采油螺杆泵光杆扭矩和轴向力集成传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺杆泵采油系统在粘度高、油气比高、含砂量高、产量低的油田表现出不可替代的优越性,并且其体积小、造价低、效率高的优势是其它任何采油设备都不具有的,因而近年来螺杆泵在国内外的油田应用越来越广泛,具有广阔的发展前景。
     随着螺杆泵采油系统的应用越来越广泛,其工作过程中的高故障率逐渐受到现场工程技术人员的重视,高故障率大大影响了石油开采效率,这使得对螺杆泵工况进行实时监测的重要性凸显了出来,根据已有的螺杆泵各种故障与表征参数的关系,学术界认为螺杆泵采油系统发生故障的主要征兆是扭矩、轴向力数值的变化。由于国内外对螺杆泵采油系统的研究相对滞后,虽然学术界和工程界研究出了若干种用于螺杆泵健康状况监测的传感器方案,但由于存在着种种问题,一直不能满足螺杆泵实际工况的要求。
     本文深入分析了螺杆泵的工作特点、螺杆泵用传感器的性能需求,确定了螺杆泵用传感器的设计原则,深入分析、比较了多种扭矩、轴向力测量方案和数据传输、通信方案,选择了最合适的方案;建立了螺杆泵杆柱系统的静力学、动力学模型,分别进行了受力分析,并计算出了扭矩、轴向力的近似值,对敏感元件进行结构设计,建立了压扭复合空心杆的Pro/E模型,进行了基于ANSYS的应力应变分析,实现了强度校核,并确定了粘贴应变片的位置,研究并确定了传感器的封装方案;根据设计原则选择电路元器件,设计了放大电路、模数转换电路,分析GPRS DTU的功能并进行了选型,设计了单片机与GPRS DTU的接口电路;推导了扭矩、轴向力与输出桥压的关系式,编写了数采节点的程序,对传感器的标定方法进行了探讨。
     本文的创新点体现在采用有限元法计算杆柱系统动力学模型的扭矩;应用ANSYS分析了压扭复合杆的应力应变;结合实际要求提出了合理封装方案;就模数转换电路的参考电压精度和时钟脉冲精度问题进行了深入分析与研究,确保了ICL7135高精度工作;针对单片机接口占用过多的问题进行了分析与研究,得出了最省接口的方案。
Progressing Cavity Pump(PCP) is a newly developed petroleum output system with distinctive feature of large advantage in high viscosity, high oil and gas ratio, high sand content and low yield fields oilfield. It also shows the superiority in common reservoir and high water drive reservoir oilfields. Compared with other oil recovery equipment, the features of smaller size, lighter weight, easier to manufacture, more efficiencient are making the application of PCP oil more and more popular all over the world. PCP is destined to have a broad prospect for development in petroleum output field.
     With the application of PCP, more and more widely, on-site technical staff found a high failure rate in the process of their work. The high failure rate greatly affected the efficiency of oil exploration. Therefore, real-time monitoring of pumping conditions become necessary. According to the existed relationship between PCP failure and various parameters shows that the torque and axial force are key parameters that reflect the working condition of the PCP. Because the engineering research of PCP is lagging behind, despite some academic and engineering developed a number solutions used to monitor working condition of the PCP system, there are problems that they have not been able to meet the requirements of PCP working condition.
     In this paper, we developed a sensor used on the polish rod of PCP to monitor the parameters of torque and axial force, research and design were as follows: According to the principle of the overall design of the sensor, we determined the proper torque, axial force measurement program, selected the schemes of data transmission between sensing element on the shaft and the sensor, communication schemes between the sensor and the host computer program. According to theoretical mechanics, fluid mechanics, empirical formula, we analysed the stress condition of the rod system, then we determined the size of the sensor based on the size of drive head and square shaft, established three-dimensional model of the sensing unit based on PRO/E, analysed stress and strain of the sesoring unit based on ANSYS to determine the location of strain gauges pasted and check the strength of sensing unit; We selected circuit components according to the design principle of the sensor, designed amplifier circuit, analog-digital conversion circuit and communication circuit; We developed the theoretical formula to find the relationship between sensor input and output, we programmed the microcontroller, and finally sensor calibration methods were discussed.
     The innovative points in this paper are as followed: We analysed the torque of the mast system with infinitesimal method; We analysed the stress and strain of the sensor based on ANSYS; We designed the packing scheme of the sensor based on the practical working condition; We analysed the problem of reference voltage of analog-digital conversion circuit and the problem of too many interfaces occupied by Single-chip Microcomputer, We developed the theoretical formula and finded the relationship between sensor input and output.
引文
[1] Wild AG, Mirza K. Development and Evaluation of a Multiphase Pumping System. 8th International Conferance on Multiphase '97,1997:171-183.
    [2] Mirza KZ, Progressing cavity multiphase pumping system: expanding the possibilities. 9th International Conferance on Multiphase '99,1999:77-84.
    [3] Saveth, K.J.Klein. The Progressing Cavity Pump:Principles and Capabilities. SPE18873,1989.
    [4] Denney D. Fourteen years of progressing cavity pumps. Journal of Petroleum Technology,2003:63-65.
    [5]张家田.抽油泵工况综合诊断系统研究报告[J].西安石油学院,2001:13-16.
    [6]马永峰.螺杆泵故障诊断及预防措施浅析[J].油气井测试,2003:24-26.
    [7]彭勇,姜养民,徐建宁,翁加平,赵玉龙.螺杆泵采油系统工况参数测试仪的研制[J].石油矿场机械,2001(3):25-28.
    [8]李迎新.螺杆泵井工况诊断及杆柱优化设计方法研究[D].大庆石油学院硕士学位论文,2006:20-23.
    [9]万邦烈.单螺杆式水力机械[M].东营:石油大学出版社,1993:17-19.
    [10]韩修廷,王秀玲等.螺杆泵采油原理及应用[M].第一版.哈尔滨:哈尔滨工程大学出版社. 1998:1-6.
    [11] Mirza, Kamran Z. The Progressing Cavity Pump:A Cost-Effective Multiphase Transfer Solution. SPE39078,1997.
    [12] Mirza, Kamran Z, Allan G.. Key Advantage of the Progressing Cavity Pump in Multiphase Transfer Applications. SPE38812,1997.
    [13] Anon. Progressing Cavity Pump Design Optimization for Abrasive Applications. Journal of Petroleum Technology,1997(7):731-732.
    [14] Samuel GR, Saveth KJ. Optimal design of progressing cavity pumps. Journal of Energy Resources Technology-Transactions of The ASME,2006,128(4):275-279.
    [15]吴晓东,陈德春,薛建泉等.地面驱动螺杆泵井节点系统优化设计技术[J].石油大学学报,1999,23(5):49-53.
    [16]陈德春,李兆文,吴晓东.地面驱动螺杆泵采油系统抽油杆柱运动模型[J].石油大学学报,1999,23(l):42-44.
    [17]徐建宁,彭勇,姜养民.非接触式螺杆泵特征参数传感器及采集系统[J].石油机械. 2005,33(9):60-61.
    [18]蒋召平,王淼峰,曹刚,张颖,梁淑霞.实用新型专利说明书. ZL 200520021477. 4. [11]CN2869822Y.
    [19]陈镭.螺杆泵采油井光杆转矩和轴向拉力双参数测试技术[J].石油钻探技术,2000. 28(5).
    [20]商维绿.现代转矩测量技术[M].上海:上海交通大学出版社,1999:37-39.
    [21]李国林.数字式扭矩传感器技术性能及应用[J]. Sensor world,1999:25-28.
    [22]赵秋.一种扭矩传感器的无线数据传输系统[D].河北工业大学硕士学位论文. 2006. 1.
    [23] Fu Sanqiang, Su Yongxin. Multiple Fuction Wireless Meter System Design[J], Automation and Instruction,2004:5-7.
    [24]顾文杰.数据采集及无线通信系统设计[D].南京理工大学硕士学位论文,2008:2-3.
    [25]刘涛,边新辉.微波通信简史及基本特点[J].科技信息(计算机和网络),2008(25):191.
    [26] Niyato, D. Hossian, E.Diamond. IEEE 802.16/WiMAX-based Broadband Wireless Access and Its Application for Telemedicine/E-health Services. IEEE Wireless Communications,2007 (2):243-245.
    [27] Mourad A, Gutierrez I. System Level Evaluation for WiMAX IEEE 802.16m. IEEE 28th International Performance Computing and Communications Conference,2009:418-424.
    [28] Silva H, Figueiredo L, Rabadao C, Pereira A. Wireless Networks Interoperability Wifi/Wimax Handover. 4TH International Conferance on Systems and Networks Communications,2009:100-104.
    [29] Wilson A.J. The Use of GPRS Technology for Electricity Network Telecontrol.Computing&Control Enginneering,2005,16(2):40-45.
    [30] Read K, Maurer F. Developing mobile wireless application. IEEE Internet Computing,2003 (1):81-86.
    [31] Xiong CB, Sun M, Liu DQ. A Real-Time Remote Automatic System for Monitoring the Subsidence of Building. Advances in Structures,2011,163:2742-2746.
    [32] Zhou HJ, Guo CX, Qin J. Efficient Application of GPRS and CDMA networks in SCADA System. IEEE Power and Energy Society General Meeting,2010:25-29.
    [33] Mahjoubi A, Mechlouch RF, Ben Brahim A. A Low Cost Wireless Data Acquisition System for a Remote Photovoltaic (PV) Water Pumping System.Energies,2011,4(1):68-89.
    [34] Al-Ali AR, Zualkernan I, Aloul F. A Mobile GPRS-Sensors Array for Air Pollution Monitoring. IEEE Sensors Journal,2010,10(10):1666-1671.
    [35] Zhao JC, Zhang JF, Yu-feng, Sun SF, Guo JX. The Design of Intelligence Supervisory System of Greenhouse Based on GPRS/3G. IEEE International Conferance on Intelligent Computing and Intelligent Systems,2009:17-20.
    [36] Fan WB, Li XA, Chen P. Application and Research of Data Acquisiton Technology Based on GPRS. Proceedings of the 2009 2nd International Congress on Imaged Signal,2009:157-159.
    [37]张袁辉.地面驱动单螺杆泵举升系统工艺设计[D].西南石油大学硕士学位论文,2007. 4.
    [38]王建新,任勇峰,焦新泉.仪表放大器AD623在数采系统中的应用[J].微计算机信息,2007. 7.
    [39] Xue M. The Application of Programmable Analog Device in Small Signals Measuring System. ITESS:2008 Proceedings of Information Technology and Environmental System Sciences,2008(1):460-464.
    [40] Zhu ZW, Shi J, Wang CM. The research on some problems of SF6 gas leakage with the on-line detection system. 6th International Symposium on Test and Measurement,2005:6682-6685.
    [41]张继华,颜语. ICL7135与单片机接口电路的相关研究[J].自动化技术与应用, 2009,28(6).
    [42] R.J.Bud Bates著,朱洪波,沈越汉,蔡跃明,程崇虎等译,通用分组无线业务(GPRS)技术与应用[M].北京:人民邮电出版社,2004:40-43.
    [43]上海詹佛斯信息科技有限公司网站GFSPC03-G型GPRS DTU产品说明http://www.copycheck.com.cn/Compare?purl=http://www.shgfs2009.com.cn/athena/offerdetail/sale/shgfs2009-1033945-400125447.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700