基于经验模态分解方法的加工误差溯源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十一世纪是“质量的世纪”,随着企业竞争的不断深化,质量越来越成为企业赖以生存和发展的基础。
     加工精度是机械类产品质量的基石。被加工工件在多种多样的误差源综合影响下,难免会出现加工误差,当加工过程出现异常时,只有很少一部分时间用于进行异常的处理,80%以上的时间都被用来判断异常的来源。传统的以统计方法为基础的加工误差溯源方法需要大量的样本数据,很难适用于目前主流的多品种小批量生产方式。为克服传统方法的不足,本文提出了基于经验模态分解方法的加工误差溯源方法,对加工过程中的误差源进行追溯,以提出合理、准确的调整措施。主要研究内容包括三方面:
     (1)对经验模态分解方法的理论进行了研究,并将其应用到加工误差信号处理当中。分析了端点效应产生的原因,提出了用极值点对称延拓法和灰色误差分离方法联合抑制端点效应的方法。用MATLAB对经验模态分解方法和其端点效应抑制方法进行了编程实现,并对模拟信号进行分解,验证了本文提出的端点效应抑制方法的有效性。
     (2)用经验模态分解方法将工件加工误差进行分解,得到其形状误差曲线,并根据形状误差曲线特征进行误差溯源。提出用工件表面Hilbert谱进行加工误差诊断的方法。通过对机床主轴、导轨和传动链在加工过程中误差的频率特性进行分析,得出了当出现主轴不平衡和不对中等故障、导轨不平衡故障、传动链内部零件故障和切削力故障时Hilbert谱的频谱特征,进而进行加工误差的诊断,并用经验模态分解方法对工件表面加工误差进行了溯源。
     (3)在轴承、主轴刚度分析的基础上,提出了主轴系统力变形的优化计算方法,建立了主轴的力变形误差模型。通过对导轨进行受力分析,建立了切削力和导轨五项几何误差的关系,从而建立了机床导轨力变形误差模型。当工件表面Hilbert谱高频部分出现高能量集中时,说明切削力为主要误差源,提出了用经验模态分解方法和机床误差模型对切削力产生的工件表面实际加工误差进行溯源的方法,并用模拟信号对切削力加工误差溯源的过程进行了模拟,通过对信号进行相关性分析,证明了基于经验模态分解方法和机床误差模型进行加工误差溯源的有效性。最后,对机床主轴的力变形误差模型进行了修正,使其能准确计算切削力静态部分引起的主轴误差。
The21st century is "The Century of Quality"', with the deepening of enterprise competition, the quality is becoming more and more important.
     Machining precision is the base of mechanical product quality. Under the influence of various error sources, there might be machining errors on the parts. When the machining process is abnormal, only a little time will be spent in dealing with the abnormal factors, more than80percent time will be spent in finding them. The traditional error tracing methods based on statistical theory needs plenty of sample data, so it's difficult to be applied to the mainstream way of multi-varieties and small batch production mode. In order to overcome the deficiency of the traditional methods, the processing error tracing method based on Empirical Mode Decomposition (EMD) is proposed in this paper. In order to put forward reasonable and accurate adjustment measures, the error sources from the machine tools must be traced. The main research content includes three aspects:
     (1) The EMD theory is researched and applied to the machining error signal processing. Analyzed the reason of endpoint effect and proposed the method of combining Extreme Point Symmetry Continuation method and Gray Error Separation method to suppress the endpoint effect. The program of EMD and Endpoint Effect suppressing method is developed with MATLAB. The Endpoint Effect suppressing method proposed in this paper is proved to be effective by decomposing simulation signal.
     (2) The form error is gotten by the decomposition of the work piece machining error with EMD, and then the error sources are traced by the characteristics of the form error. The Hilbert spectrum is applied to the processing error diagnosis. The Hilbert spectral characteristics of spindle imbalance and other faults, slide way imbalance, transmission chain errors are analyzed by analyzing the frequency characteristic of spindle, slide way and transmission chain. And then the machining error of work piece is traced by EMD method.
     (3) After a research on the stiffness of bearing and shaft, the paper proposed a simple method to calculate the deformation of the spindle under cutting force, so the spindle model is established. Then the slide way model is established on the basis of carrying out stress analysis for slide way. When the concentrated high energy appears in the high frequency part of Hilbert spectrum, the main error source is cutting force. The paper proposed a method to trace the error caused by cutting force based on EMD and machine tool model. Then a simulation signal is used to simulate the error tracing process, and the method is proved to be effective by correlation analysis. In the end, the spindle model is corrected by EMD method, so that the deformation caused by static force can be calculated correctly.
引文
[1]Kim J, Gershwin S B. Integrating Quality and Productivity Modeling of A Production line [J], OR Spectrum,2005,27:287-314
    [2]张公绪.现代质量管理学[M].北京:中国财政经济出版社,1999
    [3]W Hu, A G Starr. A Systematic Approach to Integrated Fault Diagnosis of Flexible Manufacturing Systems [J]. International Journal of Machine Tools & Manufacture [J],2000(40):1587-1602
    [4]江平宇,刘道玉.数字化加工过程质量控制方法与技术[M].北京:科学出版社,2010
    [5]Spur G.主轴—轴承系统的计算:利用结构修正法确定静态和动态性能[J].国外轴承,1991,(4):6-11.
    [6]Gagnol V, Le T P, Ray P. Modal identification of spindle-tool unit in high-speed machining. Mechanical Systems and Signal Processing,2011,25(7):2388-2398.
    [7]J. Hjink. Analysis of A milling machine [J]. Computed results Versus Experiment Date.1973, (14):58-61
    [8]Jaspreet Singh Dhupia, Bartosz Powalka. Effect of joint nonlinearities on the dynamic performance of a machine tool [J]. Journal of Manufacturing Science and Engineering,2007,129(5):943-950
    [9]Gianantonio Magnani, Paolo Rocco. Mechatronic analysis of a complex transmission chain for performance optimization in a machine tool [J]. Mechatronics,2010,20 (1):85-101
    [10]石世宏,颜竟成.机床主轴回转误差的分析建模与仿真[J].组合机床与自动化加工技术.1994,10:20-24
    [10]陈世平,曹建国.机床主轴回转误差分析[J].机械.1998,25:385-387
    [12]杨海.M115W外圆磨床主轴的动力学仿真分析及其参数反求[D].湖南大学硕士学位论文,2010.
    [13]董献国.机床导轨结合部变形所产生的加工误差[J].陕西机械学院学报.1988,4(3):19-27
    [14]黄玉美.机床导轨结合部优化设计方法与程序[J].陕西机械学院学报.1989, 5(2):125-129
    [15]张广鹏,史文浩,黄玉美.机床导轨结合部的动态特性解析方法及其应用[J].机械工程学报,2002,(10):114-117
    [16]李锦西.机床传动链误差的形成机理及数学模型的探讨[J].设备管理与维修,2002,4:9-11
    [17]Fang C Y, Fan K C. Development of multi-function error calibration system for NC machine tools[J]. In Proc.3rd ROC-ROK Metrology Symposium. 1990,3:163-171
    [18]Chen J S, Yuan J, Ni J, Wu S M. Real-time compensation for time-variant volumetric errors on a machining center, Transactions of the ASME[J]. Journal of Engineering for Industry.1993(115):472-479
    [19]Fan K C, Chen M J, Huang W M. A six-degree-of-freedom measurement system for the motion accuracy of linear stages[J].Int J.Manufact.1998,38(3):155-164
    [20]H F F Castro. A method for evaluating spindle rotation errors of machine tools using a laser interferometer[J], Measurement,2008,41(5):526-537
    [21]沈金华.数控机床误差补偿关键技术及其应用[D].上海交通大学博士学位论文,2008
    [22]S Ibaraki, M Sawada, A Matsybara, and etc., Machine tests to identify kinematic errors on five-axis machine tools[J], Precision Engineering,2010,3(34):387-398
    [23]Bryan J B.A simple method for testing measuring machine and machine tools[J]. Precision Engineering.1982,4(2):61-69
    [24]Ziegert J C,Mize C D.The laser ball bar:a new instrument for machine tool merology [J].Precision Engineering.1994,16(4):259-267
    [25]马锡琪.数控机床运动误差的测试装置——双球规测量仪[J].计量与测试技术.1996(4):3-5
    [26]刘又午,刘丽冰,赵小松等.数控机床误差补偿技术研究[J].中国机械工程.1998,9(12):48-52
    [27]郑学刚.数控机床误差补偿技术若干问题研究[D].南京航空航天大学硕士学位论文,2010
    [28]汪琛琛.基于扫频激光干涉的数控机床几何误差测量系统[D].浙江大学硕士学位论文,2011
    [29]Stao H, O-hori M. Characteristics of Two Dimensional Surface Roughness Taking Self-Exicited Chatter Marks as Objective[J]. Annals of the CIRP. 1981,30(1):481-486
    [30]S M Pandit and Revach S A. Data Dependent Systems Approach to Dynamics of Surface Generation in Turning[J]. Journal of Engineering for Industry. 1981,103:437-445
    [31]M Pandit. Characteristic Shapes and Wavelength Decomposition of Surfaces in Machining[J]. Annals of the CIRP.1981,30(1):487-492
    [32]L Andren, L Hakansson, A Brandt, et al. Identification of Motion of Cutting Tool Vibration in a Continuous Boring Operation-Correlation to Structural Properties[J]. Mechanical Systems and Signal Processing.2004,18:903-927
    [33]C F Cheung, W B Lee. A Multi-Spectrum Analysis of Surface Roughness Formation in Ultra-Precision Turning [J]. Precision Engineering.2002, (24):77-87
    [34]赵佰亭,陈希军,曾庆双.基于小波变换的精密测试转台测角系统的故障诊断[J].中国惯性技术学报.2007,15(5):630-634
    [35]徐宁,侯仰海,杨春林.利用ACF和PSD对微观表面特性研究[J].机械研究与应用.2004,17(5):54-56
    [36]杨智,戴一帆,王贵林.小波在基于功率谱密度特征曲线评价中的应用[J].激光技术.2007,31(6):627-629
    [37]Huang N E. A new method for nonlinear and nonstationary time series analysis: Empirical mode decomposition and Hilbert spectral analysis[C].Proc.Of SPIE.2000.197-209
    [38]李世平,付宇,张进.一种基于EMD的系统误差分离方法[J].中国测试.2011,37(3):9-36
    [39]毕果,郭隐彪,杨峰.基于经验模态分解的精密光学表面中频误差识别方法[J].机械工程学报.2013,49(1):164-170
    [40]李成贵,李宝贵,孙丹,熊昌友.基于HHT变换的超光滑加工表面谱特征分析[J].北京航空航天大学学报,2006,32(11):1341-1344
    [41]李欣,梅德庆,陈子辰.基于经验模态分解和希尔伯特-黄变换的精密孔镗削颤振特征提取[J].光学精密工程,2011,19(6):1291-1297
    [42]黄大吉,赵进平,苏纪兰.希尔伯特-黄变换的端点延拓[J].海洋学报,2003,25(1):1-11
    [43]Zhao J P, Huang D J. Mirror extending and circular spline function for empirical mode decomposition Method [J] Journal of Zhejiang University (SCIENCE),2001, 2:247-252.
    [44]王中宇,孟浩,付继华.表面综合形貌误差的灰色分离方法[J].仪器仪表学报,2008.29(9):1810-1815
    [45]李凯岭,宋强.机械制造技术基础[M].山东科学技术出版社.2005.9
    [46]池龙珠.平面磨削形状误差的分析[J].航空精密制造技术,2006,42(6):23-24
    [47]陈冬菊.大型立式超精密机床系统误差分析与辨识技术研究[D].哈尔滨工业大学博士学位论文,2010
    [48]秦树人.机床传动链误差分析与故障诊断[J].机械,1989.16(5):2-6
    [49]温熙森,陈循,唐丙阳.机械系统动态分析理论及应用[M].国防科技大学出版社.1998.4
    [50]张耀满,王旭东,蔡光起,藤立波.高速机床有限元分析及其动态性能试验[J].组合机床与自动化加工技术,2004.12:15-17
    [51]宋洪庆,吴次南,吴学科,王新锋,汪红.对悬臂梁的挠度近似计算中误差的探讨[J].贵州大学学报(自然科学版),2008,25(1):48-49
    [52]Levina ZM. Calculation of contact deformations in slideways[J]. Machines and Tooling 1965,36:8-17.
    [53]Back N, Burdekin M, Cowley A. Analysis of machine tool joints by the finite element method [C]. Proceedings of the 14th international machine tool design and research conference.1974.
    [54]Ekinci TO, Mayer JRR. Relationships between straightness and angular kinematic errors in machines [J]. International Journal of Machine Tools and Manufacture. 2007,47(12):1997-2004.
    [55]钱学毅,许丹.数控镗床主轴系统动态特性分析[J].广西工学院学报,2009.20(4):26-30
    [56]郭成龙,袁军堂,王维友,夏玲玲,黄俊.滑动导轨结合面动刚度的实验研究 [J].中国机械工程,2012.23(9):1021-1025
    [57]Li Jianbao. An intelligent fault diagnosis of rolling bearing based on EMD and correlation analysis[C]. Proceedings of the 29th Chinese Control Conference. Beijing,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700