大鼠单侧迷路切除术后γ-氨基丁酸A受体亚型、毒蕈碱受体亚型在前庭内侧核中的变化及毒蕈碱受体亚型在小脑绒球中的变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分单侧迷路切除术后γ-氨基丁酸A受体亚型在大鼠前庭内侧核中的变化
     目的观察左侧迷路切除术后大鼠前庭内侧核(medial vestibular nuclei, MVN)内γ-氨基丁酸A受体(gamma-aminobutyric acid A receptor, GABAA receptor)α1、β2、γ2亚型的表达变化。
     方法利用免疫组织化学、原位杂交组织化学、蛋白免疫印记法、RT-PCR的方法,切除大鼠一侧迷路,观察前庭内侧核区GABAA受体α1、β2、γ2亚型表达的变化,及其在前庭代偿中可能的作用。
     结果各组手术两侧比较及术后1天、3天、7天组与假手术组比较差异均无显著性意义。
     结论在前庭代偿的早期,GABAA受体α1、β2、γ2亚型表达的变化极可能没有涉及前庭代偿。
     第二部分单侧迷路切除术后毒蕈碱受体亚型在大鼠前庭内侧核中的变化
     目的观察左侧迷路切除术后大鼠前庭内侧核(medial vestibular nuclei, MVN)内毒蕈碱受体M1、M3、M5亚型的表达变化。
     方法利用免疫组织化学、RT-PCR的方法,切除大鼠一侧迷路,观察前庭内侧核区毒蕈碱受体M1、M3、M5亚型表达的变化,及其在前庭代偿中可能的作用。
     结果单侧迷路切除术(UL)后可诱导双侧MVN区毒蕈碱受体M1、M3、M5亚型减少,术后1天最少,此后3天至7天处于上升趋势,7天时和假手术组比较表达无差异。各组手术两侧比较均无差异。
     结论UL后可诱导MVN区毒蕈碱受体M1、M3、M5亚型减少。前庭中枢神经元的静息放电降低可能与毒蕈碱受体M1、M3、M5亚型在MVN内减少有关,但其在前庭代偿中的作用尚有待研究?
     第三部分单侧迷路切除术后毒蕈碱受体亚型在大鼠小脑绒球中的变化
     目的观察左侧迷路切除术后大鼠小脑绒球内毒蕈碱受体M1、M3、M5亚型的表达变化。
     方法利用RT-PCR的方法,切除大鼠一侧迷路,观察小脑绒球毒蕈碱受体M1、M3、M5亚型表达的变化,及其在前庭代偿中可能的作用。
     结果单侧迷路切除术(UL)后可诱导双侧绒球内毒蕈碱受体M1、M3、M5亚型减少,术后1天最少,此后3天至7天处于上升趋势,7天时和假手术组比较表达无差异。各组手术两侧比较均无差异。
     结论UL后可诱导绒球内毒蕈碱受体M1、M3、M5亚型减少。前庭中枢神经元的静息放电降低可能与毒蕈碱受体M1、M3、M5亚型在绒球内减少有关,但其在前庭代偿中的作用尚有待研究?
PartⅠExpression change of GABAA receptor subunits in rat medial vestibular nucleus following unilateral labyrinthectomy
     Objective To observe the expression of gamma-aminobutyric acid A receptor (GABAA receptor)α1、β2、γ2 subunits in rat medial vestibular nucleus (MVN) following left unilateral labyrinthectomy (UL). Methods The immunohistochemistry, In situ hybridization histochemistry, Western-blot and RT-PCR were used to observe the expression of GABAA receptorα1、β2、γ2 subunits post-unilateral labyrinthectomy and investigate its effect on vestibular compensation. Results No difference were observe in the ipsilateral and contralateral MVN at any group. No difference were observe in the 1 day, 3 day, 7 day than sham operation MVN following UL. Conclusion Our study suggest that expression change of GABAA receptorα1、β2、γ2 subunits in the MVN most probably were not involved in the early stage of the vestibular compensation process.
     PartⅡExpression change of Muscarinic receptor subnuits in rat medial vestibular nucleus following unilateral labyrinthectomy
     Objective To observe the expression of Muscarinic receptor M1、M3、M5 subunits in rat medial vestibular nucleus (MVN) following left unilateral labyrinthectomy (UL). Methods The immunohistochemistry and RT-PCR were used to observe the expression of Muscarinic receptor M1、M3、M5 subunits post-unilateral labyrinthectomy and investigate its effect on vestibular compensation. Results Muscarinic receptor M1、M3、M5 subunits were induced decrease in both side MVN after unilateral labyrinthectomy. The least expression in the 1 day MVN of following UL. The expression is rising from the 3 day to 7 day MVN of following Ul. No difference were observe in the 7 day and sham operation MVN following UL. No difference were observe in the ipsilateral and contralateral MVN at any group. Conclusions Muscarinic receptor M1、M3、M5 subunits were induced decrease in the MVN after unilateral labyrinthectomy. The fall in the resting discharge of the central vestibular neurons may be caused by the decrease of Muscarinic receptor M1、M3、M5 subunits in the MVN. But the significance of the change of Muscarinic receptor M1、M3、M5 subunits in the vestibular compensation is still unknown.
     PartⅢExpression change of Muscarinic receptor subnuits in rat flocculus following unilateral labyrinthectomy
     Objective To observe the expression of Muscarinic receptor M1、M3、M5 subunits in rat flocculus following left unilateral labyrinthectomy (UL). Methods The RT-PCR was used to observe the expression of Muscarinic receptor M1、M3、M5 subunits post-unilateral labyrinthectomy and investigate its effect on vestibular compensation. Results Muscarinic receptor M1、M3、M5 subunits were induced decrease in both side flocculus after unilateral labyrinthectomy. The least expression in the 1 day flocculus of following UL. The expression is rising from the 3 day to 7 day flocculus of following Ul. No difference were observe in the 7 day and sham operation flocculus following UL. No difference were observe in the ipsilateral and contralateral flocculus at any group. Conclusions Muscarinic receptor M1、M3、M5 subunits were induced decrease in the flocculus after unilateral labyrinthectomy. The fall in the resting discharge of the central vestibular neurons may be caused by the decrease of Muscarinic receptor M1、M3、M5 subunits in the flocculus. But the significance of the change of Muscarinic receptor M1、M3、M5 subunits in the vestibular compensation is still unknown.
引文
1. Precht W, Dieringer N. Neuronal events paralleling functional recovery (compensation) following peripheral vestibular lesions. In: Berthoz A, Melville-Jones G, (Eds.), Adaptive mechanism in gaze control: facts and theories. Amsterdam: Elsevier, 1985:251-68.
    2. Smith P, Curthoys I. Mechanism of recovery following unilateral labyrinthectomy: a review. Brain Res Rev, 1989,14:155-80.
    3. Llinas R, Walton K. Vestibular compensation: a distributed propety of the central nervous system. In: Wilson VJ, Asanuma H, eds. Integration in the nervous system. Tokyo: Igaku Shoin, 1979:145-66.
    4. Igarashi M, et al. Vestibular compensation: an overview, Acta Otolaryngol, Suppl, 1984,406:78-82.
    5. Precht W. Characteristics of vestibular neurons after acute and chronic labyrinthine destruction. In H.H. Kornhuber (Eds.), Handbook of Sensory Physiology, Vol. V112, Springer, Berlin, 1974,pp.451-462.
    6. Precht W. Recovery of some vestibulocular and vestibulospinal functions following unilateral labyrinthectomy. In H.J. Buttner, B. Cohen and J. Noth (Eds.), Progress in Bruin Research, Vol. 64, Elsevier. Amsterdam, 1986,pp.381-389.
    7. Bamard EA, Skolnick P, Olsen RW, et al. International Union of Phamacology.XV.Subtypes ofγ-aminobutyric acid A receptors: classification on the basis of subunit structure and receptor function. Phamacol Rev, 1998,50:291-313.
    8. Fritschy JM, Brunig I. Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacology & Therapeutics, 2003,98:299-323.
    9. Wess J. Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol, 1996,10:69-99.
    10. Wess J, Liu J, Blin N, et al. Structual basis of receptor/G protein coupling selectivitystudied with muscarinic receptors as model systems. Life Sci, 1997,60:1007-1014.
    11. Darlington CL, Smith PF. Molecular mechanisms of recovery from vestibular damage in mammals: recent advances. Progress in Neurobiology, 2000,62:313-325.
    12. Courjon JH, Flandrin JM, Jeannerod M, et al. The role of the flocculus in vestibular compensation after hemilabyrinthectomy. Brain Research, 1982,239:251-257.
    13. Barmack NH, Pettorossi VE. Effects of unilateral lesions of the flocculus on optokinetic and vestibuloocular reflexes of the rabbit. J Neurophysiol, 1985,53(2):481-96.
    1. Babalian A, Vibert N, Assie G. Central vestibular networks: Functional characterization in the isolated ,in vitro whole brain of guinea-pig. Neuroscience, 1997, 81(2):405-426.
    2. Smith P, Darlington C. Neurochemical mechanisms of recovery from peripheral vestibular lesions. Brain Res Rev,1991,16:117-133.
    3.关新民主编医学神经生物学北京:人民卫生出版社.2002
    4. Barnard EA, Skolnick P, Olsen RW, et al. InternationalUnion of Pharmacology. XV. Subtypes ofγ-aminobutyric acidA receptors:classification on the basis of subunit structure and function. Pharmacol Rev 1998, 50:291–3.
    5. Fritschy JM, Brunig I. Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications .Pharmacology & Therapeutics , 2003, 98 : 299– 323.
    6. de Waele C, Abitbol M, Chat M, et al.Distribution of glutamatergic receptors and GAD mRNA-containingneurons in the vestibular nuclei of normal and hemilabyrinthectomized rats. Eur J Neurosci, 1994, 6:565–576.
    7. Dupont J, Geffard M ,Calas A, et al. Immunohistochemical evidence for GABAergic cell bodies in the medial nucleus of the trapezoid body and in the lateral vestibular nucleus in the guinea pig brainstem. Neurosci Lett, 1990, 111:263–268.
    8. Walberg F, Ottersen OP, Rinvik E. GABA, glycine, aspartate,glutamate and taurine in the vestibular nuclei: an immunocytochemical investigation in the cat. Exp Brain Res, 1990,79 :547–563.
    9. Holstein GR,. Inhibitory amino acid transmitters in the vestibular nuclei. In: Beitz AJ, Anderson JH (Eds), Neurochemistry of the Vestibular System. CRC Press, Florida, pp. 2000: 143–162.
    10. Horii A, Kitahara T, Smith PF, et al.Effects of unilateral labyrinthectomy on GAD, GAT1, and GABA receptor gene expression in the rat vestibular nucleus.NeuroReport, 2003,18:2359–2363.
    11. Adkins CE, Pillai GV, Kerby J, et al.α4β3δGABAA receptors characterized by fluorescenceresonance energy transfer-derived measurements of membranepotential. J Biol Chem, 2001.276, 38934– 38939.
    12. Pirker S, Schwarze, C, Wieselthale, A., et al.GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience, 2000,101:815–850.
    13. Eleore L, Vassias I, Bernat I, et al. An in situ hydridization and immunofluorescence study of GABAA and GABAB receptors in the vestibular nuclei of the intact and unilaterally labyrinthectomized rat. Exp Brain Res, 2005,160:166–179.
    14. Giardino L, Zanni M, Fernandez M, et al. Plasticity of GABA(a) system during ageing: focus onvestibular compensation and possible pharmacological intervention.Brain Res, 2002,929:76–86.
    15. Sun, Y, Godfrey, DA, Rubin, AM. Plasticity of g-aminobutyrate in the medial vestibular nucleus of rat after inferior cerebellar peduncle transection. J Vestib Res, 2002,12:1–14.
    16. Him A, Johnston AR, Yau JL, et al. Tonic activity and GABA responsiveness of medial vestibular nucleus neurons in aged rats. NeuroReport, 2001,12:3965–3968.
    17. Vibert N, DeWaele C, Serafin M, et al. The vestibular system as a model of sensorimotor transformations.A combined in vivo and in vitro approach to study the cellular mechanisms of gaze and posture stabilization in mammals. Prog Neurobiol, 1997,51:243–286.
    18. Vibert N, Serafin M, Vidal PP, et al. Direct and indirect effects of muscimol on medial vestibular nucleus neurones in guinea-pig brainstem slices. Exp Brain Res, 1995,104:351–356.
    19. Dutia MB, Johnston AR, McQueen DS. Tonic activity of rat medial vestibular nucleus neurones in vitro and its inhibition by GABA.Exp. Brain Res, 1992,88:466–472.
    20. Magnusson AK, Lindstrom S, Tham R. GABAB receptor contribute to vestibular compensation after unilateral labyrinthectomy in pigmented rats. Exp. Brain Res, 2000,134:32–41.
    21. Tighilet B, Lacour M. Gamma amino butyric acid (GABA) immunoreactivity in the vestibular nuclei of normal and unilateral vestibular neurectomized cats.Eur J Neurosci, 2001,13:2255-2267.
    1.关新民主编.医学神经生物学.北京:人民卫生出版社2002.
    2. Koelle GB. The histochemical localization of cholinesterases in the central nervous system of the rat. J Comp Neurol, 1954,100:211-235.
    3. Schwartz RD. Autoradiographic distribution of high affinity muscarinic and nicotinic cholinergic receptors labeled with [3H] acetylcholine in rat brain. Life Sci, 1986,8(23):2111-2119.
    4. Burke RE,Fahn S. Choline acetyltransferase activity of the principal vestibular nuclei of rat, studies by micropunch technique. Brain Res, 1985,328(1):196-199.
    5. Wamsley JK,Lewis MS,Young WS,et al. Autoradiographic localization of muscarinic cholinergic receptors in rat brain stem. J Neurosci, 1981,1:176-191.
    6. Anadon R , Molist P , Rodriguez-Moldes I , et al. Distribution of cholineacetyltransferase immunoreactivity in the brain of an elasmobranch, the lesser spotted dogfish. J Comp Neurol, 2000,420(2):139-170.
    7. Phelan KD,Gallagher JP. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibualr nucleus neurons in vitro. Synapse, 1992,10:349-358.
    8. Ujihara H,Akaike A,Sasa M,et al. Muscarinic regulation of spontaneously active neurons in rat brain slices. Neurosci, Lett, 1989,106:205-210.
    9. Takeshita S,Sasa M,Ishihara K,et al. Cholinergic and glutamatergic transmission in medial vestibualr neurons responding to lateral roll tilt in rats. Brain Res, 1999,840(1-2):99-105.
    10. Wess J. Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol, 1996, 10:69-99.
    11. Wess J, Liu J, Blin N, et al. Structual basis of receptor/G protein coupling selectivity studied with muscarinic receptors as model systems. Life Sci, 1997, 60:1007-1014.
    12. Onali P , Olianas MC. Bimodal regulation of cyclic AMP by muscarinic receptors:Involvement of multiple G proteins and different forms of adenylylcyclase.Life Sci, 1995,56:973-980.
    13. Felder CC. Muscarinic acetylcholine receptors:Signal transduction through multiple effectors. FASEB J, 1995,9:619-625.
    14. Dutia MB, Neavy P, McQueen DS, Effects of cholinergic agonists on spontaneously active rat medial vestibular neurons in vitro, J. Physiol. 1990,425:90P.
    15. Sun Y, Waller HJ, Godfrey DA, et al. Spontaneous activity in rat vestibular nuclei in brain slices and effects of acetylcholine agonists and antagonists. Brain Res.2002, 934(1):58-68.
    16.余其林,孔维佳.毒蕈碱受体在大鼠前庭神经核中表达的免疫组织化学与原位杂交研究.听力学及言语疾病杂志,2005,13(4):264-265.
    17. Calza L, Giardino L, Zanni M, et al. Muscarinic and gamma-aminobutyric acid-ergic receptor changes during vestibular compensation. A quantitative autoradiographic study of the vestibular nuclei complex in the rat. Eur Arch Otorhinolaryngol, 1992,249:34-39.
    18. Wood CD,Graybiel A. Theory of antimotion sickness drug mechanisms. Aerospace Med, 1972,43:249-252.
    19. Chen K,Waller HJ,Godfrey DA. Muscarinic receptor subtypes in rat dorsal cochlear nucleus. Hear Res, 1995,89:137-145.
    20. Lewis MR,Phelan KD,Shinnick GP. Primary afferent excitatory transmission recorded intracellularly in vitro from rat medial vestibular neurons. Synapse, 1989,3(2):149-153.
    21. Koelle GB. Parasympathomimetic agents. In: Goodman LS,Gilman A,eds. The pharmacological basis of therapeutics. Macmillan, New York, 1975,pp:467-476.
    22. Burke RE,Fahn S. Studies of somatostatin-induced barrel rotation in rats. Regul Pept, 1983,7(3):207-220.
    23. Jaarsma D,Ruigrok TJ,Caffe R,et al. Cholinergic innervation and receptors in the cerebellum. Prog Brain Res, 1997,114:67-96.
    24. Fukushima M,Kitahara T,Takeda N,et al. Role of cholinergic mossy fibers in medial vestibualr and prepositus hypogolssal nuclei in vestibualr compensation. Neuroscience, 2001,102(1):159-166.
    25. Andre P,Pompeiano O,White SR. Role of muscarinic receptors in the cerebellar control of the vestibulospinal reflex gain: celluar mechanisms. Acta Otolaryngol Suppl, 1995,520(1):87-91.
    26. Nabatame H,Sara M,Ohno Y,et al. Activation of lateral vestibular nucleus neurons by iontophoretically applied phencyclidine. J Pharmacol, 1986,42(1):117-122.
    1. Precht W, Dieringer N. Neuronal events paralleling functional recovery (compensation) following peripheral vestibular lesions. In: Berthoz A, Melville-Jones G, (Eds.), Adaptive mechanism in gaze control: facts and theories. Amsterdam: Elsevier, 1985:251-68.
    2. Smith P, Curthoys I. Mechanism of recovery following unilateral labyrinthectomy: a review. Brain Res Rev, 1989,14:155-80.
    3. Llinas R, Walton K. Vestibular compensation: a distributed propety of the central nervous system. In: Wilson VJ, Asanuma H, eds. Integration in the nervous system. Tokyo: Igaku Shoin, 1979:145-66.
    4. Johnston AR,Him A, Dutia MB. Differential regulation of GABAA and GABAB receptors during vestibular compensation. NeuroReport, 2001,12:597-600.
    5. Cameron SA, Dutia MB. Cellular basis of vestibular compensation: changes in intrinsic excitability of MVN neurons. NeuroReport, 1997,8:2595–2599.
    6. Cameron SA,Dutia MB. Lesion-induced plasticity in rat vestibular nucleus neurons dependent on glucocorticoid receptor activation. Journal of Physiology, 1999,518:151-158.
    7. Vibert N, Beraneck M, Bantikyan A,et al. Vestibular compensation modifies the sensitivity of vestibular neurons to inhibitory amino acids. NeuroReport, 2000,11: 1921-1927.
    8. Yamanaka T, Him A, Cameron SA,et al. Rapid compensatory changes in GABA receptor efficacy in rat vestibular neurons after unilateral labyrinthectomy. Journal of Physiology, 2000,523:413–424.
    9. De Zeeuw CI, Wylie DR, Digiorgi PL, et al. Projections of identified zones in the flocculus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol, 1994,349:428–447.
    10. Sato Y , Kawasaki T. Identification of the Purkinje cell/climbing fiber zone and itstarget neurons responsible for eye-movement control by the cerebellar flocculus. Brain Res Rev, 1991,16:39–64.
    11. Sato Y, Kanda K, Kawasaki T. Target neurons of floccular middle zone inhibition in medial vestibular nucleus. Brain Res, 1988,446:225–235.
    12. Babalian AL, Vidal PP. Floccular Modulation of Vestibuloocular Pathways and Cerebellum-Related Plasticity: An In Vitro Whole Brain Study. J Neurophysiol, 2000,84(5):2514-28.
    13. Darlington CL, Smith PF. Molecular mechanisms of recovery from vestibular damage in mammals: recent advances. Progress in Neurobiology, 2000,62:313–325.
    14. Courjon JH, Flandrin JM, Jeannerod M. et al. The role of the flocculus in vestibular compensation after hemilabyrinthectomy. Brain Research, 1982,239:251–257.
    15. Barmack NH, Pettorossi VE. Effects of unilateral lesions of the flocculus on optokinetic and vestibuloocular reflexes of the rabbit. J Neurophysiol, 1985;53(2):481-96.
    16. Johnston AR, Seckl JR, Dutia MB. Role of the flocculus in mediating vestibular nucleus neuron plasticity during vestibular compensation in the rat. J Physiol, 2002 Dec 15;545(Pt 3):903-11.
    17. Alex R. Johnston, Jonathan R,Role of the flocculus in mediating vestibular nucleus neuron plasticity during vestibular compensation in the rat. Journal of Physiology (2002),545:903-911.
    18. Xia J, Chung, Wihler C. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron, 2000,28:499-510.
    19. Aizenman C, Linden D. Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. Journal of Neurophysiology, 1999,82:1697-1709.
    20. Cxubayko U, Sultan F. Two types of neurons in the rat cerebellar nuclei asdistinguished by membrane potentials and intracellular fillings. Journal of Neurophysiology, 2001,85:2017-2029.
    21. Balaban C, Freilind M. Protein kinase C inhibition blocks the early appearance of vestibular compensation. Brain Research, 1999,845: 97-101.
    22. Burke RE,Fahn S. Studies of somatostatin-induced barrel rotation in rats. Regul Pept, 1983,7(3):207-220.
    23. Jaarsma D,Ruigrok TJ,Caffe R,et al. Cholinergic innervation and receptors in the cerebellum. Prog Brain Res, 1997,114:67-96.
    24. Fukushima M,Kitahara T,Takeda N,et al. Role of cholinergic mossy fibers in medial vestibualr and prepositus hypogolssal nuclei in vestibualr compensation. Neuroscience, 2001,102(1):159-166.
    1. Brodal A. Anatomy of the vestibular nuclei and their connections,in: Kornhuber HH (Ed.), Handbook of Sensory Physiology, Vestibular System, Morphology, vol. 6, Springer, Berlin, Heidelberg, New York, 1974.
    2. Brodal A, Pompeiano O, The vestibular nuclei in the cat, J. Anat. 1957 ,91: 438–454
    3.王平宇主编大白鼠中枢神经系统解剖学基础。北京:人民卫生出版社.1986
    4.姜泗长主编耳解剖学与颞骨组织病理学。北京:人民军医出版社。1998,142-157
    5. Cajal SRY, Histologie du Système Nerveux de l’Homme et des Vertebrés, Maloine, Paris, 1911.
    6. Barmack NH, Fredette BJ, Mugnaini E, Parasolitary nucleus: asource of GABAergic vestibular information to the inferior olive of rat and rabbit. J Comp Neurol, 1998,392:352-372.
    7. Blazquez P, Partsalis A, Gerrits NM, et al.Input of anterior and posterior semicircular canal interneurons encoding head-velocity to the dorsal Y group of the vestibular nuclei. J Neurophysiol, 2000,83:2891-2904.
    8. Brodal A. The vestibular nuclei in the macaque monkey. J Comp Neurol, 1984,227:252–266.
    9. Frederickson CJ, Trune DR. Cytoarchitecture and saccular innervation of nucleus y in the mouse. J Comp Neurol, 1986,252:302–322.
    10. Fuse G, Die innere Abteilung des Kleinhirnstieles (Meynert, I.A.K.) und der Deitersche Kern, Arb. Hirnanat. Inst. Zürich, 1912,629–267.
    11. Brodal A, Anatomical observations on the vestibular nuclei, with special reference to their relations to the spinal cord and the cerebellum. Acta Otolaryngol, [Suppl] (Stockh), 1964,192:24–51.
    12. Kevetter GA, Perachio A. Distribution of vestibular afferents that innervate the sacculus and posterior canal in the gerbil. J Comp Neurol, 1986,254:410–424.
    13. Carpenter MB, Cowe RJ, Connections and oculomotor projections of the superior vestibular nucleus and cell group‘Y’. Brain Res,1985,336:265–287.
    14. Sato Y, Kawasaki T. Target neurons of floccular caudal zone inhibition in Y-group nucleus of vestibular nuclear complex. J Neurophysiol, 1987,57:460–480.
    15. De Zeeuw CI, Gerrits NM, Voogd J, et al.The rostral dorsal cap and ventrolateral outgrowth of the rabbit inferior olive receive a GABAergic input from dorsal group Y and the ventral dentate nucleus. J Comp Neurol, 1994,341:420–432.
    16. Epema AH, Gerrits NM, Voogd J, Commissural and intrinsic connections of the vestibular nuclei in the rabbit: a retrograde labeling study. Exp Brain Res, 1988,71:129–146.
    17. Wentzel PR, Wylie DR, Ruigrok TJ, et al. Olivary projecting neurons in the nucleus prepositus hypoglossi, group y and ventral dentate nucleus do not project to the oculomotor complex in the rabbit and the rat. Neurosci Lett, 1995,190 :45–48.
    18. Precht W, Dieringer N. Neuronal events paralleling functional recovery (compensation) following peripheral vestibular lesions. In: Berthoz A, Melville-Jones G, eds. Adaptive mechanism in gaze control: facts and theories. Amsterdam: Elsevier, 1985:251-68.
    19. Smith P, Curthoys I. Mechanism of recovery following unilateral labyrinthectomy: a review. Brain Res Rev, 1989;14:155-80.
    20. Llinas R, Walton K. Vestibular compensation: a distributed property of the central nervous system. In: Wilson VJ, Asanuma H, eds. Integration in the nervous system. Tokyo: Igaku Shoin, 1979:145-66.
    21.孙久荣,前庭代偿:研究中枢神经系统可塑性的一个理想模型,生理科学进展,1998,29(3),209-214.
    22.冯勃,陈恩德,周定蓉,徐伟恒,何凌汉.化学性迷路破坏动物模型及前庭代偿过程的定量观察.中华航空航天医学杂志,1997,8(1),27-30
    23. Cass SP, Goshgarian HG. Vestibular compensation after labyrinthectomy and vestibular neurectomy in cats. Otolaryngol Head Neck Surg, 1991,104:14–19.
    24. Takeda N, Igarashi M, Koizuka I, et al. Recovery of the otolith-ocular reflex after unilateral deafferentation ofthe otolith organs in squirrel monkeys. Acta Otolaryngol (Stockh), 1990,110:25–30.
    25. Zennou-Azogui Y, Borel Lacour M, Ez-Zaher L, et al. Recovery of head postural control following unilateral vestibular neurectomy in the cat. Neck muscle activity and neuronal correlates in Deiters’nuclei. Acta Otolaryngol (Stockh) (Suppl 509), 1993,113:1–19.
    26. Halmagyi GM, Curthoys IS, Cremer PD, et al. The human horizontal vestibulo-ocular reflex in response to high-acceleration stimulation before and after unilateral vestibular neurectomy. Exp Brain Res, 1990,81:479–490.
    27. Masumitsu Y, Sekitani T. Effect of electric stimulation on vestibular compensation in guinea pigs. Acta Otolaryngol (Stockh.), 1991,111:807–812.
    28. Petrosini L. The effect of ethanol on early manifestations of recovery from vestibular lesion. Behav Brain Res, 1982;(6):303-312.
    29.关新民主编医学神经生物学北京:人民卫生出版社2002.
    30. Bonner TI,Buckley NJ,Young AC,et al. Identification of a family of muscarinic acetylcholine receptor genes. Science, 1987,237:527-532.
    31. Liao CF,Themmen AP,Joho,et al. Molecular cloning and expression of a fifth muacarinic acetylcholine receptor. J Biol Chem, 1989,264:7328-7337.
    32. Caulfied MP,Brown DA. Pharmacology of the putative M4 muscarinic receptor mediating Ca-current inhibition in neuroblastoma×glioma hybrid (NG 108-15) cells. Br J Pharmacol, 1991,104:39-44.
    33. Hulme EC,Birdsall NJ,Buckley NJ. Muscarinic receptor subtypes. Ann Rev Pharmacol Toxicol, 1990,30:633-673.
    34. Wess J. Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol, 1996,10:69-99.
    35. Wess J,Liu J,Blin N,et al. Structural basis of receptor/G protein coupling selectivitystudied with muscarinic receptors as model systems. Life Sci, 1997,60:1007-1014.
    36. Onali P , Olianas MC. Bimodal regulation of cyclic AMP by muscarinic receptors:Involvement of multiple G proteins and different forms of adenylylcyclase. Life Sci, 1995,56:973-980.
    37. Felder CC. Muscarinic acetylcholine receptors:Signal transduction through multiple effectors. FASEB J, 1995,9:619-625.
    38. Koelle GB. The histochemical localization of cholinesterases in the central nervous system of the rat. J Comp Neurol, 1954,100:211-235.
    39. Schwartz RD. Autoradiographic distribution of high affinity muscarinic and nicotinic cholinergic receptors labeled with [3H] acetylcholine in rat brain. Life Sci, 1986,8(23):2111-2119.
    40. Burke RE,Fahn S. Choline acetyltransferase activity of the principal vestibular nuclei of rat, studies by micropunch technique. Brain Res, 1985,328(1):196-199.
    41. Wamsley JK,Lewis MS,Young WS,et al. Autoradiographic localization of muscarinic cholinergic receptors in rat brain stem. J Neurosci, 1981,1:176-191.
    42. Anadon R , Molist P , Rodriguez-Moldes I , et al. Distribution of cholineacetyltransferase immunoreactivity in the brain of an elasmobranch, the lesser spotted dogfish. J Comp Neurol, 2000,420(2):139-170.
    43. Phelan KD,Gallagher JP. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibualr nucleus neurons in vitro. Synapse, 1992,10:349-358.
    44. Ujihara H,Akaike A,Sasa M,et al. Muscarinic regulation of spontaneously active neurons in rat brain slices. Neurosci, Lett, 1989,106:205-210.
    45. Takeshita S,Sasa M,Ishihara K,et al. Cholinergic and glutamatergic transmission in medial vestibualr neurons responding to lateral roll tilt in rats. Brain Res, 1999,840(1-2):99-105.
    46. Dutia MB, Neavy P, McQueen DS, Effects of cholinergic agonists on spontaneously active rat medial vestibular neurons in vitro, J. Physiol. 1990,425:90P.
    47. Sun Y, Waller HJ, Godfrey DA, et al. Spontaneous activity in rat vestibular nuclei in brain slices and effects of acetylcholine agonists and antagonists. Brain Res.2002, 934(1):58-68.
    48.余其林,孔维佳.毒蕈碱受体在大鼠前庭神经核中表达的免疫组织化学与原位杂交研究.听力学及言语疾病杂志,2005,13(4):264-265.
    49. Calza L, Giardino L, Zanni M, et al. Muscarinic and gamma-aminobutyric acid-ergic receptor changes during vestibular compensation. A quantitative autoradiographic study of the vestibular nuclei complex in the rat. Eur Arch Otorhinolaryngol, 1992,249:34-39.
    50. Wood CD,Graybiel A. Theory of antimotion sickness drug mechanisms. Aerospace Med, 1972,43:249-252.
    51. Chen K,Waller HJ,Godfrey DA. Muscarinic receptor subtypes in rat dorsal cochlear nucleus. Hear Res, 1995,89:137-145.
    52. Lewis MR,Phelan KD,Shinnick GP. Primary afferent excitatory transmission recorded intracellularly in vitro from rat medial vestibular neurons. Synapse, 1989,3(2):149-153.
    53. Koelle GB. Parasympathomimetic agents. In: Goodman LS,Gilman A,eds. The pharmacological basis of therapeutics. Macmillan, New York, 1975,pp:467-476.
    54. Burke RE,Fahn S. Studies of somatostatin-induced barrel rotation in rats. Regul Pept, 1983,7(3):207-220.
    55. Jaarsma D,Ruigrok TJ,Caffe R,et al. Cholinergic innervation and receptors in the cerebellum. Prog Brain Res, 1997,114:67-96.
    56. Fukushima M,Kitahara T,Takeda N,et al. Role of cholinergic mossy fibers in medial vestibualr and prepositus hypogolssal nuclei in vestibualr compensation. Neuroscience, 2001,102(1):159-166.
    57. Andre P,Pompeiano O,White SR. Role of muscarinic receptors in the cerebellar control of the vestibulospinal reflex gain: celluar mechanisms. Acta Otolaryngol Suppl,1995,520(1):87-91.
    58. Nabatame H,Sara M,Ohno Y,et al. Activation of lateral vestibular nucleus neurons by iontophoretically applied phencyclidine. J Pharmacol, 1986,42(1):117-122.
    59. Barnard EA., Skolnick P, Olsen RW, et al. InternationalUnion of Pharmacology. XV. Subtypes ofγ-aminobutyric acidA receptors:classification on the basis of subunit structure and function. PharmacolRev 1998, 50:291–3.
    60. Fritschy JM, Brunig I. Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications .Pharmacology & Therapeutics , 2003 98 : 299– 323
    61. Baumann SW, Baur R, Sigel E. Subunit arrangement ofγ-aminobutyric acid type A receptors. J Biol Chem2001, 276:36275–36280.
    62. Mohler H. Functions of GABAA-receptors: pharmacology and pathophysiology. In H. Mohler (Ed.), Pharmacology of GABA and Glycine Neurotransmission, Vol. 150, Handbook of Pharmacology,( pp. 101– 116). (2000).Berlin: Springer-Verlag.
    63. Burgard EC, Tietz, EI, Neelands TR,et al. Properties of recombinant g-aminobutyric acidA receptor isoforms containing the a5 subunit subtype. Mol Pharmacol, 1996 50:119– 127.
    64. Adkins CE, Pillai GV, Kerby J, et al.α4β3δGABAA receptors characterized by fluorescenceresonance energy transfer-derived measurements of membranepotential. J Biol Chem, 2001, 276:38934– 38939.
    65. Eleore L, Vassias, I., Bernat I., et al. An in situ hydridization and immunofluorescence study of GABAA and GABAB receptors in the vestibular nuclei of the intact and unilaterally labyrinthectomized rat. Exp Brain Res, 2005,160:166–179.
    66. Fritschy JM, Mohler H. GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol, 1995,359:154–194.
    67. Pirker S, Schwarze C, Wieselthale A, et al. GABA(A) receptors: immunocytochemicaldistribution of 13 subunits in the adult rat brain. Neuroscience, 2000,101:815–850.
    68. Giardino L, Zanni M, Fernandez M, et al. Plasticity of GABA(a) system during ageing: focus onvestibular compensation and possible pharmacological intervention.Brain Res, 2002,929:76–86.
    69. Sun Y, Godfrey DA, Rubin AM. Plasticity of g-aminobutyrate in the medial vestibular nucleus of rat after inferior cerebellar peduncle transection. J Vestib Res, 2002,12:1–14.
    70. Him A, Johnston AR, Yau JL, et al. Tonic activity and GABA responsiveness of medial vestibular nucleus neurons in aged rats. NeuroReport, 2001,12:3965–3968.
    71. Vibert N, DeWaele C, Serafin M, et al. The vestibular system as a model of sensorimotor transformations.A combined in vivo and in vitro approach to study the cellular mechanisms of gaze and posture stabilization in mammals. Prog Neurobiol, 1997,51:243–286.
    72. Vibert N, Serafin M, Vidal PP, et al. Direct and indirect effects of muscimol on medial vestibular nucleus neurones in guinea-pig brainstem slices. Exp Brain Res, 1995,104:351–356.
    73. Dutia MB, Johnston AR, McQueen DS. Tonic activity of rat medial vestibular nucleus neurones in vitro and its inhibition by GABA. Exp Brain Res, 1992,88:466–472.
    74. Magnusson AK, Lindstrom S, Tham R. GABAB receptor contribute to vestibular compensation after unilateral labyrinthectomy in pigmented rats. Exp Brain Res, 2000,134:32–41.
    75. Calza L, Giardino L, Zanni M, et al. Involvement of cholinergic and GABA-ergic system in vestibular compensation. In: Lacour M, Toupet M, Denise P, Christen Y(Eds), Vestibular Compensation: Facts Theories and Clinical Perspectives. Elsevier Paris, 1989pp,189–199.
    76. Tighilet B,Lacour M. Gamma amino butyric acid (GABA) immunoreactivity in the vestibular nuclei of normal and unilateral vestibular neurectomized cats. EuropeanJournal of Neuroscience, 2001,13(12):2255-67.
    77. Horii A, Kitahara T, Smith PF, et al. Effects of unilateral labyrinthectomy on GAD, GAT1, and GABA receptor gene expression in the rat vestibular nucleus. Neuro Report, 2003,18,2359–2363.
    78. Horii A, Masumura C, Smith PF, et al. Microarray analysis of gene expression in the rat vestibular nucleus complex following unilateral vestibular deafferentation. Neurochem, 2004,91:975–982.
    79. Beraneck M, Hachemaoui M, Idoux E, et al. Long-term plasticity of ipsilesional medial vestibular nucleus neurons after unilateral labyrinthectomy. Neurophysiol, 2003, 90:184–203.
    80. Darlington CL, Dutia MB, Smith PF. The contribution of the intrinsic excitability of vestibular nucleus neurons to recovery from vestibular damage. Eur J Neurosci, 2002,15:1719–1727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700