灰霉病菌中2C型丝氨酸/苏氨酸磷酸酶(PTCs)及酪氨酸磷酸酶(PTPs)的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由激酶及磷酸酶催化的蛋白磷酸化与去磷酸化反应参与了生物体的多个代谢过程。真核生物蛋白的磷酸化位点主要有丝氨酸、苏氨酸及酪氨酸残基,因此,相应的去磷酸化过程是由丝氨酸/苏氨酸磷酸酶或酪氨酸磷酸酶催化完成。2C型丝氨酸/苏氨酸磷酸酶(PP2Cs)及酪氨酸磷酸酶(PTPs)是十分重要的两类磷酸酶,参与调控生物体内的多个生命活动过程,但是,目前这些磷酸酶在丝状真菌中的研究仍然处于起步阶段。
     灰霉病菌(Botrytis cinerea)的基因组中存在5个2C型丝氨酸/苏氨酸磷酸酶(PP2Cs)基因(命名为BcPTC1,-3,-5,-6和-7)和两个酪氨酸磷酸酶基因(BcPTPA和BcPTPB).本文通过基因敲除及回补的方法研究了这些基因的生物学功能,结果发现,BcPTC5, BcPTC6和BcPTC7基因突变体的表型与野生型相比变化不明显,但是另外4个基因(BcPTC1, BcPTC3, BcPTPA和BcPTPB)的突变体的表型与野生亲本菌株相比发生了显著变化:1)四个基因突变体均不能产生菌核,除BcPtpB突变体以外,另三个基因突变体的生长速率明显下降。2)BcPtpA突变体的分生孢子数目显著减少,而其它三个基因突变体的分生孢子产生量明显增多。3)这四个基因敲除体的黑色素合成均显著增加。4)四个基因的敲除突变体对渗透压力(NaCl和KC1)、氧化压力(H2O2)、DCFs药剂(iprodione)及细胞壁损伤物质(刚果红、咖啡因及细胞壁降解酶)都表现一定程度的敏感。5)在酵母中Ptcl, Ptc3, Ptp2及Ptp3均可以负向调控HOG (high-osmolarity glycerol)及CWI (the cell wall integrity)信号途径,在灰霉病菌中只有BcPtc3是HOG信号途径的负调控元件;另外,BcPtc1和BcPtc3也可以正向调控灰霉BcBmp3(与酵母CWI信号途径中的Mpk1/Slt2同源)蛋白的磷酸化;与酵母中Ptp2/3作用不同,灰霉中两个酪氨酸磷酸酶BcPtpA和BcPtpB能够正向调控BcBmp3和BcSakl的磷酸化。6)四个基因的敲除突变体在黄瓜、油菜、番茄叶片,苹果等寄主上的致病力明显下降。这些结果表明, BcPtc1, BcPtc3, BcPtpA及BcPtpB在灰霉病菌的菌丝生长、分化、致病以及对适应外界胁迫中发挥重要作用。
Protein phosphorylation and dephosphorylation executed by protein kinases and protein phosphatases, respectively, is a major mechanism regulating many cellular processes. Most phosphorylation events in eukaryotes occur at serine, threonine and tyrosine residues. Accordingly, removal of the phosphates is catalyzed by protein Ser/Thr phosphatases or tyrosine phosphatases. Type2C Ser/Thr phosphatases (PP2Cs) and tyrosine phosphatases (PTPs) are involved in a large variety of regulatory processes in many eukaryotes, but little has been known about their functions in filamentous fungi.
     Botrytis cinerea contains five putative PP2C genes, named BcPTCl,-3,-5,-6and-7, and two putative protein tyrosine phosphatase (PTP) genes (BcPTPA and BcPTPB). Biological functions of these genes were analyzed by gene deletion and complementation. While no phenotypes aberrant from the wild type were observed with mutants of BcPtc5, BcPtc6and BcPtc7, mutants of BcPtc1, BcPtc3, BcPtpA and BcPtpB showed significant phenotype changes, indicating that these four genes play important roles in B. cinerea. Results of this study showed that1) BcPtc1, BcPtc3, BcPtpA and BcPtpB regulate vegetative differentiation. Mutants of all the four genes could not produce any sclerotium. All the mutants had reduced hyphal growth rate except BcPtpB.2) In addition, increased conidiation were observed in BcPtcl, BcPtc3, and BcPtpB mutants, while mutant of BcPtpA had reduced conidiation.3) BcPtc1, BcPtc3, BcPtpA and BcPtpB were involved in regulation of hypal melanization. Disruption of the four genes all led to increased pigmentation and the pigment was confirmed as melanin.4) They exhibited increased sensitivity to osmotic stress mediated by NaCl and KC1, to oxidative stress generated by H2O2, to DCFs fungicides (iprodione) and to cell wall damaging agents (Congo red, caffeine and the cell wall degrading enzyme).5) In S. cerevisiae, Ptc1, Ptc3, Ptp2and Ptp3negatively regulate the high-osmolarity glycerol (HOG) pathway and the cell wall integrity (CWI) pathway. In B. cinerea, however, BcPtc3, but not BcPtcl, negatively regulates phosphorylation of BcSakl (the homologue of Hog1) although both BcPTCl and BcPTC3were able to rescue the growth defects of a yeast PTC1deletion mutant under various stress conditions. Moreover, deletion of BcPTCl or BcPTC3led to decreased phosphorylation of the mitogen-activated protein (MAP) kinase BcBmp3(a homologue of Saccharomyces cerevisiae Mpkl/Slt2in the CWI pathway). In contrast to S. cerevisiae, BcPtpA and BcPtpB positively regulate phosphorylation of BcSak1(the homologue of Hog1) and BcBmp3in B. cinerea.6) All the mutants exhibited dramatically decreased virulence on cucumber, rapeseed or tomato leaves, apples and grapes. These results demonstrated that BcPtc1, BcPtc3, BcPtpA and BcPtpB play important roles in the regulation of hyphal growth, vegetative differentiation, virulence and multi-stress tolerance in Botrytis cinerea.
引文
Agrios, G.1997. Plant Pathology. Elsevier Academic Press, London.
    Appleby, J.L., Parkinson, J.S., and Bourrett, R.1996. Signal transduction via the minireview multi-step phosphorelay:not necessarily a road less traveled. Cell 86:845.
    Arino, J., Casamayor, A., and Gonzalez, A.2011. Type 2C protein phosphatases in fungi. Eukaryotic Cell 10:21-33.
    Backhouse, D., and Willets, H.J.1984. A histochemical study of sclerotia of Botrytis cinerea and Botrytis fabae. Canadian Journal of Microbiology 30:171-178.
    Bahn, Y.-S.2008. Master and commander in fungal pathogens:the two-component system and the HOG signaling pathway. Eukaryotic Cell 7:2017-2036.
    Banno, S., Noguchi, R., Yamashita, K., Fukumori, F., Kimura, M., Yamaguchi, I., and Fujimura, M. 2007. Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa. Current Genetics 51:197-208.
    Meskiene, I., and Hirt, H.1999. Short communication:unsaturated fatty acids inhibit MP2C, a protein phosphatase 2C involved in the wound-induced MAP kinase pathway regulation. Plant J 20:343-348.
    Benito, E.P., ten Have, A., van't Klooster, J.W., and van Kan, J.A.1998. Fungal and plant gene expression during synchronized infection of tomato leaves by Botrytis cinerea. European Journal of Plant Pathology 104:207-220.
    Bourret, R.B., Borkovich, K.A., and Simon, M.I.1991. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annual review of biochemistry 60:401-441.
    Brent, K.J., Hollomon. D.W., and Federation, G.C.P.1998. Fungicide resistance:the assessment of risk. Global Crop Protection Federation Brussels, Belgium.
    Brewster, J.L., de Valoir, T., Dwyer, N.D., Winter, E., and Gustin, M.C.1993. An osmosensing signal transduction pathway in yeast. Science 259:1760-1763.
    Carrasco. J.L., Ancillo, G., Mayda, E., and Vera, P.2003. A novel transcription factor involved in plant defense endowed with protein phosphatase activity. The EMBO journal 22:3376-3384.
    Catlett, N.L., Yoder, O.C., and Turgeon. B.G.2003. Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryotic Cell 2:1151-1161.
    Chauhan. N., and Calderone, R.2008. Two-component signal transduction proteins as potential drug targets in medically important fungi. Infection and immunity 76:4795-4803.
    Cheng, A., Ross, K.E., Kaldis. P., and Solomon. M.J.1999. Dephosphorylation of cyclin-dependent kinases by type 2C protein phosphatases. Genes & development 13:2946-2957.
    Cui, W., Beever, R.E., Parkes, S.L., and Templeton, M.D.2004. Evolution of an osmosensing histidine kinase in field strains of Botryotinia fuckeliana (Botrytis cinerea) in response to dicarboximide fungicide usage. Phytopathology 94:1129-1135.
    Daniels, A., and Lucas, J.A.1995. Mode of action of the anilino-pyrimidine fungicide pyrimethanil. 1. In-vivo activity against Botrytis fabae on broad bean (Vicia faba) leaves. Pesticide science 45:33-41.
    Das, A.K., Helps, N.R., Cohen, P., and Barford, D.1996. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 a resolution. The EMBO journal 15:6798.
    De Smedt, V., Poulhe. R., Cayla, X., Dessauge, F., Karaiskou, A., Jessus, C., and Ozon, R.2002. Thr-161 phosphorylation of monomeric Cdc2 regulation by protein phosphatase 2C in xenopus oocytes. Journal of Biological Chemistry 277:28592-28600.
    Dixon, K.P., Xu, J.-R., Smirnoff, N., and Talbot, N.J.1999. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. The Plant Cell Online 11:2045-2058.
    Dongo, A., Bataille-Simoneau, N., Campion, C., Guillemette, T., Hamon, B., lacomi-Vasilescu, B., Katz, L., and Simoneau, P.2009. The group Ⅲ two-component histidine kinase of filamentous fungi is involved in the fungicidal activity of the bacterial polyketide ambruticin. Applied and environmental microbiology 75:127-134.
    Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I., De Montigny. J., Marck, C., Neuveglise, C., and Talla. E.2004. Genome evolution in yeasts. Nature 430:35-44.
    Elad, Y., Williamson, B., Tudzynski, P., and Delen, N.2004. Botrytis spp., and diseases they cause in agricultural systems-an introduction. Kluwer Academic Publishers, Dordrecht.
    Fjeld, C.C., and Denu, J.M.1999. Kinetic analysis of human serine/threonine protein phosphatase 2Ca. Journal of Biological Chemistry 274:20336-20343.
    Fujimura, M., Ochiai, N., Oshima, M., Motoyama, T., lchiishi. A., Usami, R., Horikoshi, K., and Yamaguchi, I.2003. Putative homologs of SSK22 MAPKK kinase and PBS2 MAPK kinase of'Saccharomyces cerevisiae encoded by os-4 and os-5 genes for osmotic sensitivity and fungicide resistance in Neurospora crussa. Bioscience Biotechnology and Biochemistry 67:186-191.
    Galperin, M.Y.2006. Structural classification of bacterial response regulators:diversity of output domains and domain combinations. Journal of bacteriology 188:4169-4182.
    Geer, L.Y., Domrachev, M., Lipman, D.J., and Bryant, S.H.2002. CDART:protein homology by domain architecture. Genome research 12:1619-1623.
    Gonzalez, A., Ruiz, A., Serrano, R., Arino, J., and Casamayor, A.2006. Transcriptional profiling of the protein phosphatase 2C family in yeast provides insights into the unique functional roles of Ptcl. Journal of Biological Chemistry 281:35057-35069.
    Gotoh, Y., Eguchi, Y., Watanabe, T., Okamoto, S., Doi, A., and Utsumi, R.2010. Two-component signal transduction as potential drug targets in pathogenic bacteria. Current opinion in microbiology 13:232.
    Hohmann, S.2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiology and Molecular Biology Reviews 66:300-372.
    Huang, K.N., and Symington, L.S.1995. Suppressors of a Saccharomyces cerevisiae pkcl mutation identify alleles of the phosphatase gene PTC1 and of a novel gene encoding a putative basic leucine zipper protein. Genetics 141:1275-1285.
    Hunter, T.2009. Tyrosine phosphorylation:thirty years and counting. Current opinion in cell biology 21:140-146.
    Hwang, I., Chen, H.-C., and Sheen, J.2002. Two-component signal transduction pathways in Arabidopsis. Plant Physiology 129:500-515.
    Irmler, S., Rogniaux, H., Hess, D., and Pillonel, C.2006. Induction of OS-2 phosphorylation in Neurospora crassa by treatment with phenylpyrrole fungicides and osmotic stress. Pesticide Biochemistry and Physiology 84:25-37.
    Jacoby, T., Flanagan, H., Faykin, A., Seto, A.G., Mattison, C., and Ota, I.1997. Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hogl. Journal of Biological Chemistry 272:17749-17755.
    Jiang, J., Yun, Y., Fu, J., Shim, W., and Ma, Z.2011a. Involvement of a putative response regulator FgRrg-1 in osmotic stress response, fungicide resistance and virulence in Fusarium graminearum. Molecular Plant Pathology 12:425-436.
    Jiang. J., Yun, Y., Yang, Q., Shim, W.-B., Wang, Z., and Ma, Z.2011b. A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum. PloS one 6:e25311.
    Jiang. L., Yang, J., Fan. F., Zhang, D., and Wang, X.2010. The Type 2C protein phosphatase FgPtclp of the plant fungal pathogen Fusarium graminearum is involved in lithium toxicity and virulence. Molecular plant pathology 11:277-282.
    Johnson, S.A., and Hunter, T.2004. Kinomics:methods for deciphering the kinome. Nature methods 2:17-25.
    Jones, C.A., Greer-Phillips, S.E., and Borkovich, K.A.2007. The response regulator RRG-1 functions upstream of a mitogen-activated protein kinase pathway impacting asexual development, female fertility, osmotic stress, and fungicide resistance in Neurospora crassa. Molecular biology of the cell 18:2123-2136.
    Kalamarakis, A., Petsikos-Panagiotarou, N., Mavroidis, B., and Ziogas, B.2000. Activity of fluazinam against strains of Botrytis cinerea resistant to benzimidazoles and/or dicarboximides and to a benzimidazole-phenylcarbamate mixture. Journal of Phytopathology 148:449-455.
    Kojima, K., Takano, Y., Yoshimi, A., Tanaka, C., Kikuchi, T., and Okuno, T.2004. Fungicide activity through activation of a fungal signalling pathway. Molecular microbiology 53:1785-1796.
    Krantz, M., Becit, E., and Hohmann, S.2006. Comparative genomics of the HOG-signalling system in fungi. Current genetics 49:137-151.
    Kruppa, M., and Calderone, R.2006. Two-component signal transduction in human fungal pathogens. FEMS yeast research 6:149-159.
    Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon. K., Dewar, K., Doyle, M., and FitzHugh, W.2001. Initial sequencing and analysis of the human genome. Nature 409:860-921.
    Laub, M.T., and Goulian, M.2007. Specificity in two-component signal transduction pathways. Annual Review of Genetics 41:121-145.
    Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J., and Toledano, M.B.1999. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. Journal of Biological Chemistry 274:16040-16046.
    Leroux, P.1996. Recent developments in the mode of action of fungicides. Pesticide science 47:191-197.
    Leroux, P., Fritz, R., Debieu, D., Albertini, C., Lanen, C., Bach, J.. Gredt, M., and Chapeland, F. 2002. Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Management Science 58:876-888.
    Leroy, C., Lee, S.E., Vaze. M.B., Ochsenbien, F., Guerois. R., Haber, J.E., and Marsolier-Kergoat. M.-C.2003. PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break. Molecular cell 11:827-835.
    Lew, R.R., and Levina, N.N.2007. Turgor regulation in the osmosensitive cut mutant of Neurospora crassa. Microbiology 153:1530-1537.
    Liu, W., Leroux, P., and Fillinger, S.2008. The HOG1-like MAP kinase Sakl of Botrytis cinerea is negatively regulated by the upstream histidine kinase Bosl and is not involved in dicarboximide-and phenylpyrrole-resistance. Fungal Genetics and Biology 45:1062-1074.
    Liu, W., Soulie, M,C., Perrino, C., and Fillinger, S.2011. The osmosensing signal transduction pathway from Botrytis cinerea regulates cell wall integrity and MAP kinase pathways control melanin biosynthesis with influence of light. Fungal Genetics and Biology 48:377-387.
    Liu, X.H., Lu, J.P., Zhang, L., Dong, B., Min, H., and Lin, F.C.2007. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATGl, in appressorium turgor and pathogenesis. Eukaryotic Cell 6:997-1005.
    Livak, K.J., and Schmittgen, T.D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method. Methods 25:402-408.
    Lohrmann, J., Buchholz, G., Keitel, C., Sweere, U., Kircher, S., Baurle, I., Kudla, J., Schafer, E., and Harter, K.1999. Differential expression and nuclear localization of response regulator like proteins from Arabidopsis thaliana. Plant Biology 1:495-505.
    MacRobbie, E.A.2002. Evidence for a role for protein tyrosine phosphatase in the control of ion release from the guard cell vacuole in stomatal closure. Proceedings of the National Academy of Sciences 99:11963-11968.
    Maeda. T., Wurgler-Murphy, S.M., and Saito, H.1994. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242-245.
    Maeda, T., Takekawa, M., and Saito, H.1995. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269:554-558.
    Mapes. J.. and Ota, I.M.2003. Nbp2 targets the Ptc1-type 2C Ser/Thr phosphatase to the HOG MAPK pathway. The EMBO journal 23:302-311.
    Marques, J.M.. Rodrigues, R.J.. de Magalhaes-Sant'Ana, A.C., and Goncalves, T.2006. Saccharomyces cerevisiae Hog1 protein phosphorylation upon exposure to bacterial endotoxin. Journal of Biological Chemistry 281:24687-24694.
    Martinez, F., Blancard, D., Lecomte. P., Levis, C., Dubos, B., and Fermaud, M.2003. Phenotypic differences between vacuma and transposa subpopulations of Botrytis cinerea. European Journal of Plant Pathology 109:479-488.
    Mattison, C.P., Spencer, S.S., Kresge, K.A., Lee. J., and Ota, I.M.1999. Differential regulation of the cell wall integrity mitogen-activated protein kinase pathway in budding yeast by the protein tyrosine phosphatases Ptp2 and Ptp3. Molecular and cellular biology 19:7651-7660.
    Mollapour, M., and Piper, P.W.2006. Hoglp mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Research 6:1274-1280.
    Motoyama, T., Ochiai, N., Morita, M., lida, Y., Usami, R., and Kudo, T.2008. Involvement of putative response regulator genes of the rice blast fungus Magnaporlhe oryzae in osmotic stress response, fungicide action, and pathogenicity. Current Genetics 54:185-195.
    Motoyama, T., Kadokura, K., Ohira, T., Ichiishi, A., Fujimura, M., Yamaguchi, I., and Kudo, T. 2005. A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action. Fungal Genetics and Biology 42:200-212.
    Ninfa, A.J.2010. Use of two-component signal transduction systems in the construction of synthetic genetic networks. Current opinion in microbiology 13:240.
    Ninfa, A.J., and Magasanik, B.1986. Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proceedings of the National Academy of Sciences 83:5909-5913.
    Nixon, B.T., Ronson, C.W., and Ausubel, F.M.1986. Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proceedings of the National Academy of Sciences 83:7850-7854.
    Noguchi, R., Banno, S., Ichikawa, R., Fukumori, F., Ichiishi, A., Kimura, M., Yamaguchi, I., and Fujimura, M.2007. Identification of OS-2 MAP kinase-dependent genes induced in response to osmotic stress, antifungal agent fludioxonil, and heat shock in Neurospora crassa. Fungal Genetics and Biology 44:208-218.
    Ochiai, N., Tokai, T., Nishiuchi, T., Takahashi-Ando, N., Fujimura, M., and Kimura, M.2007b. Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. Biochemical Biophysical Research Communications 363:639-644.
    Ochiai, N., Fujimura, M., Motoyama, T., Ichiishi. A., Usami, R., Horikoshi, K., and Yamaguchi, I. 2001. Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Pest Management Science 57:437-442.
    Oshima, M., Fujimura, M., Banno, S., Hashimoto, C., Motoyama, T., Ichiishi, A., and Yamaguchi, I. 2002. A point mutation in the two-component histidine kinase BcOS-1 gene confers dicarboximide resistance in field isolates of Botrytis cinerea. Phytopathology 92:75-80.
    Oshima, M., Banno, S., Okada, K., Takeuchi, T., Kimura, M., Ichiishi, A., Yamaguchi,1., and Fujimura, M.2006. Survey of mutations of a histidine kinase gene BcOSl in dicarboximide-resistant field isolates of Botrytis cinerea. Journal of General Plant Pathology 72:65-73.
    Panadero, J., Pallotti, C., Rodriguez-Vargas, S., Randez-Gil, F., and Prieto, J.A.2006. A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. Journal of Biological Chemistry 281:4638-4645.
    Posas, F., Wurgler-Murphy, S.M., Maeda, T., Witten, E.A., Thai, T.C., and Saito, H.1996. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell 86:865.
    Pullen, K.E., Ng, H.-L., Sung. P.-Y., Good, M.C., Smith, S.M., and Alber, T.2004. An alternate conformation and a third metal in PstP/Ppp, the M. tuberculosis PP2C-Family Ser/Thr protein phosphatase. Structure 12:1947-1954.
    Rispail, N., Soanes, D.M.. Ant, C., Czajkowski, R., Grunler, A., Huguet, R., Perez-Nadales, E., Poli, A., Sartorel, E., and Valiante, V.2009. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genetics and Biology 46:287-298.
    Rogers, J.P.. Beuscher, A.E.t.. Flajolet, M., McAvoy, T., Nairn, A.C., Olson, A.J., and Greengard, P. 2006. Discovery of protein phosphatase 2C inhibitors by virtual screening. Journal of Medicinal Chemistry 49:1658-1667.
    Rui, O., and Hahn, M.2007. The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Molecular plant pathology 8:173-184.
    Saito, H.. and Tatebayashi, K.2004. Regulation of the osmoregulatory HOG MAPK cascade in yeast. Journal of Biochemistry 136:267-272.
    San Jose. C., Monge, R.A., Perez-Diaz, R., Pla, J., and Nombela, C.1996. The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. Journal of bacteriology 178:5850-5852.
    Schumacher, M.M., Enderlin, C.S., and Selitrennikoff, C.P.1997. The osmotic-1 locus of Neurospora crassa encodes a putative histidine kinase similar to osmosensors of bacteria and yeast. Current microbiology 34:340-347.
    Schweighofer, A., Hirt, H., and Meskiene,I.2004. Plant PP2C phosphatases:emerging functions in stress signaling. Trends in plant science 9:236-243.
    Segmuller, N., Ellendorf, U., Tudzynski, B., and Tudzynski, P.2007. BcSAKl, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryotic Cell 6:211-221.
    Shi, Y.2009. Serine/threonine phosphatases:mechanism through structure. Cell 139:468.
    Stock, J.B., Stock, A.M., and Mottonen, J.M.1990. Signal transduction in bacteria. Nature 344:395.
    Thompson, J.E., Basarab, G.S., Andersson, A., Lindqvist. Y., and Jordan, D.B.1997. Trihydroxynaphthalene reductase from Magnaporthe grisea:realization of an active center inhibitor and elucidation of the kinetic mechanism. Biochemistry 36:1852-1860.
    Thompson, J.E., Fahnestock, S., Farrall, L., Liao, D.-I., Valent, B., and Jordan, D.B.2000. The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea tetrahydroxynaphthalene reductase. Journal of Biological Chemistry 275:34867-34872.
    Thorsen, M, Di, Y., Tangemo, C., Morillas, M., Ahmadpour, D., Van der Does. C., Wagner, A., Johansson, E., Boman, J., and Posas, F.2006. The MAPK. Hoglp modulates Fpslp-dependent arsenite uptake and tolerance in yeast. Molecular biology of the cell 17:4400-4410.
    Uetz. P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan, V., Srinivasan, M., and Pochart, P.2000. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623-627.
    Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith. H.O., Yandell. M., Evans, C.A., and Holt, R.A.2001. The sequence of the human genome. Science Signaling 291:1304.
    Viaud, M., Fillinger, S., Liu, W., Polepalli, J.S.. Le Pecheur, P., Kunduru, A.R., Leroux, P., and Legendre, L.2006. A class Ⅲ histidine kinase acts as a novel virulence factor in Botrytis cinerea. Molecular plant-microbe interactions 19:1042-1050.
    Warmka, J., Hanneman, J., Lee, J., Amin, D., and Ota, I.2001. Ptcl, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hogl, Molecular and cellular biology 21:51-60.
    Westfall, P.J., Ballon. D.R., and Thorner. J.2004. When the stress of your environment makes you go HOG wild. Science Signaling 306:1511.
    Wojda. I., Alonso-Monge, R., Bebelman, J.-P., Mager, W.H., and Siderius, M.2003. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology 149:1193-1204.
    Wurgler-Murphy, S.M., and Saito, H.1997. Two-component signal transducers and MAPK cascades. Trends in biochemical sciences 22:172-176.
    Wurgler-Murphy, S.M., Maeda, T., Witten, E.A., and Saito, H.1997. Regulation of the Saccharomyces cerevisiae HOG 1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Molecular and cellular biology 17:1289-1297.
    Yan, L., Yang, Q., Sundin, G.W., Li, H., and Ma, Z.2010. The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Fungal Genetics and Biology 47:753-760.
    Yan, L., Yang, Q., Jiang, J., Michailides, T.J., and Ma, Z.2011. Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea. Applied Microbiology and Biotechnology 90:215-226.
    Yang, Q., Yan, L., Gu, Q.. and Ma, Z.2012. The mitogen-activated protein kinase kinase kinase BcOs4 is required for vegetative differentiation and pathogenicity in Botrytis cinerea. Applied Microbiology and Biotechnology 96:481-492.
    Yarden, O., and Katan, T.1993. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology 83:1478-1483.
    Yoshimi, A., Kojima. K., Takano, Y., and Tanaka, C.2005. Group Ⅲ histidine kinase is a positive regulator of Hogl-type mitogen-activated protein kinase in filamentous fungi. Eukaryotic Cell 4:1820-1828.
    Young, C., Mapes. J., Hanneman, J.. Al-Zarban. S.. and Ota,1.2002. Role of Ptc2 type 2C Ser/Thr phosphatase in yeast high-osmolarity glycerol pathway inactivation. Eukaryotic Cell 1:1032-1040.
    Zhan. X.-L., Deschenes. R.J., and Guan. K.-L.1997. Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae. Genes and development 11:1690-1702.
    Zhang, H.. Liu, K.., Zhang, X.. Song, W., Zhao. Q., Dong, Y., Guo, M., Zheng, X.. and Zhang, Z. 2010. A two-component histidine kinase. MoSLN1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Current genetics 56:517-528.
    Zhang, Y., Lamm, R., Pillonel, C, Lam, S., and Xu, J.-R.2002. Osmoregulation and fungicide resistance:the Neurospora crassa os-2 gene encodes a HOG 1 mitogen-activated protein kinase homologue. Applied and environmental microbiology 68:532-538.
    Zhao, X., Mehrabi, R., and Xu, J.-R.2007. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryotic Cell 6:1701-1714.
    Zheng, D., Zhang, S., Zhou, X., Wang, C., Xiang, P., Zheng, Q., and Xu, J.-R.2012. The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. PloS one 7:e49495.
    王芊.2007.番茄灰霉病菌抗药性及抗药性控制研究[D](东北林业大学).
    何美仙.2004.番茄灰霉病的生物防治研究进展.China Vegetables 5:29-31.
    周成刚,颜琴,刘伟中,汪立新,吴险平.2011.黄瓜灰霉病的发生危害与防治.吉林农业.
    林柏青,姚技强,朱国仁.1998.北京郊区大棚蔬菜灰霉病菌的抗药性检测.植物保护24:30-31.
    邱全胜.2000.双组分系统——细胞识别渗透胁迫信号的感应器.生物化学与生物物理进展27:593-596.
    胡伟群,陈杰.2002.灰霉病的化学防治进展[J].现代农药4:8-11.
    徐西光,张子平,程波.2011.真菌双组分信号转导系统及其抑制剂研究进展.中国真菌学杂志6:370-374.
    刘长令.2000.农用杀菌剂开发的新进展.农药科学与管理21:20-26.
    张英,杨松,宋宝安,胡德禹.2008.苯并咪唑类化合物杀菌活性的研究进展.农药47:164-170.
    张智,李君明,宋燕,云兴福,徐和金,周永健.2005.番茄灰霉病及其防治研究进展.内蒙古农业大学学报:自然科学版26:125-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700