中药过程分析中NIR技术的基本理论和方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于“顶层设计”理念的中药过程分析学从中药制药过程全局出发,对生产过程的单元、要素进行统筹考虑和系统设计,最终实现质量稳定、均一、安全、有效。近红外光谱(NIR)技术作为过程分析领域发展最快、应用最广、最受瞩目的技术之一,可满足过程分析技术快速、无损、可靠、简便的要求。三文针对中药过程分析技术面临的理论、方法、技术及应用等重点问题开展了研究工作,取得了如下成果:
     理论方面:①基于两类误差多变量分析理论,建立了中药复杂体系中多变量检测的理论公式;②借鉴总误差分析理论,研究了NIR技术用于中药复杂体系定量分析的评价参数,包括准确性、真实性、精密度、定量限、风险性、线性和回收率等;③研究了NIR频率谱区的吸收理论,并对不同近红外频率谱区的定量性能进行了评价。通过上述研究,为NIR用于中药过程分析奠定了理论基础。
     方法学方面:①以清开灵注射液中间体银黄液、金银花浓缩液乙醇沉淀中间体和银黄颗粒与淀粉混合物三者为载体,结合间隔偏最小二乘(iPLS)、向后间隔偏最小二乘(BiPLS)、移动窗口偏最小二乘(mwPLS)等变量筛选方法,研究了不同体系的近红外多变量检测限估计值,结果表明水溶液体系的近红外多变量检测限比醇溶液体系的检测限高(醇溶液体系中检测限估计值可低至几十个ppm),固体体系的近红外多变量检测限比液体体系的检测限高;②采用符合FDA和ICH验证标准的准确性轮廓(Accuracy Profile)分析方法,引入β-期望容差区间参数,以上述三种体系为载体,建立了中药液体制剂醇溶液体系、水溶液体系和固体体系中近红外定量分析方法;③采用准确性轮廓方法的定量分析参数作为评价标准,根据近红外定量分析流程,以金银花浓缩液乙醇沉淀中间体为载体,解决了低含量中药样本集的NIR模型可靠性间题,提出了准确性轮廓验证方法的NIR模型筛选新策略;④采用准确性轮廓方法考察了柠檬酸在不同溶剂体系中的定量限,阐明了溶剂和温度对NIR定量分析的影响,指出FCOT和CR频率谱区存在饱和吸收,SCOT频率谱区是变量筛选最佳光谱区域之一等结论。上述方法的建立,为中药过程分析中NIR定量分析研究提供方法学依据。
     技术方面:①以清开灵注射液为载体,结合间隔偏最小二乘、向后间隔偏最小二乘、移动窗口偏最小二乘变量筛选方法,系统考察了全息光栅型、傅里叶变换型、声光可调型和微电子阵列型等不同类型近红外光谱技术的多变量检测限,研究表明不同类型近红外光谱技术的多变量检测限估计值在几十到几百ppm。其中,新类型的近红外光谱技术,在中药分析领域多变量检测限估计值达到了ppm级,肯定了近红外技术在本领域广阔的运用前景;②采用准确性轮廓分析方法对不同类型和不同采样方式的近红外技术的定量分析结果进行了评价,建立了相应的定量分析方法体系,为本领域近红外技术的选择提供参考;③运用光谱分析新技术------近红外光谱成像技术,以乳块消素片和复方甘草片为载体,构建了复杂体系中活性成分的空间分布,研究了基础相关性分析方法(BACRA)、直方图法和像元块标准差法(SDMT)在片剂成分空间分布均匀性评价中的应用。以银黄片中金银花提取物、黄芩提取物和淀粉三元体系的混合为载体,构建三元体系中活性成分空间分布图,建立了二值化图像中移动式像元块标准差方法(MBMSTDEV),以此进行中药制药混合过程均匀度的评价方法。以不同产地的甘草为载体,选取甘草酸为指标成分,采用线性模型(PLS)和非线性模型(LS-SVR),阐明了利用高维数据进行低含量成分定量分析的准确性,为近红外成像技术在中药定量分析领域的运用提供铺垫。上述研究结果为NIR研究过程仪器及采样方式的选择提供了依据,也为不同研究需求提供了更多的技术方法。
     应用方面,①建立了中试规模的清开灵注射液在线近红外过程分析技术平台;②集成近红外过程分析技术平台的优势,以清开灵注射液生产过程金银花提取单元为例,结合间隔偏最小二乘算法,运用前期建立的多变量检测限评价方法,确定了金银花提取过程中近红外光谱在线分析方法的多变量检测限估计值(达到了十几ppm);③建立了金银花提取过程近红外光谱在线分析方法的验证体系。这些应用不仅为近红外技术在清开灵注射液生产过程的实际运用奠定了坚实的基础,也为其在中药液体制剂生产过程的应用提供了依据。
     通过上述研究,本文较全面地解决了NIR技术用于中药过程分析领域的几个关键问题,所形成的理论、技术、方法及装备体系为中药生产过程质量控制体系水平的升级提供了支撑。
Process analysis of Chinese material medica depends on the concept of "top-level design". Overall consideration and "top-level design" of process unit can ultimately assure that the product quality is stable, uniform, safe and effective. The objective of process analysis was to understand the whole procedure of Chinese material medica. Attributed to rapid, nondestructive, reliable and simple requirements, near infrared spectroscopy (NIR) has been widely used as one of the most important process analysis technologies for Chinese material medica. According to the key issues faced in this field, the thesis was to research the basic theory and methodology of process analysis of Chinese material medica by NIR.
     In the aspect of theory,①introduce both typeⅠand typeⅡerror and provide the theoretical formula of multivariate detection limits in the field of process analysis of Chinese material medica by NIR;②introduce total error theory and establish analytical methodology of process analysis of Chinese material medica by NIR, including accuracy, precision, limit of quantification, risk, linearity, and recovery;③research the NIR frequency absorption theory and assess the quantitative performance in each frequency spectral region.
     In the aspect of methodology,①take Qingkailing injection intermediate, Lonicera japonica solution in ethanol precipitation process and Yihuang particles as examples and research multivariate detection limits estimates of NIR based on the methods of interval partial least squares, backward interval partial least squares and moving window partial least squares. The results show that multivariate detection limits estimate is higher in solid system than in aqueous solution. On the other hand, multivariate detection limits estimate is higher in aqueous solution than alcohol solution system. Multivariate detection limits estimate attach dozens of ppm in alcohol system;②take Qingkailing injection intermediate, Lonicera japonica solution in ethanol precipitation process and Yihuang particles as examples and establish NIR quantitative analysis method by accuracy profile (AP) in alcohol system, aqueous solution system and solid system of Chinese material medica;③take quantitative analysis parameters of AP method as criteria, illuminate the reliability of NIR model by sample sets with low APIs content in CHM. A promising model selection strategy for the determination of low-content anlytes ishighly recommended by AP;④citric acid was used as solute, while water, ethanol and mixture of ethanol and water are used as solvent respectively. Taking quantitative analysis parameters of AP method as criteria, the result show that FCOT or CR region is preferred as a variables selection region, but if saturated absorption occurred in FCOT or CR region, SCOT region was a better choice.
     Technology,①take Qingkailing injection as an example, themultivariate detection limits estimates of different types of NIR technologies (Holographic grating, Fourier transform, AOTF, MEMS) were investigated based on the methods of interval partial least squares, backward interval partial least squares and moving window partial least squares. The result show that multivariate detection limits estimates of novel type of NIR technologies attach ppm level, which will broad the use of NIR in the process analysis of Chinese material medica;②NIR quantitative analysis method was established by AP in different types of NIR instruments and different sampling methods.③NIR-CI served as a process analysis technology in the field of Chinese material medica. Take Rukuaixiao tablets as an example, the spatial component distribution was visualized using BACRA method. Furthermore, histogram analysis method was applied to assess the homogeneity of the tablets. Taking compound liquorice tablets as an example, standard deviation method (SDMT) was introduced to characterize the compound distribution of compound liquorice tablets based on binary image and MBMRSTDEV was introduced as a suitable approach to evaluate the homogeneity in blending process. Taking different origins of licorice as a carrier, a rapid and non-destructive quantitative analysis of glycyrrhizic acid content was carried out depended on linear model (PLS) and nonlinear model (LS-SVR) by NIR hyperspectral imaging. The result proved that hyperspectral data could be effectively employed, which paved the way for NIR hyperspectral imaging in the field of quantitative analysis of Chinese material medica.
     Application aspects,①The pilot platform of process analysis for Qingkailing injection was established by on-line NIR;②integrate the advantages of pilot platform, theextraction process of Lonicera japonica was taken as an example and research the multivariate detection limits estimates of on-line NIR based on interval partial least squares were determined. Imply multivariate detection limits theory into the practical application and provide about 10 ppm level of multivariate detection limits estimate of on-line NIR;③establish on-line NIR quantitative analysis method.
     All in all, the thesis focusing on the basic theory, methodological research, technology promotion and application of process analysis of Chinese material medica, provides several key issues of NIR technology in strengthening the quality control in the process analysis of Chinese material medica.
引文
[1]K.R. Beebe, W.W. Blaser, R.A. Bredeweg, J.P. Chauvel, R.S. Harner, M. Lapack, A. Leugers, D.P. Martin, L.G. Wright, E.D. Yalvac. PROCESS ANALYTICAL-CHEMISTRY, Analytical Chemistry,65 (1993) R199-R216.
    [2]W.W. Blaser, R.A. Bredeweg, R.S. Harner, M.A. Lapack, A. Leugers, D.P. Martin, R.J. Pell, J. Workman, L.G. Wright. PROCESS ANALYTICAL-CHEMISTRY, Analytical Chemistry,67 (1995) R47-R70.
    [3]J. Workman, D.J. Veltkamp, S. Doherty, B.B. Anderson, K.E. Creasy, M. Koch, J.F. Tatera, A.L. Robinson, L. Bond, L.W. Burgess, G.N. Bokerman, A.H. Ullman, G.P. Darsey, F. Mozayeni, J.A. Bamberger, M.S. Greenwood. Process analytical chemistry, Analytical Chemistry,71 (1999) 121R-180R.
    [4]J. Workman, K.E. Creasy, S. Doherty, L. Bond, M. Koch, A. Ullman, D.J. Veltkamp. Process analytical chemistry, Analytical Chemistry,73 (2001) 2705-2718.
    [5]J. Workman, M. Koch, D.J. Veltcamp. Process analytical chemistry, Analytical Chemistry, 75 (2003) 2859-2876.
    [6]J. Workman, M. Koch, D. Veltkamp. Process analytical chemistry, Analytical Chemistry, 77 (2005) 3789-3806.
    [7]J. Workman, M. Koch, D. Veltkamp. Process analytical chemistry, Analytical Chemistry, 79 (2007) 4345-4363.
    [8]J. Workman, M. Koch, B. Lavine, R. Chrisman. Process Analytical Chemistry, Analytical Chemistry,81 (2009)4623-4643.
    [9]J. Workman, B. Lavine, R. Chrisman, M. Koch, Process Analytical Chemistry, Analytical Chemistry,83 (2011) 4557-4578.
    [10]in, U.S. Food and Drug Administration, Guidance for Industry PAT:A Framework for Innovative Pharmaceutical Development, Manufacturing and Quality Assurance, (2004), http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances /UCM070305.pdf.
    [11]X. Shi, Y. Zhang, Y. Wang, Y. Qiao. Process quality control for TCM production, World Science and Technology/Modernization of Traditional Chinese Medicine and Materia Media, 10(2008) 121-125.
    [12]X. Zhu, Y. Shan, G. Li, A. Huang, Z. Zhang. Prediction of wood property in Chinese Fir based on visible/near-infrared spectroscopy and least square-support vector machine, Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,74 (2009) 344-348.
    [13]W.L. Li, L.H. Xing, Y. Cai, H.B. Qu. Classification and quantification analysis of Radix scutellariae from different origins with near infrared diffuse reflection spectroscopy, Vibrational Spectroscopy,55 (2011) 58-64.
    [14]X.-r. Zhan, X.-r. Zhu, X.-y. Shi, Z.-y. Zhang, Y.-j. Qiao. Determination of Hesperidin in Tangerine Leaf by Near-Infrared Spectroscopy with SPXY Algorithm for Sample Subset Partitioning and Monte Carlo Cross Validation, Spectroscopy and Spectral analysis,29 (2009) 964-968.
    [15]G. Reich. Near-infrared spectroscopy and imaging:Basic principles and pharmaceutical applications, Advanced Drug Delivery Reviews,57(2005) 1109-1143.
    [16]Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, N. Jent. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies, Journal of Pharmaceutical and Biomedical Analysis,44 (2007) 683-700.
    [17]J. Luypaert, D.L. Massart, Y.V. Heyden. Near-infrared spectroscopy applications in pharmaceutical analysis, Talanta,72 (2007) 865-883.
    [18]L. Norgaard, A. Saudland, J. Wagner, J.P. Nielsen, L. Munck, S.B. Engelsen. Interval partial least-squares regression (iPLS):A comparative chemometric study with an example from near-infrared spectroscopy, Applied Spectroscopy,54 (2000) 413-419.
    [19]X.R. Zhu, Y. Shan, G.Y. Li, Q. Fan, X.Y. Shi, Y.J. Qiao, Z.Y. Zhang. Determination of Hesperidin Content in Guogongjiu Medicinal Wine Based on NIR Spectrometry and Least Squares Support Vector Machines, Spectroscopy and Spectral Analysis,29 (2009) 2471-2474.
    [20]X.B. Zou, J.W. Zhao, X.Y. Huang, Y.X. Li. Use of FT-NIR spectrometry in non-invasive measurements of soluble solid contents (SSC) of 'Fuji' apple based on different PLS models, Chemometrics and Intelligent Laboratory Systems,87 (2007) 43-51.
    [21]李文龙,徐金钟,刘绍勇,程翼宇,瞿海斌.近红外漫反射光谱法测定5种中药提取物中水分含量的研究,药物分析杂志,(2009)1602-1606.
    [22]A. Gombas, I. Antal, P. Szabo-Revesz, S. Marton, I. Eros. Quantitative determination of crystallinity of alpha-lactose monohydrate by Near Infrared Spectroscopy (NIRS), in:4th Central European Symposium on Pharmaceutical Technology, Elsevier Science Bv, Vienna, Austria,2001, pp.25-32.
    [23]C. Tan, J.Y. Wang, T. Wu, X. Qin, M.L. Li. Determination of nicotine in tobacco samples by near-infrared spectroscopy and boosting partial least squares, Vibrational Spectroscopy,54 (2010)35-41.
    [24]M. Otsuka. Chemoinformetrical evaluation of granule and tablet properties of pharmaceutical preparations by near-infrared spectroscopy, in:International Conference on Chemometrics and Bioinformatics in Asia. Elsevier Science Bv, Shanghai. PEOPLES R CHINA,2004, pp.109-114.
    [25]M.R. Smith, R.D. Jee, A.C. Moffat, D.R. Rees, N.W. Broad. Optimisation of partial least squares regression calibration models in near-infrared spectroscopy:a novel algorithm for wavelength selection, Analyst,128(2003) 1312-1319.
    [26]Z.M. Wang, B.R. Xiang. Application of artificial neural network to determination of active principle ingredient in pharmaceutical quality control based on, near infrared spectroscopy, Microchemical Journal,89 (2008) 52-57.
    [27]A. Niazi, J. Zolgharnein, S. Afiuni-Zadeh. Spectrophotometric determination of ternary mixtures of thiamin, riboflavin and pyridoxal in pharmaceutical and human plasma by least-squares support vector machines, Analytical Sciences,23 (2007) 1311-1316.
    [28]W.F. McClure.204 years of near infrared technology:1800-2003, Journal of near Infrared Spectroscopy,11 (2003)487-518.
    [29]E. Rasanen, N. Sandier. Near infrared spectroscopy in the development of solid dosage forms, Journal of Pharmacy and Pharmacology,59 (2007) 147-159.
    [30]L. Stordrange, F.L. Libnau, D. Malthe-Sorenssen, O.M. Kvalheim. Feasibility study of NIR for surveillance of a pharmaceutical process, including a study of different preprocessing techniques, in:7th Scandinavian Symposium on Chemometrics, John Wiley & Sons Ltd, Copenhagen, Denmark,2001, pp.529-541.
    [31]S.F. Ye, D. Wang, S.G. Min. Successive projections algorithm combined with uninformative variable elimination for spectral variable selection, Chemometrics and Intelligent Laboratory Systems,91 (2008) 194-199.
    [32]P. Chalus, S. Walter, M. Ulmschneider. Combined wavelet transform-artificial neural network use in tablet active content determination by near-infrared spectroscopy, Analytica Chimica Acta,591 (2007) 219-224.
    [33]T.T. Zou, Y. Dou, H. Mi, J.Y. Zou, Y.L. Ren. Support vector regression for determination of component of compound oxytetracycline powder on near-infrared spectroscopy, Analytical Biochemistry,355 (2006) 1-7.
    [34]J. Burgbacher, J. Wiss. Industrial applications of online monitoring of drying processes of drug substances using NIR, Organic Process Research & Development,12 (2008) 235-242.
    [35]K. Heymann, G. Mirschel, T. Scherzer, M.R. Buchmeiser. In-line determination of the thickness of UV-cured coatings on polymer films by NIR spectroscopy, Vibrational Spectroscopy,51 (2009) 152-155.
    [36]J. Mantanus, E. Ziemons, P. Lebrun, E. Rozet, R. Klinkenberg, B. Streel, B. Evrard, P. Hubert. Moisture content determination of pharmaceutical pellets by near infrared spectroscopy:Method development and validation, Analytica Chimica Acta,642 (2009) 186-192.
    [37]J. Mantanus, E. Ziemons, P. Lebrun, E. Rozet, R. Klinkenberg, B. Streel, B. Evrard, P. Hubert. Active content determination of non-coated pharmaceutical pellets by near infrared spectroscopy:Method development, validation and reliability evaluation, Talanta,80 (2010) 1750-1757.
    [38]C.V. Liew, A.D. Karande, P.W.S. Heng. In-line quantification of drug and excipients in cohesive powder blends by near infrared spectroscopy, International Journal of Pharmaceutics, 386(2010) 138-148.
    [39]A.U. Vanarase, M. Alcala, J.I.J. Rozo, F.J. Muzzio, R.J. Romanach. Real-time monitoring of drug concentration in a continuous powder mixing process using NIR spectroscopy, Chemical Engineering Science,65 (2010) 5728-5733.
    [40]M. Laasonen, T. Harmia-Pulkkinen, C. Simard, M. Rasanen, H. Vuorela. Development and validation of a near-infrared method for the quantitation of caffeine in intact single tablets, Analytical Chemistry,75 (2003) 754-760.
    [41]P. Chalus, Y. Roggo, S. Walter, M. Ulmschneider. Near-infrared determination of active substance content in intact low-dosage tablets, Talanta,66 (2005) 1294-1302.
    [42]R.P. Cogdill, C.A. Anderson, M. Delgado-Lopez, D. Molseed, R. Chisholm, R. Bolton, T. Herkert, A.M. Afnan, J.K. Drennen,3rd. Process analytical technology case study part Ⅰ: feasibility studies for quantitative near-infrared method development, Aaps Pharmscitech,6 (2005) E262-272.
    [43]C.P. Meza, M.A. Santos, R.J. Romanach. Quantitation of drug content in a low dosage formulation by transmission near infrared spectroscopy, Aaps Pharmscitech,7 (2006).
    [44]M. Blanco, A. Eustaquio, J.M. Gonzalez, D. Serrano. Identification and quantitation assays for intact tablets of two related pharmaceutical preparations by reflectance near-infrared spectroscopy:validation of the procedure, Journal of Pharmaceutical and Biomedical Analysis,22 (2000) 139-148.
    [45]X.J. Zhou, P. Hines, M.W. Borer. Moisture determination in hygroscopic drug substances by near infrared spectroscopy, Journal of Pharmaceutical and Biomedical Analysis,17 (1998) 219-225.
    [46]M. Blanco, M. Alcala. Simultaneous quantitation of five active principles in a pharmaceutical preparation:Development and validation of a near infrared spectroscopic method, European Journal of Pharmaceutical Sciences,27 (2006) 280-286.
    [47]W. Fountain, K. Dumstorf, A.E. Lowell, R.A. Lodder, R.J. Mumper. Near-infrared spectroscopy for the determination of testosterone in thin-film composites, Journal of Pharmaceutical and Biomedical Analysis,33 (2003) 181-189.
    [48]R.P. Cogdill, C.A. Anderson, M. Delgado, R. Chisholm, R. Bolton, T. Herkert, A.M. Afnan, J.K. Drennen. Process analytical technology case study:Part Ⅱ. Development and validation of quantitative near-infrared calibrations in support of a process analytical technology application for real-time release, Aaps Pharmscitech,6 (2005).
    [49]J.F. Martinez-Aguilar, E.L. Ibarra-Montano. Complete quality analysis of commercial surface-active products by Fourier-transform near infrared spectroscopy, Talanta,73 (2007) 783-790.
    [50]M. Alcala, J. Leon, J. Ropero, M. Blanco, R.J. Romanach. Analysis of Low Content Drug Tablets by Transmission Near Infrared Spectroscopy:Selection of Calibration Ranges According to Multivariate Detection and Quantitation Limits of PLS Models, Journal of Pharmaceutical Sciences,97 (2008) 5318-5327.
    [51]J.J. Moes, M.M. Ruijken, E. Gout, H.W. Frijlink, M.I. Ugwoke. Application of process analytical technology in tablet process development using NIR spectroscopy:Blend uniformity, content uniformity and coating thickness measurements, International Journal of Pharmaceutics,357 (2008) 108-118.
    [52]C.S. Soh, P. Raveendran, R. Mukundan. Mathematical models for prediction of active substance content in pharmaceutical tablets and moisture in wheat, Chemometrics and Intelligent Laboratory Systems,93 (2008) 63-69.
    [53]Q. Fei, M. Li, B. Wang, Y.F. Huan, G.D. Feng, Y.L. Ren. Analysis of cefalexin with NIR spectrometry coupled to artificial neural networks with modified genetic algorithm for wavelength selection, Chemometrics and Intelligent Laboratory Systems,97 (2009) 127-131.
    [54]M. Saeed, S. Saner, J. Oelichmann, H. Keller, G. Betz. Assessment of Diffuse Transmission Mode in Near-Infrared Quantification-Part I:The Press Effect on Low-Dose Pharmaceutical Tablets, Journal of Pharmaceutical Sciences,98 (2009) 4877-4886.
    [55]D. Xiang, M. Konigsberger, B. Wabuyele, K. Hornung, J. Cheney. Development of robust quantitative methods by near-infrared spectroscopy for rapid pharmaceutical determination of content uniformity in complex tablet matrix, Analyst,134 (2009) 1405-1415.
    [56]B. Wang, G.L. Liu, S.F. Liu, Q. Fei, Y.L. Ren. Orthogonal projection to latent structures combined with artificial neural network for quantitative analysis of phenoxymethyl penicillin potassium powder, Vibrational Spectroscopy,51 (2009) 199-204.
    [57]R. Lopez-Arellano, E.A. Santander-Garcia, J.M. Andrade-Garda, G. Alvarez-Avila, J.A. Garduno-Rosas, E.A. Morales-Hipolito. Quantification of lysine clonixinate in intravenous injections by NIR spectroscopy, Vibrational Spectroscopy,51 (2009) 255-262.
    [58]B. Wang, G.L. Liu, Y. Dou, L.W. Liang, H.T. Zhang, Y.L. Ren. Quantitative analysis of diclofenac sodium powder via near-infrared spectroscopy combined with artificial neural network, Journal of Pharmaceutical and Biomedical Analysis,50 (2009) 158-163.
    [59]C. Bodson, E. Rozet, E. Ziemons, B. Evrard, P. Hubert, L. Delattre. Validation of manufacturing process of Diltiazem HC1 tablets by NIR spectrophotometry (NIRS), Journal of Pharmaceutical and Biomedical Analysis,45 (2007) 356-361.
    [60]E. Ziemons, J. Mantanus, P. Lebrun, E. Rozet, B. Evrard, P. Hubert. Acetaminophen determination in low-dose pharmaceutical syrup by NIR spectroscopy, Journal of Pharmaceutical and Biomedical Analysis,53 (2010) 510-516.
    [61]X.L. Wang, Q.A. Fu, J.F. Sheng, X. Yang, J.Z. Jia, W. Du. Construction of a universal quantitative model for ibuprofen sustained-release capsules from different manufacturers using near-infrared diffuse reflection spectroscopy, Vibrational Spectroscopy,53 (2010) 214-217.
    [62]M. Ito, T. Suzuki, S. Yada, H. Nakagami, H. Teramoto, E. Yonemochi, K. Terada. Development of a method for nondestructive NIR transmittance spectroscopic analysis of acetaminophen and caffeine anhydrate in intact bilayer tablets, Journal of Pharmaceutical and Biomedical Analysis,53 (2010) 396-402.
    [63]王丽,何鹰,邱招钗,王小如,黎先春.光纤近红外光谱法在中草药分析中的应用-甘草中甘草酸含量的测定,光谱学与光谱分析,25(2005)1397-1399.
    [64]白雁,余振喜,孙素琴,朱凤云,王东,陈志红.近红外漫反射光谱技术测定牛膝中蜕皮甾酮,中草药,36(2005)1391-1394.
    [65]史春香,杨悦武,郭治昕,祝国光.近红外技术定量分析丹参药材,中药材,29(2006)897-899.
    [66]周旻,王天志,叶利明,陈聪,黄果,吴严巍.近红外漫反射光谱法测定川产黄柏中小檗碱含量,光谱学与光谱分析,27(2007)1527-1530.
    [67]叶利明,周旻,张浩,陈雏,李章万,陈聪,王颜萍.近红外漫反射光谱法测定川西高原产沙棘中异鼠李素含量,光谱学与光谱分析,28(2008)324-326.
    [68]展晓日,朱向荣,史新元,张卓勇,乔延江.SPXY样本划分法及蒙特卡罗交叉验证结合近红外光谱用于橘叶中橙皮苷的含量测定,光谱学与光谱分析,(2009)964-968.
    [69]王星,白雁,陈志红,龚海燕,张威.近红外光谱法测定连翘中连翘酯苷含量,中国中药杂志,(2009)2071-2075.
    [70]王迪,张媛莉,孟庆繁,逯家辉,金璐,滕利荣,近红外光谱在快速测定蛹虫草有效成分含量中的应用,光学学报,(2009)2795-2799.
    [71]王磊磊,陈聪,周旻,王建忠,罗霞,黄果,叶利明.近红外漫反射光谱法测定川藏道地药材菥莫子中黑芥子苷含量,光谱学与光谱分析,(2009)2673-2676.
    [72]黄倩倩,潘瑞乐,魏建和,吴严巍,张录达.近红外漫反射光谱法测定黄芩中总黄酮及黄芩苷的含量,光谱学与光谱分析,29(2009)2425-2428.
    [73]王远,秦民坚.戚近,余伯阳,唐莉.近红外漫反射光谱法测定麦冬的多糖含量,光谱学与光谱分析,(2009)2677-2680.
    [74]李伟,孙素琴,覃洁萍,易艳红,杨美华.近红外漫反射法测定杜仲中松脂醇二葡萄糖苷的含量,中国中药杂志,(2010)3318-3321.
    [75]白雁,龚海燕,宋瑞丽,陈志红.近红外漫反射光谱法快速测定山药药材中多糖的含量,中成药,(2010)110-112.
    [76]C.O. Chan, C.C. Chu, D.K.W. Mok, F.T. Chau. Analysis of berberine and total alkaloid content in Cortex Phellodendri by near infrared spectroscopy (NIRS) compared with high-performance liquid chromatography coupled with ultra-visible spectrometric detection, Analytica Chimica Acta,592 (2007) 121-131.
    [77]X.F. Luo, X. Yu, X.M. Wu, Y.Y. Cheng, H.B. Qu. Rapid determination of Paeoniae Radix using near infrared spectroscopy, Microchemical Journal,90 (2008) 8-12.
    [78]H. Lin, J.W. Zhao, Q.S. Chen, F. Zhou, L. Sun. Discrimination of Radix Pseudostellariae according to geographical origins using NIR spectroscopy and support vector data description, Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,79 (2011) 1381-1385.
    [79]C.C. Lau, C.O. Chan, F.T. Chau, D.K.W. Mok. Rapid analysis of Radix puerariae by near-infrared spectroscopy, Journal of Chromatography A,1216 (2009) 2130-2135.
    [80]Q.S. Chen, Z.M. Guo, J.W. Zhao, Q. Ouyang. Comparisons of different regressions tools in measurement of antioxidant activity in green tea using near infrared spectroscopy, Journal of Pharmaceutical and Biomedical Analysis,60 (2012) 92-97.
    [81]刘全,瞿海斌,程翼宇.用于渗漉提取过程分析的中药有效组分近红外光谱快速测定法,化工学报,54(2003)1586-1591.
    [82]倪力军,史晓浩,高秀蛟,王宁.NIR在线检测、分析技术在丹参水提过程质量监控中的应用,中国药学杂志,39(2004)628-630.
    [83]胡钢亮,吕秀阳,罗玲,徐铸德.近红外光谱法同时测定银杏提取液中总黄酮和总内酯含量,分析化学,32(2004)1061-1063.
    [84]瞿海斌,刘晓宣,程翼宇.中药材三七提取液近红外光谱的支持向量机回归校正方法,高等学校化学学报,25(2004)39-43.
    [85]柯博克,刘雪松,陈勇,李文,瞿海斌,程翼宇.近红外光谱快速测定复方丹参滴丸的包衣厚度,中草药,37(2006)685-688.
    [86]王静,莫必琪,李斌,瞿海斌,程翼宇.近红外光谱法预测红参醇提过程中总皂苷的变化研究,中草药,38(2007)1323-1326.
    [87]覃锋,杨辉华,吕琳昂,师涛,梁琼麟,王义明,罗国安.NIR光谱结合LLE-PLS建模用于安神补脑液提取过程分析的研究,中成药,(2008)1465-1468.
    [88]杨辉华,王勇,吴云鸣,史晓浩,胡坪,梁琼麟,王义明,罗国安.丹参多酚酸盐柱层析过程的近红外光谱在线检测及质量控制,中成药,30(2008)409-412.
    [89]蔡绍松,武卫红,王宁,董海平.黄芪水提液浓缩过程的AOTF-近红外光谱法在线分析,中国医药工业杂志,(2008)527-529.
    [90]李燕燕,边宝林,杨健.近红外光谱法定量分析药对葛根丹参提取液中主要成分,中国中药杂志,33(2008)2194-2195.
    [91]朱向荣,李娜,史新元,乔延江,张卓勇.近红外光谱与组合的间隔偏最小二乘法测定清开灵四混液中总氮和栀子苷的含量,高等学校化学学报,29(2008)906-911.
    [92]展晓日,史新元,乔延江,周海燕.乳块消片生产过程中醇提液快速质量评价方法研究,世界科学技术:中医药现代化,10(2008)130-133.
    [93]刘岩,张延莹,张金巍,张爱军.NIR技术对复方丹参提取过程的在线监控研究,中草药,(2009)383-386.
    [94]章顺楠,杨海雷,刘占强,刘金平,李文,刘雪松,瞿海斌.近红外光谱法在线监测复方丹参滴丸料液中有效成分含量,药物分析杂志,(2009)192-196.
    [95]陈雪英,李页瑞,陈勇,王龙虎,孙长海,刘雪松.近红外光谱分析技术在赤芍提取过程质量监控中的应用研究,中国中药杂志,(2009)1355-1358.
    [96]刘冰,毕开顺,孙立新,史新元,乔延江,刘珍清.近红外光谱结合不同偏最小二乘法测定乳块消片醇沉液中丹参素和橙皮苷含量,世界科学技术:中医药现代化,(2009)388-394.
    [97]陈雪英,李页瑞,陈勇,王龙虎,丁玲,孙长海,闫文杰,刘雪松.近红外光谱快速测定红花逆流提取过程中羟基红花黄色素A的含量,分析化学,37(2009)1451-1456.
    [98]武卫红,王宁,蔡绍松,魏红.声光可调-近红外光谱技术用于丹参回流提取过程中丹参酮ⅡA含量的测定,中药材,(2009)118-121.
    [99]申永祥,杨辉华,覃锋,宋昊鲲,罗国安.NIR光谱的kernel Isomap-PLS建模方法及其在血府逐瘀口服液提取过程分析的应用研究,中成药,(2010)831-833.
    [100]张爱军,戴宁,赵国磊.丹参产业化提取中近红外在线检测技术的研究,中草药,(2010)238-240.
    [101]张廷莹,张金巍,刘岩.近红外技术在白芍醇提在线质量监控中的应用,中国医药工业杂志,41(2010)662-665.
    [102]W.L. Li, H.B. Qu. Rapid quantification of phenolic acids in Radix Salvia Miltrorrhiza extract solutions by FT-NIR spectroscopy in transflective mode, Journal of Pharmaceutical and Biomedical Analysis,52 (2010) 425-431.
    [103]W.L. Li, L.H. Xing, L.M. Fang, J. Wang, H.B. Qu. Application of near infrared spectroscopy for rapid analysis of intermediates of Tanreqing injection, Journal of Pharmaceutical and Biomedical Analysis,53 (2010) 350-358.
    [104]聂黎行,王钢力,李志猛,林瑞超.近红外光谱法对同仁乌鸡白凤丸的定性和定量分析,红外与毫米波学报,27(2008)205-209.
    [105]王宁,蔡绍松,魏红,董海平.声光可调-近红外光谱技术快速分析复方丹参片中丹参酮Ⅱ_A和丹酚酸B的新方法,中国中药杂志,(2008)261-264.
    [106]李中文,蔡绍松,魏红,武卫红,王宁.桂林西瓜霜喷剂中盐酸小檗碱快速含量测定方法的研究,药物分析杂志,(2009)659-662.
    [107]王宁,魏红,蔡绍松,李进启.一种快速测定心通口服液中葛根素含量的新方法,中成药,31(2009)228-231.
    [108]柳艳云,胡昌勤,杭太俊.刺五加注射液近红外含量预测模型谱段选择规律和消除溶剂干扰方法的探讨,中国科学:化学,(2010)1664-1673.
    [109]王宁,武卫红,李中文,董海平,仲英.基于近红外光谱技术对双黄连口服液中黄芩苷、绿原酸和连翘苷进行现场快速定量分析方法的研究,药物分析杂志,(2010)1689-1694.
    [110]白雁,张威,王星.近红外光谱法测定不同厂家银黄颗粒中黄芩苷含量,中国中药杂志,(2010)166-168.
    [111]戴传云,高晓燕,汤波,傅亚,刘火安.近红外光谱法测定双黄连口服液中绿原酸和连翘苷的含量,光谱学与光谱分析,(2010)358-362.
    [112]李艳英,白雁,龚海燕,樊克锋,李雯霞.近红外光谱法测定一清颗粒模拟样品中黄芩苷的含量,中国医院药学杂志,(2010)645-648.
    [1]R. Boque, F.X. Rius, Multivariate detection limits estimators, Chemometrics and Intelligent Laboratory Systems,32 (1996) 11-23.
    [2]Y.Z. Liang, O.M. Kvalheim, A. Hoskuldsson, DETERMINATION OF A MULTIVARIATE DETECTION LIMIT AND LOCAL CHEMICAL RANK BY DESIGNING A NONPARAMETRIC TEST FROM THE ZERO-COMPONENT REGIONS, Journal of Chemometrics,7 (1993) 277-289.
    [3]M.C. Sarraguca, J.A. Lopes, The use of net analyte signal (NAS) in near infrared spectroscopy pharmaceutical applications:Interpretability and figures of merit, Analytica Chimica Acta,642 (2009) 179-185.
    [4]K. Faber, B.R. Kowalski, Improved estimation of the limit of detection in multivariate calibration, Fresenius Journal of Analytical Chemistry,357 (1997) 789-795.
    [5]R. Boque, J. Ferre, N.M. Faber, F.X. Rius, Limit of detection estimator for second-order bilinear calibration, Analytica Chimica Acta,451 (2002) 313-321.
    [6]M. Blanco, M. Castillo, A. Peinado, R. Beneyto, Determination of low analyte concentrations by near-infrared spectroscopy:Effect of spectral pretreatments and estimation of multivariate detection limits, Analytica Chimica Acta,581 (2007) 318-323.
    [7]G. Bauer, W. Wegscheider, H.M. Ortner, LIMITS OF DETECTION IN MULTIVARIATE CALIBRATION, Fresenius Journal of Analytical Chemistry,340(1991) 135-139.
    [8]A. Singh, MULTIVARIATE DECISION AND DETECTION LIMITS. Analytica Chimica Acta,277(1993)205-214.
    [9]R. Boque, N.K.M. Faber, F.X. Rius, Detection limits in classical multivariate calibration models, Analytica Chimica Acta,423 (2000) 41-49.
    [10]M. Alcala, J. Leon, J. Ropero, M. Blanco. R.J. Romanach, Analysis of Low Content Drug Tablets by Transmission Near Infrared Spectroscopy:Selection of Calibration Ranges According to Multivariate Detection and Quantitation Limits of PLS Models, Journal of Pharmaceutical Sciences,97 (2008) 5318-5327.
    [11]M.F. Delaney, MULTIVARIATE DETECTION LIMITS FOR SELECTED ION MONITORING GAS CHROMATOGRAPHY-MASS SPECTROMETRY, Chemometrics and Intelligent Laboratory Systems,3 (1988) 45-51.
    [12]Y.Z. Liang, O.M. Kvalheim, A. Hoskuldsson, DETERMINATION OF A MULTIVARIATE DETECTION LIMIT AND LOCAL CHEMICAL RANK BY DESIGNING A NONPARAMETRIC TEST FROM THE ZERO-COMPONENT REGIONS, Journal of Chemometrics,7 (1993) 277-289.
    [13]K. Faber, B.R. Kowalski, Improved estimation of the limit of detection in multivariate calibration, Fresenius Journal of Analytical Chemistry,357 (1997) 789-795.
    [14]R. Boque, M.S. Larrechi, F.X. Rius, Multivariate detection limits with fixed probabilities of error, Chemometrics and Intelligent Laboratory Systems,45 (1999) 397-408.
    [15]R. Boque, J. Ferre, N.M. Faber, F.X. Rius, Limit of detection estimator for second-order bilinear calibration, Analytica Chimica Acta,451 (2002) 313-321.
    [16]M. Blanco, M. Castillo, A. Peinado, R. Beneyto, Determination of low analyte concentrations by near-infrared spectroscopy:Effect of spectral pretreatments and estimation of multivariate detection limits, Analytica ChimicaActa,581 (2007) 318-323.
    [17]M. Ostra, C. Ubide, M. Vidal, J. Zuriarrain, Detection limit estimator for multivariate calibration by an extension of the IUPAC recommendations for univariate methods, Analyst, 133(2008)532-539.
    [18]M.C. Sarraguca, J.A. Lopes, The use of net analyte signal (NAS) in near infrared spectroscopy pharmaceutical applications:Interpretability and figures of merit, Analytica Chimica Acta,642 (2009) 179-185.
    [19]L. Nie, H. Chu, Y. Cheng, C. Spurney, K. Nagaraju, J. Chen, MARGINAL AND CONDITIONAL APPROACHES TO MULTIVARIATE VARIABLES SUBJECT TO LIMIT OF DETECTION, Journal of Biopharmaceutical Statistics,19(2009) 1151-1161.
    [1]M. Feinberg, Validation of analytical methods based on accuracy profiles, Journal of Chromatography A,1158(2007) 174-183.
    [2]P. Hubert, J.J. Nguyen-Huu, B. Boulanger, E. Chapuzet, P. Chiap, N. Cohen, P.A. Compagnon, W. Dewe, M. Feinberg, M. Lallier, M. Laurentie, N. Mercier, G. Muzard, C. Nivet, L. Valat, E. Rozet, Harmonization of strategies for the validation of quantitative analytical procedures-A SFSTP proposal-Part Ⅱ, Journal of Pharmaceutical and Biomedical Analysis,45(2007)70-81.
    [3]E. Rozet, A. Ceccato, C. Hubert, E. Ziemons, R. Oprean, S. Rudaz, B. Boulanger, P. Hubert, Analysis of recent pharmaceutical regulatory documents on analytical method validation, Journal of Chromatography A,1158 (2007) 111-125.
    [4]P. Hubert, J.J. Nguyen-Huu, B. Boulangerc, E. Chapuzet, N. Cohen, P.A. Compagnon, W. Dewe, M. Feinberg, M. Laurentie, N. Mercier, G. Muzard, L. Valat, E. Rozet, Harmonization of strategies for the validation of quantitative analytical procedures-A SFSTP proposal-Part Ⅲ, Journal of Pharmaceutical and Biomedical Analysis,45 (2007) 82-96.
    [5]P. Hubert, J.J. Nguyen-Huu, B. Boulanger, E. Chapuzet, P. Chiap, N. Cohen, P.A. Compagnon, W. Dewe, M. Feinberg, M. Lallier, M. Laurentie, N. Mercier, G. Muzard, C. Nivet, L. Valat, Harmonization of strategies for the validation of quantitative analytical procedures-A SFSTP proposal-part Ⅰ, Journal of Pharmaceutical and Biomedical Analysis, 36 (2004) 579-586.
    [6]V. Gaudin, M. Laurentie, Application of total error approach to assess the performance of a biological method (ELISA) to detect nicarbazin residues in eggs, Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,877 (2009) 2358-2362.
    [7]N. Gibelin, D. Dupont, S. Imbert, E. Rozet, Use of Total Error concept in the validation of viral activity in cell cultures, Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,877 (2009) 2407-2411.
    [8]A.G. Gonzalez, M.A. Herrador, A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles, Trac-Trends in Analytical Chemistry,26 (2007) 227-238.
    [9]P. Hubert, J.J. Nguyen-Huu, B. Boulanger, E. Chapuzet, N. Cohen, P.A. Compagnon, W. Dewe, M. Feinberg, M. Laurentie, N. Mercier, G. Muzard, L. Valat, E. Rozet, Harmonization of strategies for the validation of quantitative analytical procedures:A SFSTP proposal Part IV. Examples of application, Journal of Pharmaceutical and Biomedical Analysis,48 (2008) 760-771.
    [10]J. Mantanus, E. Ziemons, P. Lebrun, E. Rozet, R. Klinkenberg, B. Streel, B. Evrard, P. Hubert, Moisture content determination of pharmaceutical pellets by near infrared spectroscopy:Method development and validation, Analytica Chimica Acta,642 (2009) 186-192.
    [11]J. Mantanus, E. Ziemons, E. Rozet, B. Streel, R. Klinkenberg, B. Evrard, J. Rantanen, P. Hubert, Building the quality into pellet manufacturing environment-Feasibility study and validation of an in-line quantitative near infrared (NIR) method, Talanta,83 (2010) 305-311.
    [12]E. Ziemons, J. Mantanus, P. Lebrun, E. Rozet, B. Evrard, P. Hubert, Acetaminophen determination in low-dose pharmaceutical syrup by NIR spectroscopy, Journal of Pharmaceutical and Biomedical Analysis,53 (2010) 510-516.
    [13]J. Mantanus, E. Ziemons, P. Lebrun, E. Rozet, R. Klinkenberg, B. Streel, B. Evrard, P. Hubert, Active content determination of non-coated pharmaceutical pellets by near infrared spectroscopy:Method development, validation and reliability evaluation, Talanta,80 (2010) 1750-1757.
    [14]E. Rozet, C. Hubert, A. Ceccato, W. Dewe, E. Ziemons, F. Moonen, K. Michail, R. Wintersteiger, B. Streel, B. Boulanger, P. Hubert, Using tolerance intervals in pre-study validation of analytical methods to predict in-study results-The fit-for-future-purpose concept, Journal of Chromatography A,1158 (2007) 126-137.
    [15]T. Rebafka, S. Clemencon, M. Feinberg, Bootstrap-based tolerance intervals for application to method validation, Chemometrics and Intelligent Laboratory Systems,89 (2007) 69-81.
    [16]M. Feinberg, M. Laurentie, A global approach to method validation and measurement uncertainty, Accreditation and Quality Assurance,11 (2006) 3-9.
    [17]Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, N. Jent, A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies, Journal of Pharmaceutical and Biomedical Analysis,44 (2007) 683-700.
    [18]G. Reich, Near-infrared spectroscopy and imaging:Basic principles and pharmaceutical applications, Advanced Drug Delivery Reviews,57 (2005) 1109-1143.
    [19]W.F. McClure,204 years of near infrared technology:1800-2003, Journal of near Infrared Spectroscopy,11 (2003)487-518.
    [20]M. Saeed, L. Probst, G. Betz, Assessment of Diffuse Transmission and Reflection Modes in Near-Infrared Quantification, Part 2:Diffuse Reflection Information Depth, Journal of Pharmaceutical Sciences,100(2011) 1130-1141.
    [21]D. Xiang, R. Lobrutto, J. Cheney, B.W. Wabuyele, J. Berry, R. Lyon, H.Q. Wu, M.A. Khan, A.S. Hussain, Evaluation of Transmission and Reflection Modalities for Measuring Content Uniformity of Pharmaceutical Tablets with Near-Infrared Spectroscopy, Applied Spectroscopy,63 (2009) 33-47.
    [1]W.F. McClure,204 years of near infrared technology:1800-2003, Journal of near Infrared Spectroscopy,11 (2003)487-518.
    [2]G. Reich, Near-infrared spectroscopy and imaging:Basic principles and pharmaceutical applications, Advanced Drug Delivery Reviews,57 (2005) 1109-1143.
    [3]E. Rasanen, N. Sandier, Near infrared spectroscopy in the development of solid dosage forms, Journal of Pharmacy and Pharmacology,59 (2007) 147-159.
    [4]Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, N. Jent, A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies, Journal of Pharmaceutical and Biomedical Analysis,44 (2007) 683-700.
    [5]M. Alcala, J. Leon, J. Ropero, M. Blanco, R.J. Romanach, Analysis of Low Content Drug Tablets by Transmission Near Infrared Spectroscopy:Selection of Calibration Ranges According to Multivariate Detection and Quantitation Limits of PLS Models, Journal of Pharmaceutical Sciences,97 (2008) 5318-5327.
    [6]J. Mantanus, E. Ziemons, P. Lebrun, E. Rozet, R. Klinkenberg, B. Streel, B. Evrard, P. Hubert, Active content determination of non-coated pharmaceutical pellets by near infrared spectroscopy:Method development, validation and reliability evaluation, Talanta,80 (2010) 1750-1757.
    [7]J. Mantanus, E. Ziemons, P. Lebrun, E. Rozet, R. Klinkenberg, B. Streel, B. Evrard, P. Hubert, Moisture content determination of pharmaceutical pellets by near infrared spectroscopy:Method development and validation, Analytica Chimica Acta,642 (2009) 186-192.
    [8]M. Feinberg, D. Sohier, J.F. David, Validation of an Alternative Method for Counting Enterobacteriaceae in Foods Based on Accuracy Profile, Journal of Aoac International,92 (2009) 527-537.
    [9]P. Hubert, J.J. Nguyen-Huu, B. Boulanger, E. Chapuzet, P. Chiap, N. Cohen, P.A. Compagnon, W. Dewe, M. Feinberg, M. Lallier, M. Laurentie, N. Mercier, G. Muzard, C. Nivet, L. Valat, E. Rozet, Harmonization of strategies for the validation of quantitative analytical procedures-A SFSTP proposal-Part Ⅱ, Journal of Pharmaceutical and Biomedical Analysis,45(2007)70-81.
    [10]P. Hubert, J.J. Nguyen-Huu, B. Boulangerc, E. Chapuzet, N. Cohen, P.A. Compagnon, W. Dewe, M. Feinberg, M. Laurentie, N. Mercier, G. Muzard, L. Valat, E. Rozet, Harmonization of strategies for the validation of quantitative analytical procedures-A SFSTP proposal-Part Ⅲ, Journal of Pharmaceutical and Biomedical Analysis,45 (2007) 82-96.
    [11]P. Hubert, J.J. Nguyen-Huu, B. Boulanger, E. Chapuzet, P. Chiap, N. Cohen, P.A. Compagnon, W. Dewe, M. Feinberg, M. Lallier, M. Laurentie, N. Mercier, G. Muzard, C. Nivet, L. Valat, Harmonization of strategies for the validation of quantitative analytical procedures-A SFSTP proposal-part Ⅰ, Journal of Pharmaceutical and Biomedical Analysis, 36 (2004) 579-586.
    [12]A.G. Gonzalez, M.A. Herrador, A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles, Trac-Trends in Analytical Chemistry,26 (2007) 227-238.
    [13]M. Feinberg, Validation of analytical methods based on accuracy profiles, Journal of Chromatography A,1158 (2007) 174-183.
    [1]E. Ostertag, R.W. Kessler, Hyperspectral imaging for process analytical technology, Chimica Oggi-Chemistry Today,29 (2011) 46-49.
    [2]C. Gendrin, Y. Roggo, C. Collet, Pharmaceutical applications of vibrational chemical imaging and chemometrics:A review, Journal of Pharmaceutical and Biomedical Analysis,48 (2008)533-553.
    [3]E.N. Lewis, L.H. Kidder, E. Lee, NIR Chemical Imaging as a Process Analytical Tool, Innovations in Pharmaceutical Technology issue Samedan Ltd., (2006).
    [4]G. Reich, Near-infrared spectroscopy and imaging:Basic principles and pharmaceutical applications, Advanced Drug Delivery Reviews,57 (2005) 1109-1143.
    [5]T. Puchert, D. Lochmann, J.C. Menezes, G. Reich, A multivariate approach for the statistical evaluation of near-infrared chemical images using Symmetry Parameter Image Analysis (SPIA), European Journal of Pharmaceutics and Biopharmaceutics,78 (2011) 117-124.
    [6]T. Puchert, C.V. Holzhauer, J.C. Menezes, D. Lochmann, G. Reich, A new PAT/QbD approach for the determination of blend homogeneity:Combination of on-line NIRS analysis with PC Scores Distance Analysis (PC-SDA), European Journal of Pharmaceutics and Biopharmaceutics,78 (2011) 173-182.
    [7]J. Ropero, Y. Colon, B. Johnson-Restrepo, R.J. Romanach, Near-Infrared Chemical Imaging Slope as a New Method to Study Tablet Compaction and Tablet Relaxation, Applied Spectroscopy,65 (2011) 459-465.
    [8]T. Puchert, D. Lochmann, J.C. Menezes, G. Reich, Near-infrared chemical imaging (NIR-CI) for counterfeit drug identification-A four-stage concept with a novel approach of data processing (Linear Image Signature), Journal of Pharmaceutical and Biomedical Analysis, 51 (2010) 138-145.
    [9]J.M. Amigo, C. Ravn, N.B. Gallagher, R. Bro, A comparison of a common approach to partial least squares-discriminant analysis and classical least squares in hyperspectral imaging, International Journal of Pharmaceutics,373 (2009) 179-182.
    [10]J.M. Amigo, C. Ravn, Direct quantification and distribution assessment of major and minor components in pharmaceutical tablets by NIR-chemical imaging, European Journal of Pharmaceutical Sciences,37 (2009) 76-82.
    [11]H. Ma, C.A. Anderson, Characterization of pharmaceutical powder blends by NIR chemical imaging, Journal of Pharmaceutical Sciences,97 (2008) 3305-3320.
    [12]C. Ravn, E. Skibsted, R. Bro, Near-infrared chemical imaging (NIR-CI) on pharmaceutical solid dosage forms-Comparing common calibration approaches, Journal of Pharmaceutical and Biomedical Analysis,48 (2008) 554-561.
    [13]J.M. Amigo, J. Cruz, M. Bautista, S. Maspoch, J. Coello, M. Blanco, Study of pharmaceutical samples by NIR chemical-image and multivariate analysis, Trac-Trends in Analytical Chemistry,27 (2008) 696-713.
    [14]M.B. Lopes, J.C. Wolff, J.M. Bioucas-Dias, M.A.T. Figueiredo, Quantification of components in non-homogenous pharmaceutical tablets using near infrared reflectance imaging, Journal of near Infrared Spectroscopy,18 (2010) 333-340.
    [15]G. Sando, J. Dubois, "Seeing" the chemicals in pharmaceutical tablets with NIR chemical imaging, Chimica Oggi-Chemistry Today,28 (2010) 40-42.
    [16]J. Cruz, M. Bautista, J.M. Amigo, M. Blanco, Nir-chemical imaging study of acetylsalicylic acid in commercial tablets, Talanta,80 (2009) 473-478.
    [17]L.R. Hilden, C.J. Pommier, S.I.F. Badawy, E.A. Friedman, NIR chemical imaging to guide/support BMS-561389 tablet formulation development, International Journal of Pharmaceutics,353 (2008) 283-290.
    [18]H.Q. Wu, M. Tawakkul, M. White, M.A. Khan, Quality-by-Design (QbD):An integrated multivariate approach for the component quantification in powder blends, International Journal of Pharmaceutics,372 (2009) 39-48.
    [19]I. Storme-Paris, I. Clarot, S. Esposito, J.C. Chaumeil, A. Nicolas, F. Brion, A. Rieutord, P. Chaminade, Near InfraRed Spectroscopy homogeneity evaluation of complex powder blends in a small-scale pharmaceutical preformulation process, a real-life application, European Journal of Pharmaceutics and Biopharmaceutics,72 (2009) 189-198.
    [20]W.Y. Li, A. Woldu, R. Kelly, J. McCool, R. Bruce, H. Rasmussen, J. Cunningham, D. Winstead, Measurement of drug agglomerates in powder blending simulation samples by near infrared chemical imaging, International Journal of Pharmaceutics,350 (2008) 369-373.
    [21]X. Zhu, Y. Shan, G. Li, A. Huang, Z. Zhang, Prediction of wood property in Chinese Fir based on visible/near-infrared spectroscopy and least square-support vector machine, Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,74 (2009) 344-348.
    [22]A. Niazi, J. Zolgharnein, S. Afiuni-Zadeh, Spectrophotometric determination of ternary mixtures of thiamin, riboflavin and pyridoxal in pharmaceutical and human plasma by least-squares support vector machines, Analytical Sciences,23 (2007) 1311-1316.
    [23]H.B. Qu, X.X. Liu, Y.Y. Cheng, A method for analysis of extracting solution of panax notoginseng using near-infrared spectroscopy and support vector regression, Chemical Journal of Chinese Universities-Chinese,25 (2004) 39-43.
    [24]B. Igne, J.B. Reeves, G. McCarty, W.D. Hively, E. Lund, C.R. Hurburgh, Evaluation of spectral pretreatments, partial least squares, least squares support vector machines and locally weighted regression for quantitative spectroscopic analysis of soils, Journal of near Infrared Spectroscopy,18 (2010) 167-176.
    [25]K. Huang, H.J. Wang, H.R. Xu, J.P. Wang, Y.B. Ying, NIR Spectroscopy Based on Least Square Support Vector Machines for Quality Prediction of Tomato Juice, Spectroscopy and Spectral Analysis,29 (2009) 931-934.
    [26]O. Devos, C. Ruckebusch, A. Durand, L. Duponchel, J.P. Huvenne, Support vector machines (SVM) in near infrared (NIR) spectroscopy:Focus on parameters optimization and model interpretation, Chemometrics and Intelligent Laboratory Systems,96 (2009) 27-33.
    [27]T. Sun, H.J. Lin, H.R. Xu, Y.B. Ying, Effect of fruit moving speed on predicting soluble solids content of 'Cuiguan' pears (Pomaceae pyrifolia Nakai cv. Cuiguan) using PLS and LS-SVM regression, Postharvest Biology and Technology,51 (2009) 86-90.
    [1]M. Alcala, J. Leon, J. Ropero, M. Blanco, R.J. Romanach, Analysis of Low Content Drug Tablets by Transmission Near Infrared Spectroscopy:Selection of Calibration Ranges According to Multivariate Detection and Quantitation Limits of PLS Models, Journal of Pharmaceutical Sciences,97 (2008) 5318-5327.
    [2]M. Ostra, C. Ubide, M. Vidal, J. Zuriarrain, Detection limit estimator for multivariate calibration by an extension of the IUPAC recommendations for univariate methods, Analyst, 133(2008)532-539.
    [3]M. Blanco, M. Castillo, A. Peinado, R. Beneyto, Determination of low analyte concentrations by near-infrared spectroscopy:Effect of spectral pretreatments and estimation of multivariate detection limits, Analytica Chimica Acta,581 (2007) 318-323.
    [4]R. Boque, N.K.M. Faber, F.X. Rius, Detection limits in classical multivariate calibration models, Analytica Chimica Acta,423 (2000) 41-49.
    [5]R. Boque, M.S. Larrechi, F.X. Rius, Multivariate detection limits with fixed probabilities of error, Chemometrics and Intelligent Laboratory Systems,45 (1999) 397-408.
    [6]K. Faber, B.R. Kowalski, Improved estimation of the limit of detection in multivariate calibration, Fresenius Journal of Analytical Chemistry,357 (1997) 789-795.
    [7]R. Boque, F.X. Rius, Multivariate detection limits estimators, Chemometrics and Intelligent Laboratory Systems,32 (1996) 11-23.
    [8]G. Bauer, W. Wegscheider, H.M. Ortner, LIMITS OF DETECTION IN MULTIVARIATE CALIBRATION, Fresenius Journal of Analytical Chemistry,340 (1991) 135-139.
    [9]M.F. Delaney, MULTIVARIATE DETECTION LIMITS FOR SELECTED ION MONITORING GAS CHROMATOGRAPHY-MASS SPECTROMETRY, Chemometrics and Intelligent Laboratory Systems,3 (1988) 45-51.
    [10]J. Mantanus, E. Ziemons, E. Rozet, B. Streel, R. Klinkenberg, B. Evrard, J. Rantanen, P. Hubert, Building the quality into pellet manufacturing environment-Feasibility study and validation of an in-line quantitative near infrared (NIR) method, Talanta,83 (2010) 305-311.
    [11]J. Mantanus, E. Ziemons, P. Lebrun, E. Rozet, R. Klinkenberg, B. Streel, B. Evrard, P. Hubert, Moisture content determination of pharmaceutical pellets by near infrared spectroscopy:Method development and validation, Analytica Chimica Acta,642 (2009) 186-192.
    [12]P. Hubert, J.J. Nguyen-Huu, B. Boulanger, E. Chapuzet, P. Chiap, N. Cohen, P.A. Compagnon, W. Dewe, M. Feinberg, M. Lallier, M. Laurentie, N. Mercier, G. Muzard, C. Nivet, L. Valat, E. Rozet, Harmonization of strategies for the validation of quantitative analytical procedures-A SFSTP proposal-Part Ⅱ, Journal of Pharmaceutical and Biomedical Analysis,45(2007)70-81.
    [13]P. Hubert, J.J. Nguyen-Huu, B. Boulangerc, E. Chapuzet, N. Cohen, P.A. Compagnon, W. Dewe, M. Feinberg, M. Laurentie, N. Mercier, G. Muzard, L. Valat, E. Rozet, Harmonization of strategies for the validation of quantitative analytical procedures-A SFSTP proposal-Part III, Journal of Pharmaceutical and Biomedical Analysis,45 (2007) 82-96.
    [14]E. Rozet, C. Hubert, A. Ceccato, W. Dewe, E. Ziemons, F. Moonen, K. Michail, R. Wintersteiger, B. Streel, B. Boulanger, P. Hubert, Using tolerance intervals in pre-study validation of analytical methods to predict in-study results-The fit-for-future-purpose concept, Journal of Chromatography A,1158 (2007) 126-137.
    [15]M. Feinberg, Validation of analytical methods based on accuracy profiles, Journal of Chromatography A,1158(2007) 174-183.
    [16]M. Feinberg, M. Laurentie, A global approach to method validation and measurement uncertainty, Accreditation and Quality Assurance,11 (2006) 3-9.
    [17]P. Hubert, J.J. Nguyen-Huu, B. Boulanger, E. Chapuzet, P. Chiap, N. Cohen, P.A. Compagnon, W. Dewe, M. Feinberg, M. Lallier, M. Laurentie, N. Mercier, G. Muzard, C. Nivet, L. Valat, Harmonization of strategies for the validation of quantitative analytical procedures-A SFSTP proposal-part Ⅰ, Journal of Pharmaceutical and Biomedical Analysis, 36(2004)579-586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700