汶川地震地下水前兆异常及同震响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是地球的血液,在地球中广泛存在。地下水在地震前后能表现出异常变化,同时,地下水在地震的孕育与发生过程中扮演着重要的角色。因此,对地下水与地震的关系研究,一直为广大的地震学家们所关注。
     本文以汶川地震为例,首先研究了四川井水位的震前异常,进一步计算了井水位潮汐因子,研究震前水位潮汐因子变化,然后,在野外调查的基础上,对邛崃川22井震前断流进行研究,随后研究了四川井水位同震变化与同震体应变的关系,最后研究了三峡井网井水位同震响应特征。取得主要认识如下:
     (1)汶川地震前,四川16口井有5口井水位出现长、中、短期异常,并且随着发震时间的逼近,异常增多;空间上,异常主要分布在北东走向的龙门山和华蓥山断裂带上,并且呈现出由外围向发震断裂迁移的现象,这一认识对未来发震时间和震中的判断有一定意义。
     (2)震前水位M2和O1波潮汐因子都表现出一定的异常,随着发震时间的临近呈现出异常井数逐渐增多的趋势,这个现象O1波表现得更为清楚,异常在空间的分布特征则表现得较为复杂。
     (3)邛崃川22井的断流是有一定力学基础与配套异常的显著震前地下流体中短期前兆异常,并不完全是区域少雨干旱引起的,也非邻区钻井干扰所致。
     (4)四川境内,由同震水位阶变反演出来的体应变与位错模型计算出来的体应变在力学性质上并不完全相符,有三分之二的井孔由水位反演出来的体应变与位错模型计算出来的体应变的力学性质相同,另三分之一的井孔呈现出力学性质相反的现象,并且水位反演的体应变量值要比位错模型计算出来的体应变大数到数百倍。
     (5)在三峡井网区域内,8口井的同震水位变化特征不同。井水位对地震波作用的响应能力与响应特征,主要与井点所在的构造部位、观测含水层类型与含水层的导水系数等有关,并且,同震响应后的残留阶变,可能说明了一次强震对观测井所在的断裂应力状态的影响。
Water is widely distributing on the earth, just like the blood existing in thehuman body. Groundwater level will appear anomalous changes before and after anearthquake. Groundwater plays vital role in the forming of the earthquake.Researchers pay lots of attentions on the relationship between groundwater andearthquake.
     Taking Wenchuan earthquake as an example, groundwater exceptions in wellsare studied in this dissertation, then tidal analysis is done to get the tidal factor. So thechanging of tidal factor can be studied. After that, we studied the phenomena of cutoffflow in well QL based on the field survey. And the relationship between co-seismicwater-level changes and dislocation mode are also learned. Finally, we studied theco-seismic water-level changes in Three Gorges well-network. With these studies, weget the following conclusions:
     (1) 5 of the 16 wells in Sichuan province appeared long-term、middle-term orshort-term anomalous. The number of anomalies increased with the time approachingthe earthquake. These anomalies are mainly distributed along the Longmenshan andHuayingshan faults which have a strike of North-East. And it seems that theanomalies shift from the outside region into the source region, this phenomenon mayimport for the predicting of seismogenic time and the epicenter of the futureearthquakes.
     (2) Both M2and O1waves of the groundwater appear some anomalous before theearthquake. The number of anomalous wells increase with the time closer to theearthquake happenning. This phenomenon appears more clearly in O1wave. Thecharacteristic of spatial distribution is more complex than the anomalies in thegroundwater level.
     (3) The abnormal interruption of water flow in Qionglai well is an obviousmiddle-short anomalous which have an apparently mechanics basis. It was not causedby the drought or pumping nearly.
     (4) In the Sichuan region, the mechanic characteristic of strain inferred from theco-seismic water-level and strain inferred from the dislocation model are not allconsistent. 2/3 of them are same, and the rest are opposite with each other. The valueof strain inferred from the co-seismic water-level changes are one or two order biggerthan strain inferred form the dislocation model.
     (5) In the Three Gorges region, the strain get from the two methods are nearly inthe same order, but the characteristic of co-seismic water-level of the 8 wells are notsame. The response ability and characteristic are mainly determined by the location ofgeological condition, hydrogeology properties( such as transmissivity). What’s more,the residual step changes in groundwater level may reflect the impact on the stressstate of the fault induced by the strong quake.
引文
[1] Akita F., and Matsumoto N.. Hydrological responses induced by the Tokachi-okiearthquake in 2003 at hot spring wells in Hokkaido, Japan. Geophysical ResearchLetters, 2004, (31): L16603.
    [2] Bredehoeft J. D.. Response of well-aquifer systems to earth tides. Journal ofGeophysical Research, 1967, 72(12): 3071-3087.
    [3] Brodsky E. E., Roeloffs E., Woodcock D., et al. A mechanism for sustainedgroundwater pressure changes induced by distant earthquakes. Journal ofGeophysical Research, 2003, 108(B8): 2390.
    [4] Burchfiel B. C., Royden L. H., Hilst vonder, et al. A geological and geophysicalcontext for the Wenchuan earthquake of 12 May 2008, Sichuan, People's Republicof China. GSA Today, 2008, 18(7): 4-11.
    [5] Chen S. F., Wilson C. J. L., Deng Q. D., et al. Active faulting and block movementassociated with large earthquakes in the Min Shan and Longmen Mountains,northeastern Tibetan Plateau. Geophys, 1994, 99(24): 25-38.
    [6] Chia Yeeping, Wang Yuan-Shian, Chiu Jessie J., et al. Changes of groundwaterlevel due to the 1999 Chi-chi earthquake in the Choshui river alluvial fan inTaiwan. Bulletin of the seismological society of America, 2001, 91(5):1062-1068.
    [7] Cooper Hilton H., Bredehoeft John D., Paradopulos Istavros S., et al. Theresponse of well-aquifer systems to seismic waves. Journal of GeophysicalResearch, 1965, 70(16): 3915-3926.
    [8] Cutillo P. A. and Ge S.. Analysis of strain-induced ground-water fluctuationsat Devils Hole, Nevada. Geofluids, 2006, 6(4): 319-333.
    [9] Densmore A. L., Ellis M. A., Li Y., et al. Active tectonics of the Beichuan andPengguan faults at the eastern margin of the Tibetan Plateau. Tectonics, 2007,26: TC4005.
    [10]Feigl K. L., Dupre E.. RNGCHN: a program to calculate displacement componentsfrom dislocations in an elastic half-space with applications for modelinggeodetic measurements of crustal deformation. Computers Geesciences, 1999, 25:695-704.
    [11]Feigl K L., Sergent A., Jaeq D.. Estimation of an earthquake focal mechanismfrom a satellite radar interferogram: application to the December 4, 1992Landers aftershock. Geophys. Res. Lett., 1995, 22(9): 1037-1040.
    [12]George W. O, Romberg F. E.. Tide producing forces and artesian pressures. TransAmer Groph Union, 1951, 369-371.
    [13]Jones L. M., Han W, Hauksson E., et al. Focal mechanisms and aftershock locationsof the Songpan earthquakes of August 1976 in Sichuan Province. Journal ofGeophysical Research, 1984, 89: 7697-7707.
    [14]King R. W., Shen F., Burchfiel B. C., et al. Geodetic measurement of crustalmotion in southwest China. Geology, 1997, 25(2): 179-182.
    [15]Kitagawa Y, Koizumi N, Tsuskutta T.. Comparison of post-seismic groundwatertemperature changes with earthquake-induced volumetric strain release: Yudanihot spring, Japan. Geophys. Res. Lett., 1996, 23(22): 3147-3150.
    [16]Manga M., and Wang C.Y.. Earthquake hydrology. In: G. Schubert editor. Treatiseon Geophysics. Vol. 4: 293-320.
    [17]Massonnet D, Feigl K.L.. Radar interferometry and its application to changesin the Earth's surface. Reviews of Geophysics, 1998, 36(4): 441-500.
    [18]Meade B.J.. Present-day kinematics at the India-Asia collision zone. Geology,2007, 35(1): 81-84.
    [19]Mechior P. Analyse harmonique Des variations de niveau observes dans six puits(Duchov, Carlsbad, Oak Ridge, Iowa C, Kiabukwa, Turnhou). Symp Marces TerrestresTrieste BollGeofisica Tenrica E Appl, 1960, (2):122-124.
    [20]Okada Y.. Surface deformation due to shear and tensile faults in a half-space.Bulletin of the seismological society of America, 1985, 75(4): 1135-1154.
    [21]Rhoads G. H., and Robinson E. S.. Detemination of aquifer parameters from welltides. Journal of Geophysical Research, 1979, 84(B11): 6071-6082.
    [22]Ritzi R. W., Sorooshian S., Hsieh P. A.. The estimation of fluid flow propertiesfrom the response of water levess in wells to the combined atmospheric and earthtide forces. Water resources research, 1991, 27(5): 883-893.
    [23]Robinson E.S., Bell R.T.. The tides in confined well-acquifer systerms. Journalof Geophysical Research, 1971, 76(8): 1857-1869.
    [24]Roeloffs E. A.. Poroelastic techniques in the study of earthquake-relatedhydrologic phenomena. Advances in geophysics, 1996, 37: 135-195.
    [25]Roeloffs E. A. Persistent water level changes in a well near Parkfield,California, due to local and distant earthquakes. Journal of GeophysicalResearch, 1998, 103(B1): 869-889.
    [26]Roeloffs E., Sneed M., Galloway D. L.. Water-level changes induced by local anddistant earthquakes at Long Valley caldera, California. Journal of volcanologyand geothermal research, 2003, 127(3-4): 269-303.
    [27]Rojstaczer S., Agnew D. C.. The influence of formation material properties onthe response of water levels in wells to earth tides and atmospheric loading.Journal of Geophysical Research, 1989, 94(B9): 12403-12411.
    [28]Sato T., Matsumoto N., Kitagawa Y., et al. Changes in groundwater levelassociated with the 2003 Tokachi-oki earthquake. Earth planets space, 2004, 56:395-400.
    [29]Shen Z., Lu J., Wang M., et al. Contemporary crustal deformation around thesoutheast bordeland of the Tibetan Plateau. Geophys, 2005, 110: 1—17.
    [30]Singh V.S.. Impact of the earthquake and tsunami of December 26, 2004, on thegroundwater regime at Neill island (south Andaman). Journal of environmentalmanagement, 2008, 89(1): 56-62.
    [31]Sun Wenke, Okubo Shuhei and Fu Guangyu. Green's functions of coseismic strainchanges and investigation of effects of Earth's spherical curvature and radialheterogeneity. Geophys. J. Int., 2006, 1—19.
    [32]Tan Tjongkie, Kang Wenfa. Time-dependent Dilatancy Prior to Rock Failure andEarthquakes. Proc of 5th Int Congr. ISRM, Australia, 1983.
    [33]Theis C.V. Earth tides as show by fluctuations of water level in artesian wellsNewMexico. Intern Union Geodesy and Geophysics, Washington D. C., GeologicalSurvey open file report 10, 1939.
    [34]Waller Roger M. Effects of the March 1964 Alaska earthquake on the hydrologyof the Anchorage area. Washington: United States government printing office,1966, 2—17.
    [35]Wang C. Y., Wang C. H., Kuo C. H.. Temporal change in groundwater level followingthe 1999 (Mw=7.5) Chi-chi earthquake, Taiwan. Geofluids, 2004, 4(3): 210-220.
    [36]Xu Xiwei, Wen Xueze, Yu Guihua, et al. Co-seismic reverse- and oblique-slipsurface faulting generated by the 2008 Mw7.9 Wenchuan earthquake, China. Geology,2009, 37(6): 515-518.
    [37]Young Andrew. Tidal phenomena at in land boreholes near Cradock. Transactionsof the Royal Society of South Africa. 1913, 3(1): 61-106.
    [38]Zhang P., Shen Z., Wang M., et al. Continuous deformation of the Tibetan plateaufrom Global Positioning System data. Geology, 2004, 32: 809-812.
    [39]蔡祖煌,石慧馨.地震流体地质学概论.北京:地震出版社,1981.
    [40]车用太,刘成龙,鱼金子,等.汶川Ms8.0地震的地下流体与宏观异常及地震预测问题的思考.地震地质,2008,30(4): 828-838.
    [41]车用太,刘五洲,颜萍,等.三峡井网地下流体动态在水库蓄水前后的变化.大地测量与地球动力学,2004,24(2):14-22.
    [42]车用太,鱼金子,刘五洲,等.三峡井网的布设与观测井建设.地震地质,2002,24(3):423-433.
    [43]车用太,刘五洲,鱼金子,等.井水位对地壳应力—应变响应灵敏度的研究.地震,2003,23(3):113—120.
    [44]车用太,鱼金子,等著.地震地下流体学.北京:地震出版社,2006,299—360.
    [45]陈九辉,刘启元,李顺成,等.汶川Ms8.0地震余震序列重新定位及其地震构造研究.地球物理学报,2009,52(2):390-397.
    [46]程万正,官致君,苏琴,等.汶川Ms8.0地震前四川地区前兆异常及其统计分析.地震学报,2011,33(3):304-318.
    [47]付虹,刘丽芳,王世芹,等.地方震及近震地下水同震震后效应研究.地震,2002,22(4):55-56.
    [48]高士钧,等著.长江三峡地区地壳应力场与地震.北京:地震出版社,1992.
    [49]耿杰,张昭栋,魏焕,等.唐山地震前后地下水动态图像及其形成演化模式.地震地质,1998,20(3):255-260.
    [50]国家地震局预测预防司.地下流体地震预报方法.北京:地震出版社,1997,55-66.
    [51]国家地震局震害防御司.中国近代地震目录.北京:地震出版社,1995,637.
    [52]黄辅琼,迟恭财,徐桂明.大陆地下流体对台湾南投7.5级地震的响应研究.地震,2000,20(增刊):119-125.
    [53]黄媛,吴建平,张天中,等.汶川8.0级大地震及其余震序列重定位研究.中国科学,2008,地球科学(10);1242-1249.
    [54]江在森,王庆良,祝意青.地壳变形和重力场.见:中国地震局监测预报司组织编著.汶川8.0级地震科学研究报告.北京:地震出版社,2009,48-104.
    [55]李家明,姚运生,梅建昌,等. DSW-01型水位仪在三峡井网中应用.大地测量与地球动力学,2005,26(4):121-125.
    [56]李军.雅江地震前地下水位异常变化.四川地震,2002,1:27-31.
    [57]李延兴,张静华,周伟,等.汶川8.0级地震孕育发生的机制与动力学问题.地球物理学报,2009,52(2):519—530.
    [58]李勇,周荣军,董顺利,等.汶川地震的地表破裂与逆冲走滑作用.成都理工大学学报(自然科学版),2008,35(4):404-413.
    [59]李悦.地震导致的井—含水层系统应变与地下水位变化关系研究.硕士学位论文.中国地质大学(北京),2011.
    [60]林淑真,李宗仰、陈暐家.台湾地区9.21及3.31地震的地下水位异常统计与介入分析.地震地质,2003,26(4):321-327.
    [61]刘成龙,车用太,王广才.大规模宏观异常的双重性及其在地震预报中的意义.地震地质,2004,26(2):340-346.
    [62]刘成龙、王广才、张卫华,等.三峡井网井水位对汶川地震的同震响应特征研究.地震学报,2009,31(2):188-194.
    [63]刘五洲,鱼金子,车用太,等.三峡井网地下流体动态与映震能力的初步分析.地震地质,2003,25(4):632-639.
    [64]刘耀炜,牛安福,卢军.强震短期前兆异特征的物理分析和解释研究进展.地震,2004,24(3):21—25.
    [65]吕江宁,沈正康,王敏.川滇地区现代地壳运动速度场与活动块体模型研究.地震地质,2003,25(4):543-554.
    [66]马保起,苏刚,侯治华,等.利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率.地震地质,2005,27(2):234-242.
    [67]四川省地质矿产局.四川省区域地质志.北京:地质出版社,1991.
    [68]孙振璈,孙天林,简春林.张北6.2级地震前北京地下水位井网动态异常初析.华北地震科学,1998,16(3):53-61.
    [69]唐荣昌,韩渭宾.四川活动断裂与地震.北京:地震出版社,1993,368.
    [70]田竹君,陈益惠.水位固体潮潮汐参数的初步研究.见:国家地震局科技监测司.地震监测与预报方法清理成果汇编(地下水分册).北京:地震出版社,1988,190-195.
    [71]万迪堃,汪成民,等.地下水动态异常与地震短临预报.北京:地震出版社,1993.
    [72]汪成民,车用太,万迪堃,等.地下水微动态研究.北京:地震出版社,1988,149—180.
    [73]汪成民,车用太,万迪堃,等.中国地震地下水动态观测网.北京:地震出版社,1990,81-88.
    [74]汪成民,尹伯忠.地下水位异常变化.见:国家地震局《一九七六年唐山地震》编辑组.一九七六年唐山地震.北京:地震出版社,1982,246-270.
    [75]王广才,沈照理.地震地下水动态监测与地震预测.自然杂志,2010,32(2):90-93.
    [76]王卫民,赵连锋,李娟,等.四川汶川8.0级地震震源过程.地球物理学报,2008,51(5):1403-1410.
    [77]王小亚,朱文耀,符养,等. GPS监测的中国及其周边现时地壳形变地球物理学报,2002,45(2):198-209.
    [78]王泽皋,侯立臣,刘金宽.一九六六年邢台地震.北京:地震出版社,1986.
    [79]徐锡伟,于贵华,马文涛,等.昆仑山地震(Mw7.8)破裂行为、变形局部化特征及其构造内涵讨论.中国科学:地球科学,2008,38(7):785-796.
    [80]晏锐.地震前兆观测资料分析.见:中国地震局监测预报司组织编著.汶川8.0级地震科学研究报告.北京:地震出版社,2009,170-193.
    [81]杨竹转,邓志辉,陶京玲,等.北京塔院井数字化观测水温的同震效应研究.地震学报,2007,29(2):203-213.
    [82]张立.汶川地震中云南地区地下流体典型前兆异常.地震地磁观测与研究,2010,31(6):40-44.
    [83]张培震,王敏,甘卫军,等. GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约.地学前缘,2003,10:82-92.
    [84]张培震,徐锡伟,闻学泽,等. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因.地球物理学报,2008,51(4):1066-1073.
    [85]张世民,舒优良,黄辅琼.甘肃玉门5.9级地城前周至数字化综合观测井的异常特征.华北地震科学,2003,21(3):37-41.
    [86]张卫华,梅建昌,李家明,等.三峡井网井水位固体潮汐和气压响应特征研究.大地测量与地球动力学,2008,28(5):45—49.
    [87]张有良主编.最新工程地质手册.北京:中国知识出版社,2006,487-495.
    [88]张昭栋,陈学忠,陈建民,等.井水位固体潮加卸载响应比的地震短临前兆.地震学报,1997,19(02):174-180.
    [89]张昭栋,刘庆国,刘涛,等.由井水位资料反演大同阳高6.1级地震前后应力场的动态演化过程.西北地震学报,2001,23(1):66-68.
    [90]张昭栋,郑金涵,冯初刚.井水位的固体潮效应和气压效应与含水层参数间的定量关系.西北地震学报,1989,11(3):47-52.
    [91]张昭栋,郑金涵,冯初刚.深井水位的固体潮效应.地震学报,1991,13(1):66-75.
    [92]张昭栋,迟镇乐,陈会民,等.水井含水层导水系数及其对地震波的响应.内陆地震,1999,13(3):207-214.
    [93]张昭栋,郑金涵,耿杰,等.地下水潮汐现象的物理机制和统一数学方程.地震地质,2002,24(2):208—214.
    [94]中国地震局监测预报司.地下流体对苏门答腊8.7级地震的响应特征.北京:地震出版社,2005,131-258.
    [95]周坤根,殷积涛.井水固体潮观测资料海潮改正问题.地壳形变与地震,1989,9(4):37-45.
    [96]朱艾斓,徐锡伟,刁桂苓,等.汶川Ms8.0地震部分余震重新定位及地震构造初步分析.地震地质,2008,30(3):759-767.
    [97]朱凤鸣,吴戈.一九七五年海城地震.北京:地震出版社,1982.
    [98]朱志澄主编.构造地质学.湖北武汉:中国地质大学出版社,1990,40-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700