薄壁件精密切削变形控制与误差补偿技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现减重和增效的目的,在航空发动机结构的设计中,广泛采用了钛合金等高强度-重量比材料制成的薄壁零件,如机匣和叶片等。从数控铣削加工角度看,此类零件具有薄壁、刚性差、切削力大的特点。在精密切削过程中,切削力作用下的刀具-工件弹性变形、切削表层残余应力引起的工件扭曲变形以及刀具-工件系统加工振动现象是影响加工精度和型面质量的三个最为突出的因素。为此,围绕薄壁零件高效精密切削加工亟待解决的关键技术问题,遵循误差源识别、加工过程仿真、误差控制补偿、工艺方案优化和实验验证的总体思路,本文主要开展了以下几个方面的研究工作:
     一、切削过程数值模拟。在阐述切屑-工件分离准则、刀具-切屑界面接触摩擦行为、自适应网格划分技术和切削条件下材料屈服流动本构模型的基础之上,建立切削加工过程的有限元仿真模型,模拟钛合金TC11连续状和锯齿状切屑的形成过程,同时给出切削区域应力场、应变场以及温度场的分布状态信息。实验和模拟结果表明,就切削力的大小而言,锯齿状切屑的情形小于连续状切屑的情形。
     二、薄壁零件加工弹性变形误差预测与补偿方法。提出加工表面静态误差预测、补偿总体方案,利用有限元模拟技术结合切削力模型,迭代求解各个刀位点处的弹性让刀变形量,据此修正原始的数控刀具轨迹代码,达到消除加工变形误差的目的。文中基于单位切削力系数法,分别建立平底刀侧铣、球头刀点铣时的切削力预报模型,并讨论了将切削力大小向刀齿和工件单元节点的等效离散方法。对薄壁平板的切削试验证实,运用多层次循环误差补偿方式,可以获得很高的加工精度。
     三、薄壁零件切削扭曲变形控制方法。利用钻孔法测量钛合金材料铣削加工表层残余应力的分布规律,经过离散后输入至有限元模型,模拟单面行切法和双面环切法这两种不同走刀方式下的零件扭曲变形行为。仿真结果表明,采用双面环切工艺有利于保持铣削表层残余应力始终处于平衡状态,能够较好的解决加工过程中薄壁零件的扭曲变形问题,显著提高型面的加工精度。通过采用双面铣削工艺,薄壁叶片叶尖区域沿厚度方向的最大数控加工误差比采用单面铣削工艺平均降低了一个数量级。
     四、薄壁零件加工颤振抑制方法。基于切削动力学模型,利用模态分析方法识别系统结构的动态特性参数,建立加工稳定性极限判定准则,以指导选取主轴转速和切削深度等工艺参数,从而将切削过程控制在稳定区域之内。此外,针对薄壁自由曲面叶片而言,通过合理设计叶身半精加工余量的分布规律,在减少前后缘和叶尖部位精加工切除量的同时减小切削力的大小,改善叶片在精加工过程中的刚性状态,能够有效抑制加工颤振现象的发生。
     本文的部分研究结果,已经成功应用于薄壁叶片等复杂结构件的高效精密数控加工实践中,取得了令人满意的效果。
Thin-walled complex parts, namely casing and blade made of difficult-to-machine materials, are widely used in the structure design of high performance aeroengine, which results in weight savings of up to 30% with consequent improvements in thrust-to-weight ratios. However, due to factors such as cutting force induced part/tool static deflection and dynamic vibration, precision machining of these low-rigidity complex parts has been providing a serious challenge for engineers. As a result, there is usually a significant deviation between the planned and machined part profiles while providing a poor surface quality. Hence, the main objectives of this research are to predict and compensate the tool-workpiece machining deformation errors, and to develop strategies to suppress chatter phenomenon and residual stresses induced thin-walled parts distortion.
     Firstly, an FE model is presented using ABAQUS/Explicit~(TM) to simulate continuous and saw-tooth chip formation when machining titanium alloy TCll. Modelling details, including the chip separation criterion, the sticking and sliding tool-chip frictional behavior, the adaptive meshing technique and the constitutive equation for the workpiece material, are discussed carefully. The model is also used to predict the cutting forces, stress, strain and temperature contours near the cutting zone. For the saw-tool chip, the magnitude of the cutting force is lower than with the continuous chip.
     Secondly, a general quasi-static error compensation methodology is proposed, which focuses on force-induced errors in machining thin-walled structures. The methodology is based on modelling and prediction of milling forces, finite element simulation of deflection of the part during machining and analysis of the resultant surface errors. An iterative procedure is used to determine the local equilibrium conditions between the cutting force and deflection at each cutter location. The results show that high machining accuracy could be achieved efficiently using multi-level error compensation scheme.
     Thirdly, a spiral milling process technique is presented to finishing thin-walled workpiece taking into account the residual stresses induced distortion. The residual stress variation in titanium alloy TC11 has been determined by a strain-gauge technique involving blind-hole drilling. The measured residual stresses are fed into an FEA model for simulation of the distortion behaviour of the part under two different tool path strategies. With the spiral tool paths, the allowances on both sides of parts are removed concurrently, therefore the residual stresses in the machined layers will be approximately maintained symmetrical balance status. As a result, the residual stresses induced distortion during finishing thin-walled workpiece is controlled successfully. The machining accuracy near blade tip region has been significantly improved by one order of magnitude.
     Finally, Based on dynamic cutting force model, a method for obtaining the instability or stability lobes is developed. In order to identify the modal parameters, the frequency response function of the machine-tool structure is determined by a standard impact test procedure. The predicted stability boundary has been used to determine the optimal cutting conditions to suppress chatter phenomenon while maximizing material removal rates. Furthermore, with respect to finishing sculptured surface blade, it is verified that the chatter vibration could be suppressed successfully through optimizing the allowances distribution during the semi-finishing process.
引文
[1] Ramesh R, Mannan M A, Poo A N. Error compensation in machine tools -- a review, Part Ⅰ: geometric, cutting-force induced and fixture-dependent errors. Int. J. Mach. Tools Manuf, 2000, 40: 1235-1256.
    [2] Ramesh R, Mannan M A, Poo A N. Error compensation in machine tools -- a review, Part Ⅱ: thermal errors. Int. J. Mach. Tools Manuf, 2000, 40: 1257-1284.
    [3] Miller S. Advanced materials means advanced engines. Interdisciplinary Sci. Rev., 1996, 21(2): 117-129.
    [4] Honnarat Y. Issues and breakthrough in the manufacture of turboengine titanium parts. Mater. Sci. Eng., Part A 1996, 213: 115-123.
    [5] Boyer R R. An overview on the use of titanium in aerospace industry. J. Mater. Sci. Eng., Part A 1996, 213: 103-114.
    [6] Brewer W D, Bird R K, Wallace T A. Titanium alloys and processing for high speed aircraft. Mater. Sci. Eng., Part A 1998, 243: 299-304.
    [7] Trent E M. Metal cutting. Butterworths, London, 1991.
    [8] Strafford K N, Audy J. Indirect monitoring of machinability in carbon steels by measurement of cutting forces. J. Mater. Process. Technol., 1997, 67: 150-156.
    [9] Simms C T, Hagel W C. The superalloys. Wiley, New York, 1972.
    [10] Burns T J, Davies M A. On repeated adiabatic shear band formation during high-speed machining. Int. J. Plasticity, 2002, 18: 487-506.
    [11] Ramalingam S, Black J T. An electron microscope study of chip formation. Metall. Trans., 1973, 4: 1103-1112.
    [12] Shinozuka J, Obikawa T, Shirakashi T. Chip breaking analysis from the viewpoint of the optimum cutting tool geometry design. J. Mater. Process. Technol., 1996, 62: 345-351.
    [13] Ozcatalbas Y. Chip and built-up edge formation in the machining of in situ Al_4C_3-Al composite. Mater. Design, 2003, 24: 215-221.
    [14] Vyas A, Shaw M C. Mechanics of saw-tooth chip formation in metal cutting. ASME J. Manuf Sci. Eng., 1999, 121: 163-172.
    [15] Choudhury I A, El-Baradie M A. Machinability of nickel-base super alloys: a general review. J. Mater. Process. Technol., 1998, 77: 278-284.
    [16] Elbestawi M A, Srivastava A K, El-wardany T I. A model for chip formation during the machining of hardened steel. CIRP Ann., 1996, 45: 71-76.
    [17] Zhen-Bin H, Komanduri R. Modelling of thermomechanical instability in machining. Int. J.. Mech. Sci., 1997, 39: 1273-1314.
    [18] Davies M A, Burns T J, Evans C J. On the dynamics of chip formation in the machining of hard metals. CIRt Ann., 1997, 46: 25-30.
    [19] Hua J, Shivpuri R. Prediction of chip morphology and segmentation during the machining of titanium alloys. J. Mater. Process. Technol., 2004, 150: 124-133.
    [20] Barry J, Byrne G. The mechanisms of chip formation in machining hardened steels. ASME J. Manuf. Sci. Eng., 2002, 124: 528-535.
    [21] Mackerle J. Finite-element analysis and simulation of machining: a bibliography (1976-1996). J. Mater. Process. Technol., 1999, 86: 17-44.
    [22] Mackerle J. Finite element analysis and simulation of machining: an addendum A bibliography (1996-2002). Int. J. Mach. Tools Manuf., 2003, 43: 103-114.
    [23] Joshi V S, Dixit P M, Jain V K. Viscoplastic analysis of metal cutting by finite element method. Int. J. Mach. Tools Manuf., 1994, 34(4): 553-571.
    [24] Kim K W, Sin H C. Development of a thermo-viscoplastic cutting model using finite element method. Int. J. Mach. Tools Manuf., 1996, 36(3): 379-397.
    [25] Strenkowski J S, Athavale S M. A partially constrained Eulerian orthogonal cutting model for chip control tools. ASME J. Manuf. Sci. Eng., 1997, 119: 681-688.
    [26] Marusich T D, Ortiz M. Modelling and simulation of high-speed machining. Int. J. Num. Meth. Eng., 1995, 38: 3675-3694.
    [27] Yang M Y, Park H. The prediction of cutting force in ball milling. Int. J. Mach. Tools Manuf., 1991, 31: 45-54.
    [28] Lee P, Altintas Y. Prediction of ball-end milling forces from orthogonal cutting data. Int. J. Mach. Tools Manuf, 1996, 36(9): 1059-1072.
    [29] Becze C E, Elbestawi M A. A chip formation based analytic force model for oblique cutting. Int. J. Mach. Tools Manuf., 2002, 42: 529-538.
    [30] Chiang S T, Tsai C M, Lee A C. Analysis of cutting forces in ball-end milling. J. Mater. Process. Technol., 1995, 47: 231-249.
    [31] Jayaram S, Kapoor S G, DeVor R E. Estimation of the specific cutting pressures for mechanistic cutting force models. Int. J. Math. Tools Manuf., 2001, 41(1): 265-281.
    [32] Zhu R, Kapoor S G, DeVor R E. Mechanistic modeling of the ball end milling process for multi-axis machining of free-form surfaces. ASME J. Manuf. Sci. Eng., 2001, 123(3): 369-379.
    [33] Bailey T, Elbestawi M A, El-Wardany T I, et al. Generic simulation approach for multi-axis machining, Parts 1 and 2. ASME J. Manuf. Sci. Eng., 2002, 124(3): 624-642.
    [34] Wang J J J, Zheng C M. Identification of shearing and ploughing cutting constants from average forces in ball-endmilling. Int. J. Mach. Tools Manuf., 2002, 42: 695-705.
    [35] Wang J J J, Zheng C M. An analytical force model with shearing and ploughing mechanisms for end milling. Int. J. Mach. Tools Manuf., 2002, 42: 761-771.
    [36] Cheng P J, Tsay J T, Lin S C. A study on instantaneous cutting force coefficients in face milling. Int. J. Mach. Tools Manuf., 1997, 37(10): 1393-1408.
    [37] Gradisek J, Kalveram M, Weinert K. Mechanistic identification of specific force coefficients for a general end mill. Int. J. Mach. Tools Manuf., 2003, 44(4): 401-414.
    [38] Azeem A, Feng H Y, Wang L. Simplified and efficient calibration of a mechanistic cutting force model for ball-end milling. Int. J. Mach. Tools Manuf., 2004, 44: 291-298.
    [39] Kim G M, Cho P J, Chu C N. Cutting force prediction of sculptured surface ball-end milling using Z-map. Int. J. Mach. Tools Manuf., 2000, 40: 277-291.
    [40] Bouzakis K D, Aichouh P, Efstathiou K. Determination of the chip geometry, cutting force and roughness in free form surface finishing milling, with ball end tools, Int. J. Mach. Tools Manuf., 2003, 43: 499-514.
    [41] Lazoglu I. Sculpture surface machining: a generalized model of ball-end milling force system, Int. J. Mach. Tools Manuf., 2003, 43: 453-462.
    [42] Sim C, Yang M. The prediction of the cutting force in ball-end milling with a flexible cutter. Int. J. Mach. Tools Manuf., 1993, 33(2): 267-284.
    [43] Feng H Y, Menq C H. A flexible ball-end milling system model for cutting force and machining error prediction. ASME J. Manuf. Sci. Eng., 1996, 118(4): 461-469.
    [44] Yun W S, Cho D W. Accurate 3-D cutting force prediction using cutting condition independent coefficients in endmilling, Int. J. Mach. Tools Manuf., 2001, 41: 463-478.
    [45] 倪其民,李从心,吴光琳,等.考虑刀具变形的球头铣刀铣削力建模与仿真.祝械工程学报,2002,38(3):108-112.
    [46] 阎兵,张大卫,徐安平,等.球头刀铣削过程动力学模型.机械工程学报,2002,38(5):22-26.
    [47] Szecsi T. Cutting force modeling using artificial neural networks. J. Mater. Process. Technol., 1999, 92-93: 344-349.
    [48] Luo T, Lu W, Krishnamurthy K, et al. A neural network approach for force and contour error control in multi-dimensional end milling operations. Int. J. Mach. Tools Manuf, 1998, 38: 1343-1359.
    [49] Lee J H, Kim D E, Lee S J. Statistical analysis, of cutting force ratios for flank-wear monitoring. J. Mater. Process. Technol., 1998, 74: 104-114.
    [50] Ratchev S, Govender E, Nikov S, et al. Force and deflection modelling in milling of low-rigidity complex parts. J. Mater. Process. Technol., 2003, 143-144: 796-801.
    [51] Law K M Y, Geddam A. Error compensation in the end milling of pockets: a methodology. J. Mater. Process. Technol., 2003, 6716: 1-7.
    [52] Kim G M, Kim B H, Chu C N. Estimation of cutter deflection and form error in ball-end milling processes. Int. J. Mach. Tools Manuf, 2003, 43: 917-924.
    [53] Liu X W, Cheng K, Webb D, et al. Prediction of cutting force distribution and its influence on dimensional accuracy in peripheral milling. Int. J. Math. Tools Manuf, 2002, 42: 791-800.
    [54] 郑联语,汪叔淳.薄壁零件数控加工工艺质量改进方法.航空学报,2001,22(5):424-428.
    [55] 武凯,何宁,廖文和,等.薄壁腹板加工变形规律及其变形控制方案的研究.中国机械工程,2004,15(8):670-674.
    [56] Wyatt J E, Berry J T. A new technique for the determination of superficial residual stresses associated with machining and other manufacturing processes. J. Mater. Process. Technol., 2006, 171(1): 132-140.
    [57] El-Axir M H. A method of modeling residual stress distribution in turning for different materials. Int. J. Mach. Tools Manuf, 2002, 42: 1055-1063.
    [58] Sridhar B R, Devananda G, Ramachandra K, et al. Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834. J. Mater. Process. Technol., 2003, 139: 628-634.
    [59] Liu C R, Guo Y B. Finite element analysis of the effect of sequential cuts and tool-chip friction on residual stresses in a machined layer, lnt. J. Mech. Sci., 2000, 42(6): 1069-1086.
    [60] Lin Z C, Lai W L, Lin H Y, et al. The study of ultra-precision machining and residual stress for NiP alloy with different cutting speeds and depth of cut. J. Mater. Process. Technol., 2000, 97: 200-210.
    [61] Shet C, Deng X. Residual stresses and strains in orthogonal metal cutting, Int. J. Mach. Tools Manuf, 2003, 43: 573-587.
    [62] Ee K C, Dillon O W, Jawahir I S. Finite element modeling of residual stresses in machining induced by cutting using a tool with finite edge redius. Int. J. Mech. Sci., 2005, 47: 1611-1628.
    [63] Roy G, Braid M, Shen G. Application of ADINA and hole drilling method to residual stress determination in weldments. Comp & Struc., 2003, 81: 929-935.
    [64] Misra A, Peterson H A. Examination of the ring method for determination of residual stresses. Exp. Mech., 1981, 7: 268-272.
    [65] Prime M B. Residual stress measurement by successive extension of a slot: The crack compliance method. Appl. Mech. Rev., 1999, 52(2): 75-96.
    [66] Treuting R G, Read Jr W T. A mechanical determination of biaxial residual stress in sheet materials. J. Appl. Phys., 1951, 22(2): 130-134.
    [67] Prevey P S. Problems with non-destructive surface X-ray diffraction residual stress measurement. In: Practical Applications of Residual Stress Technology, American Society for Metals, 1991, 47-54.
    [68] Webster G A, Wimpory R C. Non-destructive measurement of residual stress by neutron diffraction. J. Mater. Process. Technol., 2001, 117: 395-399.
    [69] Withers P J, Bhadeshia H K D H. Residual stress, Part one - measurement techniques. Mater. Sci. Technol., 2001, 17: 355-365.
    [70] Bray D E. Current directions in ultrasonic stress measurement techniques. In: 15th World Congress of Non-destructive Testing, Roma 2000.
    [71] 王立涛,柯映林,黄志刚,等.航空结构件铣削残余应力分布规律的研究.航空学报,2003,24(3):286-288.
    [72] 董辉跃,柯映林,孙杰,等.铝合金厚板淬火残余应力的有限元模拟及其对加工变形的影响.航空学报,2004,25(4):429-432.
    [73] Minis I, Yanushevsky R. A new theoretical approach for the prediction of machine tool chatter in milling. ASME J. Eng. Ind., 1993, 115(1): 1-8.
    [74] Merritt H E. Theory of self-excited machine tool chatter: contribution to machine-tool chatter research-1. ASME J. Eng. Ind., 1965, 87(4): 447-454.
    [75] Tarng Y S, Young H T, Lee B Y. Analytical model of chatter vibration in metal cutting. Int. J. Mach. Tools Manuf, 1994, 34(2): 183-197.
    [76] Minis I, Yanushevsky R, Tembo A. Analysis of linear and nonlinear chatter in milling. CIRP Ann., 1990, 39(1): 459-462.
    [77] Lee A C, Liu C S. Analysis of chatter vibration in the end milling process. Int. J. Mach. Tools Manuf, 1991, 31(4): 471-479.
    [78] Elbestawi M A, Ismail F, Du R, et al. Modeling machining dynamics including damping in the tool-workpiece interface. ASME J. Eng. Ind., 1994, 116: 435-439.
    [79] Weck M, Altintas Y, Beer C. CAD assisted chatter-free NC tool path generation in milling. Int. J. Mach. Tools Manuf, 1994, 34(6): 879-891.
    [80] Landers R G, Ulsoy A G. Chatter analysis of machining systems with nonlinear force processes. ASME Int. Mech. Eng. Congress Expo., Atlanta, Georgia, November 17-22, 1996, 58: 183-190.
    [81] Liao Y S, Young Y C. A new on-line spindle speed regulation strategy for chatter control. Int. J. Mach. Tools Manuf, 1996, 36(5): 651-660.
    [82] Tarng Y S, Lee E C. A critical investigation of the phase shift between the inner and outer modulation for the control of machine tool chatter. Int. J. Mach. Tools Manuf, 1997, 37(12): 1661-1672.
    [83] Al-Regib E, Ni J, Lee S H. Programming spindle speed variation for machine tool chatter suppression. Int. J. Mach. Tools Manuf, 2003, 43(12): 1229-1240.
    [84] Xiao M, Karube S, Soutome T, et al. Analysis of chatter suppression in vibration cutting. Int. J. Mach. Tools Manuf, 2002, 42: 1677-1685.
    [85] Jang J L, Tarng Y S. A study of the active vibration control of a cutting tool. J. Mater. Process. Technol., 1999, 95: 78-82.
    [86] Liu C R, Liu T M. Automated chatter suppression by tool geometry control. ASME J. Engg. Ind., 1985, 107: 95-98.
    [87] Stone B J. The effect on the chatter behavior of machine tools of cutters with different helix angles on adjacent teeth. In: Proc 11th MTDR, 1970, 169-180.
    [88] Vanherck P. Increasing milling machine productivity by use of cutter with non-constant cutting-edge pitch. In: Proc Adv MTDR Conf, 1967, 8: 947-960.
    [89] Fu H, DeVor R, Kappor S. The optimal design of tooth spacing in face milling via a dynamic force model. In: Proc 12th NAMRC, 1984: 291-297.
    [90] Usui E, Shirakashi T. Mechanics of machining-from descriptive to predictive theory on the art of cutting metals-75 years later a tribute to Taylor F W. ASME PED-7, 1982, 13-30.
    [91] Komvopoulos K, Erpenbeck A S. Finite element modeling of orthogonal metal cutting. ASME J. Eng. Ind., 1991, 113: 253-267.
    [92] Zhang B, Bagchi A. Finite element simulation of chip formation and comparison with machining experiment. ASME J. Eng. Ind., 1994, 116: 289-296.
    [93] Strenkowski J S, Carroll J T. A finite element model of orthogonal metal cutting. ASME J. Eng. Ind., 1985, 107: 349-354.
    [94] Lin Z C, Lin S Y. A coupled finite element model of thermo-elastic-plastic large deformation for orthogonal cutting. ASME J. Eng. Mater. Tech., 1992, 114: 218-226.
    [95] Watanable K, Umezu Y. Cutting simulation using LS-DYNA3D. Third International LS-DYNA3D Conference, Kyoto Research Park, Kyote, Japan, 1995.
    [96] Zhang L C. On the separation criteria in the simulation of orthogonal metal cutting using the finite element method. J. Mater. Process. Technol., 1999, 89-90: 273-278.
    [97] Huang J M, Black J T. An evaluation of chip separation criteria for the FEM simulation of machining. ASME J. Manuf. Sci. Eng., 1996, 118: 545-554.
    [98] Ozel T, Altan T. Determination of workpiece flow stress and friction at the chip-tool contact for high-speed cutting. Int. J. Mach. Tools Manuf., 2000, 40: 133-152.
    [99] Qi H S, Mills B. Modelling of the dynamic tool-chip interface in metal cutting. J. Mater. Process. Technol, 2003, 6627: 1-7.
    [100]ABAQUS Theory and User's Manuals, Version 6.5. Hibbitt, Karlsson, and Sorenson, Inc., Providence, RI, 2003.
    [101] Ceretti E, Lucchi M, Altan T. FEM simulation of orthogonal cutting: serrated chip formation. J. Mater. Process. Technol, 1999, 95: 17-26.
    [102] Bil H, Engin Kilic S, Erman Tekkaya A. A comparison of orthogonal cutting data from experiments with three different finite element models. Int. J. Mach. Tools Manuf., 2004, 44: 933-944.
    [103] Ng E G, Aspinwall D K. Modelling of hard part machining. J. Mater. Process. Technol, 2002,127:222-229.
    [104] Kalpakjian S. Manufacturing processes for engineering materials. 3rd Edition, Addison-Wesley/Longman, Menlo Park, 1997.
    [105] El-Magd E, Treppmann C. Modelling of mechanical behaviour of materials for high speed cutting process. In: 3rd int'l Conf. on Metal Cutting and High Speed Machining, Poster Session, 2001, 25-28.
    [106] Warnecke G, Oh J D. A new thermo-viscoplastic material model for finite element analysis of the chip formation process. CIRP Ann., 2002, 51(1): 79-82.
    [107] Johnson G J, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th int'l Symp. on Ballistics, 1983, 541-547.
    [108] Maekawa K, Shirakashi T, Usui E. Flow stress of low carbon steel at high temperature and strain rate (part 2) - flow stress under variable temperature and variable strain rate. Bull. Japan Soc. of Precision Engineering, 1983, 17(3): 167-172.
    [109] Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys., 1987, 61(5): 1816-1825.
    [110] Lesuer D R. Experimental investigation of material models for Ti-6Al-4V titanium and 2024-T3 Aluminium. Contract Number: DTFA03-97-Z90007, Lawrence Livermore National Laboratory, 2000.
    [111] Recht R F. Catastrophic thermoplastic shear. ASME J. Appli. Mech., 1964, 86: 189-193.
    [112] Zhang L, Zheng L. Prediction of cutting forces in milling of circular corner profiles. Int. J. Mach. Tools Manuf, 2004, 44: 225-235.
    [113] Wang S M, Liu Y L, Kang Y. An efficient error compensation system for CNC multi-axis machines. Int. J. Mach. Tools Manuf, 2002, 42: 1235-1245.
    [114] Ratchev S, Liu S, Huang W, et al. An advanced FEA based force induced error compensation strategy in milling. Int. J. Mach. Tools Manuf, 2006, 46(5): 542-551.
    [115] Rendler N J, Vigness I. Hole-drilling strain-gage method of measuring residual stresses. Proc. SESA ⅩⅩⅢ, 1966, 2: 577-586.
    [116] Solis E, Peres C R, Jiménez J E, et al. A new analytical-experimental method for the identification of stability lobes in high-speed milling. Int. J. Math. Tools Manuf, 2004, 44: 1591-1597.
    [117] Gradisek J, Kalveram M, Insperger T, et al. On stability prediction for milling. Int. J. Mach. Tools Manuf, 2005, 45: 769-781.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700