆中NO的含量与RVW/BW、心肌羟脯氨酸含量、尾动脉SBP均呈现明显的负相关。
     实验二基于eNOS-NO信号通路的作用机制研究
     1.血压的变化:实验期间,L-NAME组大鼠尾动脉SBP随时间逐渐升高,与同期模型组的SBP相比有显著性差异(P<0.05或P<0.01)。与L-NAME组相比,合用MHBFC12mg/kg后,在第2、4、6周均能降低大鼠尾动脉SBP(P<0.05或P<0.01)。
     2.心功能的改变:L-NAME组大鼠心室的收缩功能明显增强,而心室的舒张功能和顺应性明显降低(P<0.01vs sham group)。合用MHBFC12mg/kg后,能明显降低ASBP和LVSP (P<0.01vs L-NAME group),改善心肌的顺应性。
     3.心脏重构的程度:缩窄腹主动脉6周后,L-NAME组大鼠的LVW/BW和RVW/BW明显增加,心肌细胞横截面积亦明显增加(P<0.05或P<0.01vs sham group),合用MHBFC12mg/kg后能明显改善心肌细胞的肥大(P<0.01vs L-NAME group)。另外,L-NAME组大鼠心肌纤维化程度、心肌组织羟脯氨酸的含量明显增加(P<0.01vs sham group),提示L-NAME诱发了比模型组更严重的胶原沉积,合用MHBFC12mg/kg可明显改善L-NAME导致的心肌纤维化,明显抑制心肌组织羟脯氨酸含量的增加(P<0.01vs L-NAME group)。
     4. eNOS-NO的改变:缩窄腹主动脉6周后,模型组大鼠心肌组织的eNOS蛋白表达水平与假手术组相比明显下调(P<0.01),经过MHBFC12mg/kg治疗后,eNOS蛋白表达水平明显增加(P<0.01vs model group)。L-NAME组大鼠心肌组织的eNOS蛋白表达被明显抑制,合用MHBFC12mg/kg后能明显提高被抑制的eNOS蛋白的表达(P<0.01vs L-NAMEgroup)。L-NAME组大鼠血浆中的NO含量明显下降,合用MHBFC12mg/kg治疗后能明显增加血浆中NO的含量(P<0.01vs L-NAME group)。
     实验三基于前列环素(prostacyclin,PGI2)的作用机制研究
     1.血压的变化:缩窄腹主动脉6周后,Indo2组大鼠的尾动脉SBP呈时间依赖性升高,ASBP也明显增加,合用MHBFC12mg/kg后能明显改善Indo诱导的高血流动力学状态(P<0.05或P<0.01vs Indo2group)。
     2.心功能的改变:缩窄腹主动脉6周后,Indo2组大鼠的心脏收缩功能明显增加,心肌的顺应性明显下降,合用MHBFC12mg/kg后能明显抑制Indo引起的心肌收缩力的提高,改善心肌的顺应性。
     3.心脏重构的程度:缩窄腹主动脉6周后,Indo2组大鼠的HW/BW、LVW/BW和RVW/BW明显增加(P<0.01vs sham group),心肌细胞横截面积亦明显增加,合用MHBFC12mg/kg后能明显改善心肌细胞的肥大(P<0.01vs Indo2group)。Indo2组大鼠心肌组织的CVF、PVCA和羟脯氨酸含量明显增加(P<0.01vs sham group),合用MHBFC12mg/kg后能明显抑制CVF和PVCA的恶化(P<0.05或P<0.01vs Indo2group),明显抑制心肌组织羟脯氨酸含量的增高(P<0.01vs Indo2group)。
     4. PGI2含量的变化:缩窄腹主动脉6周后,模型组大鼠血浆中PGI2含量明显降低(P<0.01vs sham group),经MHBFC12mg/kg治疗后能明显提高血浆中PGI2的含量(P<0.01vs model group)。Indo2组大鼠血浆PGI2的含量亦明显降低,合用MHBFC12mg/kg后能明显提高血浆中PGI2的含量(P<0.01vs Indo2group)。结论:
     1. MHBFC6,12mg/kg可明显逆转压力超负荷大鼠的心血管重构,并且这种逆转作用呈一定的剂量依赖性;
     2. MHBFC逆转心血管重构的作用机制可能与其恢复内皮细胞的分泌功能密切相关,表现为增加NO和PGI2的分泌,抑制ET-1的合成与分泌,抑制内皮素系统的活化。
Background:
     Hypertension is a continuum that starts with a rise in blood pressure,evolves to left ventricular hypertrophy (LVH), proteinuria or endothelialdysfunction, and the major pathophysiological character is pressure overloadand cardiovascular remodeling, including vascular remodeling and cardiacremodeling. Insofar as it is not adequately treated or controlled, finally leads tothe development of complications, and the most relevant of which are stroke andheart failure. Therefore, whether and how to reverse the pressureoverload-induced ventricular remodeling is the key of the recent research. Thedevelopment of new antihypertensive and anticardiovascular remodeling drugsis the focus, which will be expected the decrease in morbidity and mortality ofhypertension. Millettia pulchra (Benth.) Kurz var. Laxior (Dunn) Z.Wei (MKL)is a traditional Chinese medicinal herb that is extensively distributed in theGuangxi Province of China, and17-methoxyl-7-hydroxy-benzene-furanchalcone (MHBFC) is a flavonoid monomer that was originally isolatedfrom a60%ethanol extract from MKL roots. Previous studies havedemonstrated that MHBFC could scavenge hydroxyl radicals and oxyradicals,enhance the cardiocyte survival rate in H2O2and hypoxia/reoxygenation injury,and protect the heart against myocardial ischemia in vitro and in vivo. Based on the above information, we hypothesized that MHBFC might be effective in thetreatment of hypertensive heart disease. Here, for the first time, we were toinvestigate its effect on cardiovascular remodeling induced by pressure overloadas well as the potential mechanisms, which provide the experimental evidenceand theoretical support for further development of MHBFC on reversingcardiovascular remodeling.
     Objective:
     To study the reverse effects and mechanisms of MHBFC on pressureoverload-induced cardiovascular remodeling in rats, which provid theexperimental evidence and theoretical support for further development ofMHBFC on reversing cardiovascular remodeling.
     Methods:
     Male Sprague–Dawley rats with a body weight of130–160g wereanesthetized under sterile conditions, and the abdominal aorta above the kidneyswas exposed through a abdominal incision and constricted at the suprarenallevel by a4-0silk suture tied around both the aorta and a blunted22-gaugeneedle, which was then pulled out. A similar procedure was performed for shamgroup without the ligature.
     PartⅠ The protective effects of MHBFC on cardiovascular system inpressure-overload rats
     After surgery, the rats were divided randomly into5groups (n=6):(1) shamgroup;(2) model group;(3) Lisinopril15mg/kg group;(4) MHBFC6mg/kggroup;(5) MHBFC12mg/kg group. The drugs were dissolved in distilled waterand orally administered once a day in0.2mL/100g body weight for6weeksfrom the fourth day after surgery. At the end of the experiment, a biologicalsignal quantitative analytical system was used to evaluate the hemodynamics and heart function, the histological changes were investigated by HE andMasson’s stain, the transmission electron microscopes was used to observe themyocardium ultrastructure. RT-PCR method was used to measure the expressionof atrial natriuretic peptide (ANP) mRNA in myocardial tissue.
     Part Ⅱ Studies of the endothelial mechanisms of MHBFC on pressureoverload-induced cardiovascular remodeling in rats
     Experiment1Studies of endothelial mechanisms of MHBFC base on theendothelin system in pressure-overload rats
     The samples obtained from the first part of the experiment were dividedinto4groups:(1) sham group;(2) model group;(3) Lisinopril15mg/kg group;(4) MHBFC12mg/kg group. ELISA was used to determine the plasma ET-1content, RT-PCR method was used to measure the cardiac ET-1and ECE mRNAexpressions, immunochemical method was used to evaluate the ETAand ETBexpressions in myocardial tissue.
     Experiment2Studies of endothelial mechanisms of MHBFC base on theeNOS-NO signal pathway in pressure-overload rats
     After surgery, the rats were divided randomly into5groups (n=6):(1) shamgroup;(2) model group;(3) MHBFC12mg/kg group;(4) L-NAME50mg/kggroup (L-NAME50group);(5) L-NAME50mg/kg+MHBFC12mg/kg group(L-NAME50+MHBFC12group). At the end of the experiment, a biologicalsignal quantitative analytical system was used to evaluate the hemodynamicsand heart function, and the histological changes were investigated by HE andMasson’s stain. The immunochemical method was used to evaluate the cardiaceNOS expression, and biochemical method was used to determine plasma NOcontent.
     Experiment3Studies of endothelial mechanisms of MHBFC base on thePGI2in pressure-overload rats
     After surgery, the rats were divided randomly into5groups (n=6):(1) shamgroup;(2) model group;(3) MHBFC12mg/kg group;(4) indomethacin2mg/kggroup (Indo2group);(5) indomethacin2mg/kg+MHBFC12mg/kg group(Indo2+MHBFC12group). At the end of the experiment, a biological signalquantitative analytical system was used to evaluate the hemodynamics and heartfunction, the histological changes were investigated by HE and Masson’s stain.ELISA was used to determine the plasma PGI2content.
     Results:
     PartⅠ The protective effects of MHBFC on cardiovascular system inpressure-overload rats
     1. The change of blood pressure: During the time course, the tail arterialsystolic blood pressure (SBP) in sham group rats maintained at the baseline level,the tail arterial SBP in model group rats increased significantly with atime-dependent manner. After treatment with MHBFC6,12mg/kg, the increaseof tail arterial SBP was inhibited markedly from the fourth week (P<0.05or P<0.01vs model group).At sixth week after aortic banding, the carotidASBP,ADBP and AMBP in model group rats increased significantly (P<0.01), whencompared with the sham group. After treatment with MHBFC6,12mg/kg, theincrease of carotid ASBP, ADBP and AMBP were inhibited significantly (P<0.05or P<0.01vs model group).
     2. The change of heart function: At sixth week after aortic banding, the LVSPand±dp/dtmaxin model group rats increased significantly (P<0.01vs shamgroup), while LVEDP decreased significantly (P<0.01vs sham group). Aftertreatment with MHBFC6,12mg/kg, the left ventricular systolic and diastolicfunction were ameliorated significantly (P<0.05or P<0.01vs model group).
     3. Cardiovascular remodeling: At sixth week after aortic banding, the heartweight/body weight (HW/BW), left ventricular weight/body weight (LVW/BW),right ventricular weight/body weight (RVW/BW), lung weight/body weight(LW/BW), total aorta area (TAA), lumen area (LA), aorta cross-section area(ACSA), ACSA/TAA, aorta diameter (AD), media, lumen and media/lumen inmodel group rats increased significantly (P<0.01), when compared with shamgroup, indicating a morphological remodeling of heart and aorta. Thecardiomyocyte cross-sectional area, CVF, PVCA and cardiac tissuehydroxyproline in model group rats increased significantly (P<0.01vs shamgroup). Furthermore, the ANP mRNA expression increased significantly (P<0.01vs sham group). After treatment with MHBFC6,12mg/kg, the HW/BW,LVW/BW, RVW/BW, LW/BW decreased significantly, cardiomyocytecross-section area, CVF, PVCA, hydroxyproline content in cardiac tissue werereversed, respectively (P<0.05or P<0.01vs model group). Myocardial tissueANP mRNA expression was downregulated significantly (P<0.05or P<0.01vs model group). Ultrastructural examination revealed that the ultrastructure ofthe cardiomyocytes in model group rats presented mitochondrial changes,characterized by diffuse mild to moderate increase in size (hypertrophy) andnumber (hyperplasia), focally forming several rows of enlarged mitochondriaseparating the myofibrils. Many mitochondria had the appearance of elongatedgiant mitochondria. Longitudinally oriented cristae, either parallel to the longaxis of the mitochondrion or irregular and concentric, were observed in manyareas. After treatment with MHBFC12mg/kg, the cardiomyocytes showedalmost uniform parallel myofibril arrangement. Z-lines dividing the sarcomereswere linear and perpendicular to the myofilaments. Myofibrils alternated withfew rows of ovoid mitochondria.
     Part Ⅱ Studies of the endothelial mechanisms of MHBFC on pressureoverload-induced cardiovascular remodeling in ratsExperiment1Studies of endothelial mechanisms of MHBFC base on theendothelin system in pressure-overload rats
     At sixth week after aortic banding, the plasma ET-1content was increased,ET-1mRNA, ECE mRNA and ETA, ETBprotein expressions in the myocardialtissue were upregulated in model group rats compared with those in sham grouprats (P<0.05or P<0.01). After treatment with MHBFC6,12mg/kg for6weeks, plasma ET-1content was decreased significantly (P<0.01vs modelgroup), and the upregulation of myocardial tissue ET-1mRNA, ECE mRNA andETA, ETBprotein expressions were inhibited markedly (P<0.05or P<0.01vsmodel group).
     At sixth week after aortic banding, plasma NO content was decreased inmodel group compared with that in sham group (P<0.01). Treatment withMHBFC6,12mg/kg increased the plasma NO content significantly, and thesignificant negative linear correlations were found between RVW/BW, cardiactissue hydroxyproline, SBP and plasma NO.
     Experiment2Studies of endothelial mechanisms of MHBFC base on theeNOS-NO signal pathway in pressure-overload rats
     1. The change of blood pressure: The tail arterial SBP in L-NAME group ratsincreased significantly with a time-dependent manner compared with that inmodel group rats, respectively (P<0.05or P<0.0l). Combined with MHBFC12mg/kg, the tail arterial SBP in the2nd,4th,6th weeks decreased significantlycompared with that in L-NAME group rats, respectively (P<0.05or P<0.0l).
     2. The change of heart function: After6weeks of NO synthase inhibition, anenhanced contractility but a reduced diastolic compliance were taken place in L-NAME group rats (P<0.01vs sham group), MHBFC could significantameliorate the LV function, and the ASBP and LVSP decreased significantly(P<0.01vs L-NAME group).
     3. Cardiac remodeling: At sixth week after aortic banding, the LVW/BW,RVW/BW and cardiomyocytes cross-section increased significantly in L-NAMEgroup rats (P<0.05or P<0.01vs sham group). The combination of MHBFC12mg/kg with L-NAME ameliorated cardiac hypertrophy significantly (P<0.01vs L-NAME group). Histological examination demonstrated that both CVF,PVCA and myocardial tissue hydroxyproline increased significantly inL-NAME group compared with that in sham group rats (P<0.01), and thecombination of MHBFC12mg/kg with L-NAME decreased cardiac tissuehydroxyproline significantly (P<0.01vs L-NAME group).
     4. The change of eNOS-NO: At sixth week after aortic banding, the eNOSprotein expression level was decreased significantly in mode group rats (P<0.01vs sham group). Treatment with MHBFC12mg/kg, the eNOS proteinexpression level was increased significantly (P<0.01vs model group). TheeNOS protein expression level was decreased significantly in L-NAME grouprats, but combination with MHBFC12mg/kg, the eNOS protein expressionlevel was increased significantly (P<0.01vs L-NAME group). The plasma NOwas decreased significantly in L-NAME group rats, but combination withMHBFC12mg/kg, the plasma NO was increased significantly (P<0.01vsL-NAME group).
     Experiment3Studies of endothelial mechanisms of MHBFC base on thePGI2in pressure-overload rats
     1. The change of blood pressure: At sixth week after aortic banding, the tailartery SBP and ASBP in Indo2group rats increased significantly with a time-dependent manner. Combination with MHBFC12mg/kg amelioratedindomethacin induced severe hemodynamics significantly (P<0.05or P<0.01vs Indo2group).
     2. The change of heart function: At sixth week after aortic banding, the cardiaccontractility in Indo2group rats increased significantly, but a reduced cardiacdiastolic compliance significantly. Combined with MHBFC12mg/kg inhibitedthe increase of cardiac contractility, ameliorated cardiac compliance.
     3. Cardiac remodeling: At sixth week after aortic banding, HW/BW, LVW/BW,RVW/BW and cardiomyocytes cross-section increased significantly in Indo2group (P<0.01vs sham group). Combination with MHBFC12mg/kgameliorated cardiomyocytes hypertrophy significantly (P<0.01vs Indo2group). Compared with sham group, the CVF, PVCA and hydroxyprolineincreased significantly in Indo2group (P<0.01), and combination withMHBFC12mg/kg inhibited the deterioration of CVF and PVCA (P<0.05or P<0.01vs Indo2group), inhibited the increase of cardiac hydroxyproline (P<0.01vs Indo2group).
     4. The change of plasma PGI2content: At sixth week after aortic banding, theplasma PGI2content decreased significantly in model group rats (P<0.01vssham group). Long-term treatment with MHBFC12mg/kg increased plasmaPGI2significantly (P<0.01vs model group). Chronic administration of indodecreased plasma PGI2content significantly, and combination with MHBFC12mg/kg inhibited the decrease of plasma PGI2content significantly (P<0.01vsIndo2group).
     Conclusions:
     1. MHBFC6,12mg/kg can significantly reverse pressure-overloadcardiovascular remodeling induced by abdominal aorta binding in rats with a certain extent of dose-dependent manner;
     2. The protective mechanism of MHBFC on cardiovascular system inpressure-overload rats may be related to its regulation of endothelial function,augmenting NO and PGI2secretion, and inhibiting ET-1biosynthesis andsecretion, and ET-1system activation.
引文
[1] Gu D F, Gupta A, Muntner P, et al. Prevalence of cardiovascular disease riskfactor clustering among the adult population of china results from theInternational Collaborative Study of Cardiovascular Disease in Asia (InterAsia)[J]. Circulation,2005,112(5):658-665.
    [2] Kelly T N, Gu D F, Chen J, et al. Hypertension subtype and risk ofcardiovascular disease in Chinese adults [J]. Circulation,2008,118(15):1558-1566.
    [3]顾东风,黄广勇,何江,等.中国心力衰竭流行病学调查及其患病率[J].中华心血管病杂志,2003,31(1):3-6.
    [4] Gao Y, Chen G, Tian H, et al. Prevalence of hypertension in china: across-sectional study [J]. PloS one,2013,8(6): e65938.
    [5] Iso H, Kiyama M, Doi M, et al. Left ventricular mass and subsequent bloodpressure changes among middle-age men in rural andurban Japanesepopulations [J]. Circulation,1994,89(4):1717-1724.
    [6]柳琳,潘毅,蔡三郎.逆转心血管重构的研究进展[J].辽宁中医杂志,2007,34(10):1495-1497.
    [7] Manabe I, Shindo T, Nagai R. Gene expression in fibroblasts and fibrosis-involvement in cardiac hypertrophy [J]. Circulation Research,2002,91(12):1103-1113.
    [8] Weber K T, Brilla C G. Pathological hypertrophy and cardiac interstitium.Fibrosis and renin-angiotensin-aldosterone system [J]. Circulation,1991,83(6):1849-1865.
    [9] Opie L H, Commerford P J, Gersh B J, et al. Controversies in ventricularremodeling [J].Lancet,2006,367(9507):356-367.
    [10] Kim S, Ohta K, Hamaguchi A, et al. Effects of an AT1receptor antagonist,an ACE inhibitor and a calcium channel antagonist on cardiac geneexpressions in hypertensive rats [J].Br J Pharmacol,1996,118(3):549-556.
    [11] Brooks W W, Bing O H,Boluyt M O, et al. Altered inotropic responsivenessand gene expression of hypertrophied myocardium with captopril [J].Hypertension,2000,35(6):1203-1209.
    [12] Kyselovic J, Morel N, Wibo M, et al. Prevention of salt-dependent cardiacremodeling and enhanced gene expression in stroke-prone hypertensive ratsby the long-acting calcium channel blocker lacidipine [J]. J Hypertens,1998,16(10):1515-1522.
    [13] Hocher B, George I, Rebstock J, et al. Endothelin system-dependent cardiacremodeling in renovascular hypertension [J]. Hypertension,1999,33(3):816-822.
    [14]陈庆英,刘国树.常用抗高血压药物的不良反应及处理[J].药物不良反应杂志,2004,6(1):22-27.
    [15] Furchgott R F, Zawadzki J V. The obligatory role of endothelial cells in therelaxation of arterial smooth muscle by acetylcholine [J]. Nature,1980,288(5789):373-376.
    [16] Furchgott R F. The requirement for endothelial cells in the relaxation ofarteries by acetylcholine and some other vasodilators [J]. Trends inPharmacological Sciences,1981,2:173-176.
    [17] Klabunde R. Cardiovascular physiology concepts [M]. Lippincott Williams&Wilkins,2011.
    [18]戴斌.中国现代瑶药[M].南宁:广西科学技术出版社,2009:401-405.
    [19]广西壮族自治区食品药品监督管理局.广西壮族自治区壮药质量标准
    [M].南宁:广西科学技术出版社,2008:72.
    [20]简洁,黄仁彬.17-甲氧基-7-羟基-苯并呋喃查尔酮的分离及晶体结构[J].安徽农业科学,2011,39(15):8920-8921.
    [21]简洁,黄建春,焦杨,等.制备液相色谱分离制备玉郎伞查尔酮类化合物[J].中草药,2011,42(7):1313-1316.
    [22] Jian J, Qing F, Zhang S, et al. The effect of17-methoxyl-7-hydroxy-benzene-furanchalcone isolated from Millettia pulchra on myocardialischemia in vitro and in vivo [J]. Planta Med,2012,78(12):1324-31.
    [23] Xingmei Liang, Jianchun Huang, Xing Lin, et al. The effect of17-methoxyl-7-hydroxy-benzene-furanchalcone on NF-κB and theinflammatory response during myocardial ischemia reperfusion injury inrats [J]. Journal of cardiovascular pharmacology,2014,63(1):68-75.
    [24]简洁,刘曦,黄仁彬,等.玉郎伞两种黄酮单体对心肌细胞缺氧/复氧损伤的保护作用[J].中国药理学通报,2009,25(7):942-945.
    [25]简洁,林兴,张士军,等.玉郎伞两种黄酮单体的抗氧化、耐缺氧和抗凝血作用研究[J].中药药理与临床,2009,25(3):22-23.
    [26]简洁,李勇文,蒋伟哲,等.玉郎伞黄酮单体对自由基清除作用的实验研究[J].中国老年学杂志,2009,29(18):2353-2354.
    [27]简洁,黄建春,张士军,等.玉郎伞2种查尔酮单体对心肌细胞凋亡的抑制作用[J].中国新药与临床杂志,2010,29(3):225-228.
    [28]简洁,张士军,邱莉,等.壮药玉郎伞查尔酮类成分的研究[J].中国医院药学杂志,2010,30(20):1734-1737.
    [29]简洁,刘曦,黄仁彬,等.玉郎伞2种查尔酮单体对心肌过氧化损伤的保护作用研究[J].中国药房,2010,21(23):2124-2126.
    [30]覃斐章,简洁,焦杨,等.17-甲氧基-7-羟基-苯并呋喃查尔酮对垂体后叶素致大鼠心肌缺血的保护作用[J].中国实验方剂学杂志,2012,18(1):145-148.
    [1]唐红,黄鹤,张嬿,等.实验恒河猴10只心脏血流动力学及左室收缩功能的初步测定[J].中国比较医学杂志,2005,15(5):298-301.
    [2]汪华君,戴淑芳,王丽,等.茶多酚对麻醉大鼠血流动力学的影响[J].大连医科大学学报,2006,28(2):104-108.
    [3]黄仁彬,焦杨,蒋伟哲,等.玉郎伞提取物对心脏血流动力学和冠脉流量的影响[J].中国医院药学杂志,2003,23(6):321-322.
    [4] Gardner D G. Natriuretic peptides: markers or modulators of cardiachypertrophy?[J]. Trends Endocrinol Metab,2003,14(9):411-416.
    [5] Jouannot P, Hatt P. Rat myocardial mechanics during pressure-inducedhypertrophy development and reversal [J]. Am J Physiol,1975,229:355–364.
    [6]姜大伟.西洋参茎叶三醇组皂苷对大鼠压力超负荷性心室重构的保护作用[D].吉林大学,2012.
    [7] Gao S, Long C L, Wang R H, et al. KATP activation prevents progression ofcardiac hypertrophy to failure induced by pressure overload via protectingendothelial function[J]. Cardiovascular research,2009,83(3):444-456.
    [8]高杉.盐酸埃他卡林预防压力超负荷大鼠心血管重构作用及其可能的内皮机制[D].安徽医科大学,2007.
    [9] Isoyama S, Ito N, Satoh K, Takishima T. Collagen deposition and thereversal of coronary reserve in cardiac hypertrophy [J]. Hypertension,1992,20(4):491-500
    [10] Dao HH, Essalihi R, Graillon J F, et al. Pharmacological prevention andregression of arterial remodeling in a rat model of isolated systolichypertension [J]. J Hypertens,2002,20(8):1597-1606.
    [11]于学军,戚文航,顾德官,等.自发性高血压大鼠左室肥厚及心肌纤维化的动态变化[J].高血压杂志,1999,7(2):159-162.
    [12]柳琳,潘毅,蔡三郎.逆转心血管重构的研究进展[J].辽宁中医杂志,2007,34(10):1495-1497.
    [13] Doggrell S A, Brown L. Rat models of hypertension, cardiac hypertrophyand failure [J]. Cardiovasc Res,1998,39(1):89-105.
    [14]蔡辉,张群燕,赵智明,等.压力负荷增加大鼠左心室重构模型的建立[J].医学研究生学报,2010,23(2):150-153.
    [15] Roussel E, Gaudreau M, Plante E, et al. Early responses of the leftventricular to pressure overload in Wistar rats [J]. Life Sci,2008,82(5):265-272.
    [16] Fielitz J, Philipp S, Herda L R, et al. Inhibition of prolyl4-hydroxylaseprevents left ventricu-lar remodelling in rats with thoracic aortic banding[J]. Eur J Heart Fail,2007,9(4):336-342.
    [17] Doering C W, Jalil J E, Janicki J S, et al. Collagen network remodeling anddiastolic stiffness of the rat left ventricle with pressure overloadhypertrophy [J]. Cardiovasc Res,1988,22(10):686-695.
    [18]Yamamoto K, Ohishi M, Katsuya T,et al. Deletion of angiotensin-convertingenzyme2accelerates pressure overload-induced cardiac dysfunction byincreasing local angiotensin II [J]. Hypertens,2006,47(4):718-726.
    [19] Weber K T. Cardiac interstitium in health and disease: the fibrillar collagennetwork [J]. J Am Coll Cardiol,1989,13(7):1637-1652
    [20] Diamond J A, Phillips R A. Hypertensive heart disease [J]. Hypertens Res,2005,28(3):191-202.
    [21] Conrad C H, Brooks W W, Hayes J A, et al. Myocardial fibrosis andstiffness with hypertrophy and heart failure in the spontaneouslyhypertensive rat [J]. Circulation,1995,91(1):161-170.
    [22]张海燕,魏宗德.心肌胶原网络重构的研究进展[J].心血管病学进展,2003,24(5):359-362.
    [23] Taniyama Y, Morishita R, Nakagami H, et al. Potential contribution of anovel antifibrotic factor, hepatocyte growth factor, to prevention ofmyocardial fibrosis by angiotensin II blockade in cardiomyopathic hamsters[J]. Circulation,2000,102(2):246-252.
    [24]张超英,李晓惠.容量负荷与心室结构重建的研究进展[J].中国病理生理杂志,2011,27(2):403-406、416.
    [25]任海玲,江时森,谢渡江,等.压力超负荷大鼠心、肺、肾血管重构的动态研究[J].中国微循环,2003,7(2):93-95.
    [26] Heagerty A M, Aalkjaer C, Bund S J, et al. Small artery structure inhypertension. Dual processes of remodeling and growth[J]. Hypertension.1993,21(4):391-397.
    [27] Baumbach G L, Heistad D D. Remodeling of cerebral anterioles in chronichypertension [J]. Hypertention.1989,13(6pt2):968-972.
    [28] Dickhout J G, Lee R M. Structural and functional analysis of small arteriesfrom young spontaneously hypertensive rats [J]. Hypertension,1997,29(3):781-789
    [29] Gibbons G H, Dzau V J. The emerging concept of vascular remodeling [J].N Engl J Med,1994,330(20):1431-1438.
    [30] Krieger J E, Dzau V J. Molecular biology of hypertension [J]. Hypertension.1991,18(3suppl):1-4.
    [31] Shen J, Luscinskas F W, Connolly A, et al. Fluid shear stress modulatescytosolic free calciumin vascular endothelial cells [J]. Am J Physiol,1992,262(2):C384-C390.
    [32] Kuchan M J, Frangos J A. Shear stress regulates endothelin-1release viaprotein kinase C and cGMP in cultured endothelial cells [J]. Am J Physiol.1993,264(1):H150-H156.
    [33] Kamiya A, Togawa T. Adaptive regulation of wall shear stress to flowchange in the canine carotid artery [J]. Am J Physiol,1980,239(1):H14-H21.
    [34]易岂建.利钠肽与心力衰竭[J].儿科药学杂志,2007,13(2):4-6.
    [35] Chien K R, Zhu H, Knowlton K U, et al. Transcriptional regulation duringcardiac growth and development [J]. Ann Rev Physiol,1993,55(1):77-95.
    [36] Luchner A, Muders F, Dietl O, et al. Differential expression of cardiac ANPand BNP in a rabbit model of progressive left ventricular dysfunction [J].Cardiovasc Res,2001,51(3):601-607.
    [1] Sakurai T, Morimoto H, Kasuya Y, et al. Level of ETBreceptor mRNA isdown-regulated by endothelins through decreasing the intracellularstability of mRNA molecules [J].Biochem Biophys Res Commun,1992,186(1):342-347.
    [2] Brunner F, Doherty A M. Role of ETBreceptors in local clearance ofendothelin-1in rat heart: studies with the antagonist PD155080and BQ-788[J]. FEBS Lett,1996,396(2-3):238-242.
    [3] You H W, Chen X, You H J, et al. Role of endothelin-1and its receptors onhypertrophy or p roliferat ion of cu ltu red card ial cells [J]. Zhongguo YiXue Ke Xue Yuan Xue Bao.2006,28(4):520-523.
    [4] Lee G R, Bell D, Kelso E J, et al. Evidence for altered ETBreceptorcharacteristics during development and progression of ventricular cardiomyocyte hypertrophy [J]. Am J Physiol Heart Circ Physiol,2004,287(1):H425-H432.
    [5] Gao S, Long C L, Wang R H, et al. KATPactivation prevents progression ofcardiac hypertrophy to failure induced by pressure overload via protectingendothelial function [J]. Cardiovascular research,2009,83(3):444-456.
    [6] Emoto N, Yanagisawa M. Endothelin-converting enzyme-2is amembrane-bound, phosphoramidon-sensitive metalloprotease with acidicpHoptimum [J]. Journal of Biological Chemistry,1995,270(25):15262-15268.
    [7]孔令雷,颜玲娣,宫泽辉.内皮素系统与心肌肥厚[J].中国药理学通报,2008,24(9):1127-1130.
    [8]陈修,陈维洲,曾贵云.心血管药理学[M].第3版,北京:人民卫生出版社,2003:214-235.
    [9] Lund A K, Goens M B, Nuìez B A, et al. Characterizing the role ofendothelin-1in the progression of cardiac hypertrophy in arylhydrocarbonreceptor (AhR) null mice [J]. Toxicol Appl Pharmacol,2006,212(2):127-135.
    [10] Cullen J P, Bell D, Kelso E J, et al. Use of A-192621to provide evidencefor involvement of endothelin ET (B)-receptors in endothelin-1-mediatedcardiomyocyte hypertrophy [J]. Eur J Pharmacol.2001,417(3):157-168.
    [11] Kobayashi T, Myauchi T, Sakai S, et al. Expression of endothelin-1, ETAand ETBreceptors, and ECE and distribution of endothelin-1in failing ratheart [J]. Am J Physiol,1999,276(4): H1197-H1206.
    [12] Picard P, Smith P J W, Monge J C, et al. Coordinated upregulation of thecardiac endothelin system in a rat model of heart failure [J]. J CardiovascPharmacol,1998,31: S294-S297.
    [13] Oliver Zolk, Jessika Quattek, Gerhard Sitzler, et al. Expression ofendothlin-1, endothelin-converting enzyme, and endothelin receptors inchronic heart failure [J]. Circulation,1999,99(16):2118-2123.
    [14]瞿卫,王自正,王书奎,黄敏.慢性心力衰竭大鼠内皮素系统表达的变化[J].中国病理生理杂志,2004,20(10):1849-1852.
    [1] Balligand J L, Cannon P J. Nitric oxide synthases and cardiac muscleautocrine and paracrine influences [J]. Arterioscler Thromb Vasc Biol,1997,17(10):1846-1858.
    [2] Barouch L A, Harrison R W, Skaf M W, et al. Nitric oxide regulates the heartby spatial confinement of nitric oxide synthase isoforms [J]. Nature,2002,416(6878):337-339.
    [3] Sun Y, Carretero OA, Xu J, et al. Lack of inducible NO synthase reducesoxidative stress and enhances cardiac response to isoproterenol in mice withdeoxycorticosterone acetate-salt hypertension [J]. Hypertension,2005,46(6):1355-1361.
    [4] Jie Jian, Feizhang Qing, Shijun Zhang, et al. The effect of17-methoxyl-7-hydroxy-benzene-furanchalcone isolated from MillettiaPulchra on myocardial ischemia in vitro and in vivo [J]. Planta Med,2012,78(12):1324-1331.
    [5]简洁,刘曦,黄仁彬,等.玉郎伞两种黄酮单体对心肌细胞缺氧/复氧损伤的保护作用[J].中国药理学通报,2009,25(7):942-945.
    [6] Xingmei Liang, Jianchun Huang, Xing Lin, et al. The effect of17-methoxyl-7-hydroxy-benzene-furanchalcone on NF-κB and theinflammatory response during myocardial ischemia reperfusion injury in rats[J]. Journal of cardiovascular pharmacology,2014,63(1):68-75.
    [7]张超英,李晓惠.容量负荷与心室结构重建的研究进展[J].中国病理生理杂志,2011,27(2):403-406、416.
    [8] Balligand J L, Cannon P J. Nitric oxide synthases and cardiac muscleAutocrine and paracrine influences [J]. Arterioscler Thromb Vasc Biol,1997,17(10):1846-1858.
    [9] Barouch L A, Harrison R W, Skaf M W, et al. Nitric oxide regulates the heartby spatial confinement of nitric oxide synthase isoforms [J]. Nature,2002,416(6878):337-339.
    [10] Balligand J L, Cannon P J. Nitric oxide synthases and cardiac muscle.Autocrine and paracrine influences [J]. Arterioscler Thromb Vasc Biol,1997,17(10):1846-1858.
    [11] Janssens S, Pokreisz P, Schoonjans L, et al. Cardiomyocyte-specificoverexpression of nitric oxide synthase3improves left ventricularperformance and reduces compensatory hypertrophy after myocardialinfarction [J]. Circ Res,2004,94(9):1256-1262.
    [12] Sun Y, Carretero OA, Xu J, et al. Lack of inducible NO synthase reducesoxidative stress and enhances cardiac response to isoproterenol in micewith deoxycorticosterone acetate-salt hypertension [J]. Hypertension,2005,46(6):1355-1361.
    [13] Pechanova O, Bernatova I, Pelouch V, et al. Protein remodeling of the heartin NO-deficient hypertension: the effect of captopril [J]. J Mol Cell Cardiol,1997,29(12):3365-3374.
    [14] Takemoto M, Egashira K, Tomita H, et al. Chronic angiotensin-convertingenzyme inhibition and angiotensin II type I receptor blockade: Effects oncardiovascular remodeling in rats induced by the long-term blockade ofnitricoxide synthesis [J]. Hypertension,1997,30(6):1621-1627.
    [15] Dupuis M, Soubrier F, Brocheriou I, et al. Profiling of aortic smooth musclecell gene expression in response to chronic inhibition of nitric oxidesynthase in rats [J]. Circulation,2004,110(7):867-873.
    [1]王立军,贾国良,李兰荪.犬冠状动脉周期性血流减少时冠状窦内血浆TXB2及6-K-PGF1α升高的意义[J].南京大学学报(自然科学),1998,34(2):187.
    [2]何小溪.人参果皂苷对大鼠实验性心肌缺血再灌注损伤及其再灌注损伤后心室重构的影响[D].吉林大学,2018.
    [3] Xiao C Y, Hara A, Yuhki K, et al. Roles of prostaglandin I2and thromboxaneA2in cardiac ischemia-reperfusion injury: a study using mice lacking theirrespective receptors [J]. Circulation,2001,104:2210-2215.
    [4]王天晓,于小风,曲绍春,等.人参Rb组皂苷对压力负荷性心肌肥厚大鼠心室重构的影响及其作用机制[J].时珍国医国药,2008,19(7):1615-1617.
    [5] Archer S, Rich S. Primary pulmonary hypertension: a vascular biology andtranslational research “work in progress”[J]. Circulation,2000,102(22):2781-2791.
    [6] Coleman R A, Smith W L, Narumiya S. International Union ofPharmacology classification of prostanoid receptors: Properties, distribution,and structure of the receptors and their subtypes [J]. Pharmacol Rev,1994,46(2):205-229.
    [7] Narumiya S, Sugimoto Y, Ushikubi F. Prostanoid receptors: structures,properties, and functions [J]. Physiol Rev,1999,79(4):1193-1226.
    [8] Hara A, Yuhki K, Fujino T, et al. Augmented cardiac hypertrophy in responseto pressure overload in mice lacking the prostaglandin I2receptor [J].Circulation,2005,112(1):84-92.
    [9] Ritchie R H, Schiebinger R J, LaPointe M C, et al. Angiotensin II–inducedhypertrophy of adult rat cardiomyocytes is blocked by nitric oxide [J]. Am JPhysiol,1998,275(4):H1370-H1374.
    [1] Mann D L, Bristow M R. Mechanisms and models in heart failure: thebiomechanical model and beyond [J].Circulation,2005,111(21):2837-2849.
    [2] Pfeffer M A, Lamas G A, Vaughan D E, et al. Effect of captopril onprogressive ventricular dilatation after anterior myocardial infarction [J]. NEngl J Med,1988,319(2):80-86.
    [3] Asmar R G, London G M, O'Rourke M E, et al. Improvement in bloodpressure,arterial stiffness and wave reflections with a very-low dose perin-dopril/indapamide combination in hypertensive patient: a comparison withatenolol [J]. Hypertension,2001,38(4):922-926.
    [4] Watanabe T, Barker T A, Berk B C. Angiotensin II and the endotheliumdiverse signals and effects [J]. Hyper tension,2005,45(2):163-169.
    [5]唐家荣,孟庆利,侯凌波,等.缬沙坦对腹主动脉缩窄大鼠心血管重构的影响[J].中华老年心脑血管病杂志,2006,8(10):692-695.
    [6]汪新良,何兆初,易家骥,等.替米沙坦对盐敏感性高血压大鼠血管重构的影响[J].中国心血管杂志,2005,10(6):405-409.
    [7] Schiffrin E L, Park J B, Intengan H D, et al. Correction of arterial structureand endothelial dysfunction in human essential hypertension by theangiotensin receptor antagonist losartan [J]. Circulation,2000,101(14):1653-1659.
    [8] Solomon S D, Skali H, Anavekar N S, et al. Changes in ventricular size andfunction in patients treated with valsartan, captopril, or both after myocardialinfarction[J]. Circulation,2005,111(25):3411-3419.
    [9]张晓霞,吴学思,姚海木,等.合用卡托普利和氯沙坦对大鼠急性心肌梗死后梗死区胶原修复及早期左心室重构的影响[J].心肺血管病杂志,2006,25(2):111-113.
    [10]谢晓春,杨军珂,丁力平,等.卡托普利联合美托洛尔对急性心肌梗死晚期左心室重构的影响[J].中华老年心脑血管病杂志,2006,8(9):594-596.
    [11]王薇娜,赵良平,李冰.美托洛尔对大鼠急性心肌梗死后左心室重构的影响[J].医药导报,2011,30(2):180-183.
    [12]蔡辉,李筝,焦东东,等.美托洛尔对充血性心力衰竭大鼠血浆醛固酮浓度,心肌纤维化和心室重构的影响[J].微循环学杂志,2010(1):13-15.
    [13]黄帧桧,杨帆,张培,等.美托洛尔联用阿伐他汀减轻肾性高血压大鼠左室重构[J].基础医学与临床,2012,32(5):581-582.
    [14] Metra M, Nodari S, Parrinello G, et al. Marked improvement in leftventricular ejection fraction during long-term beta-blockade in patients withchronic heart failure: clinical correlates and prognostic significance [J]. AmHeart J,2003,145(2):292-299.
    [15] Ghio S, Magrini G, Serio A, et al. SENIORS investigators. Effects ofnebivolol in elderly heart failure patients with or without systolic leftventricular dysfunction: results of the SENIORS echocardiographicsubstudy [J]. Eur Heart J,2006,27(5):562-568.
    [16] Colucci W S, Kolias T J, Adams K F, et al. REVERT Study Group.Metoprolol reverses left ventricular remodeling in patients with asymptom-atic systolic dysfunction: the Reversal of VEntricular Remodeling withToprol-XL (REVERT) trial [J]. Circulation,2007,116(1):49-56.
    [17] Brilla C G, Pick R, Tan L B, et al. Remodeling of the rat right and leftventricle in experimental hypertension [J]. Circ Res,1990,67(6):1355-1364.
    [18] Brilla C G,Matsubara L S,Weber K T. Anti-aldosterone treatment and theprevention of myocardial fibrosis in primary and secondary hyperaldostero-nism [J]. J Mol Cell Cardiol,1993,25(5):563-575.
    [19] Chan A K, Sanderson J E, Wang T, et al. Aldosterone receptor antagonisminduces reverse remodeling when added to angiotensin receptor blockade inchronic heart failure [J]. J Am Coll Cardiol,2007,50(7):591–596.
    [20] Bansal S, Lindenfeld J A, Schrier R W. Sodium Retention in Heart Failureand Cirrhosis Potential Role of Natriuretic Doses of MineralocorticoidAntagonist?[J]. Circulation: Heart Failure,2009,2(4):370-376.
    [21] Pitt B, Remme W, Zannad F, et al. Eplerenone,a selective aldosteroneblocker in patients with left ventricular dysfunction after myocardialinfraction [J]. N Engl J Med,2003,348(14):1309-1321.
    [22] Hayashidani S, Tsutsui H, Shiomi T, et al. Fluvastatin, a3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricularremodeling and failure after experimental myocardial infarction [J].Circulation,2002,105(7):868-873.
    [23] Zaca`V, Rastogi S, Imai M, et al. Chronic monotherapy with rosuvastatinprevents progressive left ventricular dysfunction and remodeling in dogswith heart failure [J]. J Am Coll Cardiol,2007,50(6):551-557
    [24]陈婷,徐岩,张建华,等.辛伐他汀对心肌梗死后大鼠左室重构及心肌β3整合素表达的影响[J].中国新药与临床杂志,2009,27(11):801-805.
    [25] Node K, Fujita M, Kitakaze M, et al. Short-term statin therapy improvescardiac function and symptoms in patients with idiopathic dilated cardiom-yopathy [J]. Circulation,2003,108(7):839-843.
    [26] Horwich T B, MacLellan W R, Fonarow G C. Statin therapy is associatedwith improved survival in ischemic and non-ischemic heart failure [J]. JAm Coll Cardiol,2004,43(4):642-648.
    [27] Khush K K, Waters D D, Bittner V, et al. Effect of high-dose atorvastatinon hospitalizations for heart failure: subgroup analysis of the Treating toNew Targets (TNT) study [J]. Circulation,2007,115(5):576-583.
    [28] Kjekshus J, Apetrei E, Barrios V, et al. CORONA Group. Rosuvastatin inolder patients with systolic heart failure [J]. N Engl J Med,2007,357(22):2248-2261.
    [29] Tavazzi L, Maggioni A P, Marchioli R, et al. Effect of rosuvastatin inpatients with chronic heart failure (the GISSI-HF trial): a randomised,double-blind, placebo-controlled trial [J]. Lancet,2008,372(9645):1231-1239.
    [30] Spinale F G. Matrix metalloproteinases: regulation and dysregulation in thefailing heart [J]. Circ Res,2002,90(5):520-530.
    [31] Kelly D, Khan S Q, Thompson M, et al. Plasma tissue inhibitor of metallo-proteinase-1and matrix metalloproteinase-9: novel indicators of leftventricular remodelling and prognosis after acute myocardial infarction [J].European heart journal,2008,29(17):2116-2124.
    [32]张沛,杨跃进,阮英茆,等.基质金属蛋白酶抑制剂强力霉素对大鼠急性心肌梗死后左心室重构和功能的影响[J].中国循环杂志,2004,19(4):279-282.
    [33]景颖,郑兴,陈少萍,等.强力霉素影响基质金属蛋白酶活性和血管重构的实验研究[J].中国病理生理杂志,2006,22(9):1708-1711.
    [34] Yarbrough W M, Mukherjee R, Escobar G P, et al. Selective targeting andtiming of matrix metalloproteinase inhibition in post-myocardial infarctionremodeling [J]. Circulation,2003,108(14):1753-1759.
    [35] Kelly D, Cockerill G, Ng L L, et al. Plasma matrix metalloproteinase-9andleft ventricular remodelling after acute myocardial infarction in man: aprospective cohort study [J]. Eur Heart J,2007,28(6):711-718.
    [36] Takimoto E, Kass D A. Role of oxidative stress in cardiac hypertrophy andremodeling [J]. Hypertension,2007,49(2):241-248.
    [37] Smith Jr R S, Agata J, Xia C F, et al. Human endothelial nitric oxidesynthase gene delivery protects against cardiac remodeling and reducesoxidative stress after myocardial infarction [J]. Life Sci,2005,76(21):2457-2471.
    [38] Kinugawa S, Tsutsui H, Hayashidani S, et al. Treatment with dimethylth-iourea prevents left ventricular remodeling and failure after experimentalmyocardial infarction in mice: role of oxidative stress [J]. Circ Res,2000,87(5):392-398.
    [39] Vasilyev N, Williams T, Brennan M L, et al. Myeloperoxidase-generatedoxidants modulate left ventricular remodeling but not infarct size aftermyocardial infarction [J]. Circulation,2005,112(18):2812-2820.
    [40] Fang L, Gao X M, Moore X L, et al. Differences in inflammation, MMPactivation and collagen damage account for gender difference in murinecardiac rupture following myocardial infarction [J]. J Mol Cell Cardiol,2007,43(5):535-544.
    [41] Hammerman H, Kloner R A, Schoen F J, et al. Indomethacin-induced scarthinning after experimental myocardial infarction [J]. Circulation,1983,67(6):1290-1295.
    [42] Straino S, Salloum F N, Baldi A, et al. Protective effects of parecoxib, acyclo-oxygenase-2inhibitor, in postinfarction remodeling in the rat [J]. JCardiovasc Pharmacol,2007,50(5):571-577.
    [43] Brunner F, Maier R, Andrew P, et al. Attenuation of myocardial ischemia/reperfusion injury in mice with myocytespecific overexpression ofendothelial nitric oxide synthase [J]. Cardiovasc Res,2003,57(1):55-62.
    [44] Feil R, Lohmann S M, de Jonge H, et al. Cyclic GMP-dependent proteinkinases and the cardiovascular system: insights from genetically modifiedmice [J]. Circ Res,2003,93(10):907-916.
    [45] Fiedler B, Feil R, Hofmann F, et al. cGMP-dependent protein kinase type Iinhibits TAB1-p38mitogen-activated protein kinase apoptosis signaling incardiac myocytes [J]. J Biol Chem,2006,281(43):32831-32840.
    [46] Takimoto E, Champion H C, Li M, et al. Chronic inhibition of cyclic GMPphosphodiesterase5A prevents and reverses cardiac hypertrophy [J]. NatMed,2005,11(2):214-222.
    [47] Fraccarollo D, Widder J D, Galuppo P, et al. Improvement in leftventricular remodeling by the endothelial nitric oxide synthase enhancerAVE9488after experimental myocardial infarction [J]. Circulation,2008,118(8):818-827.
    [48] Zhang P, Xu X, Hu X, et al. Inducible nitric oxide synthase deficiencyprotects the heart from systolic overload-induced ventricular hypertrophyand congestive heart failure [J]. Circ Res,2007,100(7):1089–1098.
    [49] Abbate A, Salloum F N, Vecile E, et al. Anakinra a recombinant humaninterleukin-1receptor antagonist,inhibits apoptosis in experimental acutemyocardial infarction [J]. Circulation,2008,117(20):2670-2683.
    [50] Ikonomidis I, Lekakis J P, Nikolaou M, et al. Inhibition of interleukin-1byanakinra improves vascular and left ventricular function in patients withrheumatoid arthritis [J]. Circulation,2008,117(20):2662-2669.
    [51] Kempf T, von Haehling S, Peter T, et al. Prognosticutility of growthdifferentiation factor-15in patients with chronic heart failure [J]. J Am CollCardiol,2007,50(11):1054-1060.
    [52] Wollert K C, Kempf T, Lagerqvist B, et al. Growth differentiation factor15for risk stratification and selection of an invasive treatment strategy in nonST-elevation acute coronary syndrome [J]. Circulation,2007,116(14):1540-1548.
    [53] Shishido T, Nozaki N, Yamaguchi S, et al. Toll-like receptor-2modulatesventricular remodeling after myocardial infarction [J]. Circulation,2003,108(23):2905-2910.
    [54] Timmers L, Sluijter J P, van Keulen J K, et al. Toll-like receptor4mediatesmaladaptive left ventricular remodeling and impairs cardiac function aftermyocardial infarction [J]. Circ Res,2008,102(2):257-264.
    [55] Sano M, Minamino T, Toko H, et al. p53-Induced inhibition of Hif-1causes cardiac dysfunction during pressure overload [J]. Nature,2007,446(7134):444-448.
    [56] Zeng L, Hu Q, Wang X, et al. Bioenergetic and functional consequences ofbone marrow-derived multipotent progenitor cell transplantation in heartswith postinfarction left ventricular remodeling [J]. Circulation,2007,115(14):1866-1875.
    [57] Wollert K C. Cell therapy for acute myocardial infarction [J]. Curr OpinPharmacol,2008,8(2):202-210.
    [58]黄力,李琳.丹参对自发性高血压大鼠左室重构的干预实验研究[J].中华中医药杂志,2010,25(12):2167-2171.
    [59] Takahashi K, Ouyang X, Komat Su, et al. Sodium tanshinone IIA sulfonatederived from Danshen (Salvia miltiorrhiza) attenuates hypertrophy inducedby angiotensin II in cultured neonatal rat cardiac cells [J]. BiochemPharmacol,2002,64(4):745-750.
    [60] Nazarewicz R R, Salazar G, Patrushev N, et al. Early endosomal antigen1(EEA1) is an obligate scaffold for angiotensin II-induced, PKC-α-depen-dent Akt activation in endosomes [J]. Journal of biological chemistry,2011,286(4):2886-2895.
    [61]童普德,吴小江,王晓玲.丹参酸乙对大鼠心脏成纤维细胞增殖和胶原基因表达的影响[J].中药药理与临床,2002,18(4):7-9.
    [62]韩冬,张余威,刘苗,等.人参二醇组皂苷对心肌梗死后心室重构大鼠基质金属蛋白酶-2,-9及其组织抑制因子-1水平的影响[J].中国老年学杂志,2013,33(24):6225-6227.
    [63]王天晓,于小风,曲绍春,等.人参Rb组皂苷对压力负荷性心肌肥厚大鼠心室重构的影响及其作用机制[J].时珍国医国药,2008,19(7):1615-1617.
    [64]王薇娜,赵良平,王丽,等.人参皂甙Rb1对大鼠急性心肌梗死后左室重构的影响[J].中国微循环,2006,10(4):256-258.
    [65]杨敏,陈广玲,陈畅,等.人参皂甙Rg1对大鼠急性心肌梗死的治疗作用[J].中西医结合心脑血管病杂志,2007,5(11):1075-1077.
    [66]上官海娟,徐江,官洪山,等.当归对心肌梗死后心肌细胞凋亡和心室重构的影响[J].中国中西医结合急救杂志,2008,15(1):39-44.
    [67]赵艳峰,徐江,王虹,等.当归对大鼠心梗后炎性反应和早期左室重构的影响[J].中成药,2006,28(11):1627-1631.
    [68]陆曙,张寄南.中药对心血管病相关受体影响的研究现状[J].中国中西医结合杂志,1998,18(11):699-700.
    [69]姜宏,施广飞,朱珠.川芎嗪对心血管作用研究进展[J].中国临床药理学与治疗学,2007,12(5):484-487.
    [70]王振涛,韩丽华,朱明军,等.川芎嗪注射液促心梗后大鼠缺血心肌血管新生作用及对相关生长因子影响的研究[J].辽宁中医杂志,2006,33(7):888-890.
    [71]李萍,李洪,贺冬林,等.川芎嗪注射液对小鼠缺血再灌注心肌的保护作用[J].中国医院药学杂志,2006,26(1):32-34.
    [72]侯云生,何振山.黄芪对实验性急性心肌梗塞后心室结构的影响[J].现代中西医结合杂志,1999,8(12):1940-1941.
    [73]许晓乐,季晖,谷舒怡,等.黄芪甲苷对小鼠实验性心室重构及基质金属蛋白酶表达的影响[J].中国药科大学学报,2010(1):70-75.
    [74]申锷,陈瑞珍,杨英珍,等.黄芪甲甙改善扩张型心肌病小鼠左室重构与磷酸化p-38MAPK相关性的实验研究[J].中国病理生理杂志,2008,24(1):64-67.
    [75]阚秀莲,杨海波,姜华,等.黄芪对心力衰竭患者心室重构的影响[J].中西医结合心脑血管病杂志,2013,11(1):104-105.
    [76]陈剑梅,郭洁文,李丽明,等.三七总皂苷对急性心梗后左室重构大鼠心功能的改善作用[J].中药新药与临床药理,2011,22(5):514-517.
    [77]郭洁文,李丽明,邱光清,等.三七总皂苷对心梗后心室重构大鼠ACE2与TNF-α表达的影响[J].中药材,2010(1):89-92.
    [78]唐旭东,姜建青,姜大春,等.三七总皂苷对心肌缺血-再灌注中中性粒细胞核因子-kB活化及其粘附的影响[J].中国药理学通报,2002,18(5):556-560.
    [79]文小平,郑晓洁,川崎宽也,等.三七、绞股蓝抗兔血管重构的实验研究[J].中国实验方剂学杂志,2007,13(8):24-28.
    [80]王春彬,高大中.姜黄素的研究进展以及在心血管疾病中的应用[J].心血管病学进展,2005,6(6):614-616.
    [81]周艳芳,欧阳静萍,周成慧,等.苦参碱对心肌成纤维细胞周期的影响及其机制[J].武汉大学学报(医学版),2004,25(3):220-223.
    [82]王振涛,王硕仁,赵明镜.活血和益气方药对心肌梗死后左心衰大鼠左心室重构影响的比较研究[J].中国中西医结合杂志,2002,22(5):376-378.
    [83]张红霞,杜武勋,刘长玉.强心冲剂对心衰家兔细胞凋亡及心室重塑的影响[J].四川中医,2012,30(3):32-34.
    [84]朱林平,曹旭焱,刘岩,等.强心冲剂对心衰家兔心室重构血管活性物质的影响[J].中国实验方剂学杂志,2011,17(1):93-95.
    [85]陈兆善,董耀荣,胡坚文,等.强心合剂心对衰期扩张型心肌病患者心功能及血浆N-末端脑钠肽前体水平的影响[J].现代中西医结合杂志,2013,22(10):1032-1034.
    [86]王成华,张国辉,尹春阳,等.复方丹参滴丸对扩张型心肌病大鼠心室重构的影响[J].中华老年心脑血管病杂志,2011,3(4):372.
    [87]赵笑东.复方丹参滴丸治疗冠心病的概况与进展[J].现代中西医结合杂志,2002,11(13):1296-1298.
    [88]彭祝军,罗云海,黄时雨.复方丹参滴丸对慢性充血性心力衰竭心室重构的抑制作用[J].湘南学院学报:医学版,2008,10(1):16-18.
    [89]王德序.丹参对高血压心室重构患者的影响研究[J].实用心脑肺血管病杂志,2012,20(5):853-854.
    [90]王敬民,金炜,孙秀笺.参麦注射液对心力衰竭患者ET及TNF-α的影响[J].浙江中西医结合杂志,2004,14(1):4-6.
    [91]方小可.参麦注射液联合川芎嗪注射液对急性心肌梗死溶栓后早期心室重构的影响[J].现代中西医结合杂志,2007,16(20):2857.
    [92]马兰,关振中.黄芪注射液对大鼠左室重构及凋亡基因Caspase-3的影响[J].中国中西医结合杂志,2005,25(7):646-649.
    [93]侯燕,陈志煌,王蔚,等.黄芪注射液对急性心肌梗死患者免疫炎症及心室重构的影响[J].临床心血管病杂志,2012,28(10):766-768.
    [94]谢东霞,黄显章,毛秉豫.芪参益气滴丸改善心梗模型大鼠心室重构的相关机制[J].中国实验方剂学杂志,2011,17(6):180-183.
    [95]杜武勋,朱明丹,冯利民,等.芪参益气滴丸干预急性心肌梗死后早期心室重构的临床研究[J].中国循证心血管医学杂志,2009,1(1):41-43.
    [96]关秀军,邓斌,周旭军,等.芪参益气滴丸对慢性心衰患者心室重构及炎性因子的影响[J].时珍国医国药,2013(3):681-682.
    [97]高克俭,石秀梅,傅莲英,等.心复康丸对冠心病心功能及心室重塑影响的研究[J].天津中医药,2005,22(1):22-24.
    [98]刘剑刚,曹国菊,史大卓,等.愈心梗液对急性心肌梗死大鼠心肌能量代谢和内皮功能障碍的影响[J].中国中医急症,2005,14(9):827.
    [99]周迎春,赵锋利,陈镜合,等.开心胶囊对大鼠心肌梗死后左室非梗塞区胶原改建的影响[J].广州中医药大学学报,2002,19(3):204.
    [100]杨冬花,付蓉,卞震炯.益气温阳活血方对慢性心衰大鼠心室重构PPARγ表达的影响[J].中国中医基础医学杂志,2009,15(5):358-359.
    [101]陈伯钧,苏学旭,盂丽琴,等.通冠胶囊对急性心肌梗塞大鼠心室重构的影响[J].时珍国医国药,2009,20(3):524-526.
    [102]曾少坚,朱平先.参芪扶正注射液治疗充血性心力衰竭临床观察[J].现代中西医结合杂志,2005,14(9):1155-1156.
    [103]郝玉明.参芪扶正注射液对心肌梗死患者金属蛋白酶的影响[J].中国中西医结合杂志,2004,2(1):33-35.
    [104]朱小风,刘志忠,徐兢,等.小檗碱抑制心肌梗死后心室重构的作用[J].中国介入心脏病学杂志,2009,17(6):335.
    [105]周建中,雷寒,陈运贞,等.灯盏细辛注射液对自发性高血压大鼠心室及血管重构的影响[J].中国中西医结合杂志,2002,22(2):122-125.
    [106]史大卓,刘剑刚,蕈国菊.复方芪丹液对急性心肌梗死后大鼠心室重构血管活性物质的影响[J].中国心血管病研究杂志,2005,3(4):301-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700