自锚式吊拉组合桥非线性计算程序开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨度自锚式吊拉组合桥是一种由多种非线性因素耦合的受力复杂的结构体系,所以几何非线性问题相对突出,但是到目前为止,尚缺少一个简单、成熟、精确的结构分析方法来解决自锚式吊拉组合桥设计和施工中遇到的问题,而桥梁工程界迫切需要解决和精确预测结构受力和变形形态,因此有必要针对该桥型的非线性问题展开精确的研究。本文以拟建的大连跨海大桥为工程背景,围绕大跨度自锚式吊拉组合桥成桥及施工过程几何非线性而展开。主要内容如下:
     (1)采用解析法计算自锚式吊拉组合桥主缆线形方面。基于分段悬链线理论,提出了一套完整的可精确考虑索鞍影响的自锚式吊拉组合桥主缆线形计算的解析方法。提出了空缆状态IP点的概念,使考虑索鞍影响的空缆线形的计算方法与成桥状态线形计算方法一致,简化了空缆线形的计算方法。推导了成桥状态主跨和边跨索力修正的计算公式;给出了有多个索鞍存在时,各个索鞍预偏量的迭代计算方法;编写了解析法程序CAB,该程序数据输入简单、直观。通过算例验证程序具有很好的收敛性,而且计算精度很高,可用于各种形式的悬索桥和吊拉组合桥主缆线形的精确计算。
     (2)自锚式吊拉组合桥几何非线性有限元分析方面。详细介绍了切线刚度矩阵、节点荷载、单元荷载、单元抗力的各种处理方法。给出了用CR列式全量法进行非线性分析的方法,该方法的优点为:①在CR坐标系下能精确扣除单元刚体运动,取消了增量步内为小转动的限制;②基于全量平衡条件而不是增量平衡条件计算单元抗力,避免了误差累积;③使非线性计算结果的精度不再依赖于切线刚度矩阵的精度,省去了推导精确的切线刚度矩阵的庞大的工作量,即节省了计算时间,由保证了收敛速度和计算结果的精度。根据索的基本假定和悬链线平衡方程,推导了两节点悬链线索单元刚度矩阵及节点力的迭代格式。给出了可以完全考虑自锚式吊拉组合桥活载非线性的计算方法。编制了高精度的平面非线性有限元分析程序FBNL。通过大量经典算例验证,证明该方法具有极高的精度和效率,收敛速度较其他方法也要快很多。
     (3)自锚式吊拉组合桥理想成桥状态确定方面。提出了以有限元法与解析法相结合确定自锚式吊拉组合桥理想成桥状态的综合算法。详细介绍了使用本文程序FBNL进行理想成桥状态确定的计算流程。
     (4)自锚式吊拉组合桥施工过程非线性分析方面。将CR列式全量法引入多阶段、多工况的桥梁结构分析,不但精度和效率高,而且使得单元增减、约束增减、拉索张拉等因素的分析更为简便统一。建立了自锚式吊拉组合桥施工过程计算的非线性无应力状态法;给出了计入几何非线性的结构安装构形和无应力构形的计算方法。采用解析法与有限元法相结合的综合算法,编制了桥梁结构施工过程精细分析的非线性有限元程序BCNL,可用来精确模拟自锚式吊拉组合桥各个施工状态,也可用来优化自锚式吊拉组合桥的施工方案,具有很好的计算精度和计算速度。详细介绍了程序BCNL的主要特点和功能。
     (5)基于解析法和非线性有限元分析的CR列式全量法,采用高精度的悬链线索单元,建立精细的几何非线性分析模型,对大连跨海大桥进行成桥状态和施工过程非线性分析。
Self-anchored cable-stayed suspension bridge is a complex structure system with various nonlinear factors coupling, so it's gepmetrically nonlinear problems are relatively outstanding. But up to now, there is no simple, mature and accurate structure analysis method for solving the problems in design and construction of self-anchored cable-stayed suspension bridge, while bridge engineering kingdom urgently need to solve and accurately predict the structure stress and deformation shape. So it is necessary to expand fine study on the nonlinear problems for self-anchored cable-stayed suspension bridge. With the engineering background of Dalian Gulf Bridge to be built, this paper focuses on the geometrically nonlinear analysis in bridge finished state and in bridge construction process of self-anchored cable-stayed suspension bridge. The work mainly covers the following aspects:
     (1) About using analytic method to calculate cable lineshape of self-anchored cable-stayed suspension bridge. Based on segmental catenary theory, a set of complete analytic method for cable-shape finding is put forward, which can take saddle influence into accurate construction. IP concept for cable finish state is presented, which make the calculation method considering the saddle influence of cable finish state is uniform to the method of bridge finished state and make the calculation method for cable lineshape of cable finish state simple. The formulas for cable-force correction of main span and side span on bridge finished state are deduced. The iterative calculation method for pre-displacement of each saddle is provided with several saddles exit. Analytical method program has properties of good convergence and high calculation accuracy, which can be used in cable lineshape accureate calculation of various forms of suspension bridge and cable-stayed suspension bridge.
     (2) About geometrical nonlinear analysis of self-anchored cable-stayed bridges. All kinds of solution method of tangent stiffness matrix, nodal loads, effictive nodal forces and internal forces are introduced. CR total formulation method used in nonlinear analysis is provided, the advantages of which included:①The restriction of small rotations in incremental step is removed by using CR coordinate to eliminate the rigid body motion accurately.②Internal forces are calculated based on the total equilibrium condition but not on incremental equilibrium condition, which avoid accumulative error.③Make the precision of nonlinear calculation do not depend on the precision of tangent stiffness matrix, leave out the huge workload of deducing accurate tangent stiffness matrix, which not only save calculation time but also ensure the convergence rate and the accuracy of calculation result. Based on cable basic assumption and catenary equilibrium equation, the stiffness matrix and interation scheme of nodal force for catenary cable element of two nodes. The calculation method for complete live-load nonlinearity is given. The nonlinear finite element analysis program FBNL with high accuracy is complied. Proved through a lot of classical examples, this method has extremely high accuracy and efficiency, and its convergence rate is faster than the other methods.
     (3) About the determination of ideal finished dead state of self-anchored cable-stayed suspension bridge. The synthesis algorithm by combining analytic method with finite element method to determine the ideal finished dead state of self-anchored cable-stayed suspension bridge is put forward. The calculation flow determing the ideal finished dead state by using the program PBNL is described in detail.
     (4) About the nonlinear analysis of construction process of self-anchored cable-stayed suspension bridge. By introducing CR total formulation into structural analysis of bridges, high precision and efficiency is achieved and analysis of some case become straightforward such as activating or deactivating element, adding or removing support and pretension or retention cable stay. The nonlinear stress-free staus method for construction calculation of self-anchored cable-stayed suspension bridge is established. The calculation methods of erection configuration and stress-free configuration involving the geometrically nonlinearity are given. Based on the synthesis algorithm combing finite element method with analytic method, the nonlinear element program BCNL for finite analysis of construction process is comiled, which can be used to accurately simulate each construction state of self-anchored cable-stayed suspension bridge and can optimize construction scheme. The program has good calculation accuracy and calculation speed. The main features and functions of program BCNL are described in detail.
     (5) Based on CR formulation method and analytic method, adopting catenary cable element, a refined geometrical nonlinear model is established for nonlinear analysis of finished dead state and construction process of Dalian Gulf Bridge.
引文
[1]J.吉姆辛著尼,姚玲森,林长川译.缆索支承桥梁一构思与设计[M].北京:人民交通出版社,1992.
    [2]王伯惠.斜拉-悬索协作体系桥[J].辽宁省交通高等专科学校学报,2000,2(3):1-6.
    [3]黎祖华.超大跨度桥梁形式的探讨[J].国外桥梁,1992(4):13-15.
    [4]万国朝.大贝尔特悬索桥设计[J].国外公路,1995,15(1):11-17.
    [5]潘家英编译.直布罗陀海峡桥渡[J].国外桥梁,1991,69(4):1-8.
    [6]Wisniewski Z. Spanning the seas[J]. Civil Engineering,1987,57(5):68-70.
    [7]王伯惠.斜拉-悬索协作体系桥(续)[J].辽宁省高等专科学院学报,2000,2(4):1-7.
    [8]陈炳坤.土耳其伊兹米特海湾上混合型缆索承重桥的设计—为纪念伟大的预想家弗兰茨·狄辛格而作[J].国外桥梁,1997(3):11-14.
    [9]王伯惠.台湾的斜拉桥[J].东北公路,2000,23(4):56-61.
    [10]蒙云.乌江P-F-C吊拉组合桥设计与施工工艺研究报告[R].重庆交通学院,1998.
    [11]孙淑红.大跨度吊拉组合体系及计算方法研究[D].重庆:重庆交通学院,1999.
    [12]肖汝诚,项海帆.斜拉-悬吊协作体系桥力学特性及其经济性能研究[J].中国公路学报,1999,12(3):43-48.
    [13]肖汝诚,项海帆.拉吊协作桥的施工控制与吊索疲劳控制研究[J].同济大学学报(自然科学版),1999,27(2):234-238.
    [14]肖汝诚,贾丽君,薛二乐.斜拉—悬索协作体系的设计探索[J].土木工程学报,2000,33(5):46-51.
    [15]胡隽.大跨度吊拉组合桥的理论研究[D].北京:北方交通大学,2000.
    [16]曾攀,钟铁毅,闫贵平.大跨径斜拉-悬索协作体系桥动力分析[J].计算力学学报,2002,19(4):472-477.
    [17]Namini A, Albrecht P, Bosch H. Finite element-based flutter analysis of cable-suspended bridges[J]. Journal of Structural Engineering, ASCE,1992,118(6): 1509-1526.
    [18]金增洪编译.悬索和斜拉复合桥梁的位移特征[J].中外公路,2003,23(1):47-50.
    [19]张新军,孙炳楠,陈艾荣等.斜拉—悬吊协作体系桥的颤振稳定性研究[J].土木工程学报,2004,37(7):106-110.
    [20]黄海新.自锚式斜拉—悬吊协作体系桥动力响应研究[D].大连:大连理工大学土木水利学院,2006.
    [21]王会利.自锚式斜拉-悬索协作体系桥结构性能分析与试验研究[D].大连:大连理工大学土木水利学院,2006.
    [22]靳国胜.斜拉—悬索协作体系桥的主要设计参数分析[J].公路,2007(3):80-83.
    [23]杨兴旺.大跨度斜拉桥施工全过程非线性行为研究[D].成都:西南交通大学,2007.
    [24]Ali H M, Abdel-Ghaffar A M. Modeling the nonlinear seismic behavior of cable-stayed bridges with passive control bearings[J]. Computers & structures,1995,54(3):461-492.
    [25]杨琪,李乔.大跨度斜拉桥静力、动力和稳定智能仿真分析[J].中南公路工程,2001,26(3):32-35.
    [26]Ernst H J. Der E-modul von seilen unter beruecksichtigung des durchhanges[J]. Der Bauingenieur,1965,40(2):52-55.
    [27]Gimsing N J. Anchored and partially stayed bridges. Proceeding of the Internations Symposium on Suspension Bridges[C], Lisbon:1966.
    [28]Tung D H, Kudder R J. Analysis of cables as eqivalent two-force members [J]. Engineering Journal, AISC,1968(1):12-19.
    [29]Podolny W J.Scalzi J B. Construction and Design of Cable-Stayed Bridges[M]. New York:John Wiley and Sons,1986.
    [30]洪显诚,刘英.精确的斜拉索等效弹性模量公式的推导.全国桥梁结构学术大会论文集[C],上海:1992.
    [31]Isaac F. Large deformation static and dynamic finite element analysis of extensible cables[J]. Computers & structures,1982,15(3):315-319.
    [32]Desai Y M, Shah A H, Buragohain D N. Geometric nonlinear static analysis of cable supported structures[J]. Computers & structures,1988,29(6):1001-1009.
    [33]杨孟刚,陈政清.两节点曲线索单元精细分析的非线性有限元法[J].工程力学,2003,20(1):42-47.
    [34]Irvine H M. Statics of suspended cables[J].ASCE,1975,101(13):187-205.
    [35]Russell J C, Lardner T J. Statics experiments on an elastic catenary [J]. ASCE,1997, 123 (12):1322-1324.
    [36]李小珍,强士中.悬索桥主缆空缆状态的线形分析[J].重庆交通大学学报,1999,18(3):7-13.
    [37]程进.缆索承重桥梁非线性空气静力稳定性研究[D].上海:同济大学,2000.
    [38]Peyrot A H, Goulois A M. Analysis of cable structures [J]. Computers & structures,1979, 10:805-813.
    [39]杨孟刚,陈政清.基于UL列式的两节点悬链线索元非线性有限元分析[J].土木工程学报,2003,36(8):63-68.
    [40]罗喜恒,肖汝诚,项海帆.基于精确解析解的索单元[J].同济大学学报(自然科学版),2005,33(4):445-450.
    [41]Kim H-K, Lee M-J, Chang S-P. Non-linear shape-finding analysis of a self-anchored suspension bridge[J]. Engineer Structures,2002,24:1547-1559.
    [42]肖汝诚.确定大跨径桥梁结构合理设计状态的理论与方法研究[D].上海:同济大学,1996.
    [43]Gambhir M L, Batchelor B A. Finite element for 3-D pre-stressed cable nets[J]. International journal for Numerical Methods in Engineering,1977(11):1699-1718.
    [44]Ozdemir H. A finite element approach for cable problems[J]. International Journal of Solids and Structures,1979(15):427-437.
    [45]唐建民,何署廷.悬索结构非线性有限元分析[J].河海大学学报,1998,26(6):45-49.
    [46]唐建民.基于欧拉描述的两节点索单元非线性有限元法[J].上海力学,1999,20(1):89-94.
    [47]袁行飞,董石麟.二节点曲线索单元非线性分析[J].工程力学,1999,16(4):59-64.
    [48]O'Brien T. General soulation of suspended cable probl ems [J]. Journal of Structural Division, ASCE,1967,93(1):1-26.
    [49]Peyrot A H, Goulois A M. Analysis of flexible transmission lines[J]. Journal of Structural Division, ASCE,1978,104(5):763-779.
    [50]Jayaraman H B, Knudson W C. A curved element for the analysis of cable structures [J]. Computers & structures,1981,14(3):325-333.
    [51]张震陆,陈本贤.柔索分析的“悬链段”方法研究[J].工程力学,1990,7(4):41-49.
    [52]罗喜恒.复杂悬索桥施工过程精细化分析研究[D].上海:同济大学,2004.
    [53]Goto S. Tangent stiffness equation of flexible cable and some considerations[J]. Proc. of JSCE,1978,270:41-49.
    [54]高征铨,汪嘉铨,陈忆愉.大跨度斜张桥非线性静力分析[M].北京:北京工业大学出版社,1981.
    [55]Abbas S. Nonlinear geometric, material and time dependent analysis of segmentally erected, three dimensional cable stayed bridges[D]. Berkely:University of California,1993.
    [56]Saafan S A. Nonlinear behavior of structure plane frame[J]. ASCE,1963,89(4): 1144-1156.
    [57]Fleming J F. Nonlinear Analysis of Cable-stayed Bridges [J]. Computers & structures, 1978,10(4):621-635.
    [58]陈德伟.斜拉桥的非线性分析及工程控制[D].上海:同济大学,1990.
    [59]陈务军,关富玲,袁行飞等.斜拉桥施工控制分析中线性与非线性影响分析[J].中国公路学报,1998,11(2):52-58.
    [60]杨炳成,孙明.斜拉桥索力的非线性优化倒拆分析[J].中国公路学报,1998,11(3):55-61.
    [61]杨平.斜拉桥三维非线性分析及收敛问题[J].武汉理工大学学报(交通科学与工程版),2003,27(1):33-36.
    [62]Brotton D M. A general computer program for the solution of suspension bridge problems[J]. The Structural Engineer,1966,44(5):161-167.
    [63]朱晞,王克海.几何非线性对大跨度斜拉桥的影响.全国桥梁结构学术大会论文集[C],上海:1992.
    [64]潘家英,吴亮明,高路彬.大跨度斜拉桥活载非线性研究[J].土木工程学报,1993,26(1):31-37.
    [65]李立峰,邵旭东.大跨桥梁几何非线性试验与分析.中国公路学会桥梁与结构工程学会1995年桥梁学术讨论会[C],北京:1995.
    [66]王解军,杨文华,刘光栋.大跨悬索桥的几何非线性分析[J].湖南大学学报,1998,25(3):70-73.
    [67]辛克贵,刘钺强,杨国平.大跨度斜拉桥恒载非线性静力分析[J].清华大学学报(自然科学版),2002,42(6):818-821.
    [68]Bathe K J, Ramm E, Wilson E L. Finite element formulations for large deformation dynamic analysis[J]. International journal for Numerical Methods in Engineering, 1975,9:353-386.
    [69]Bathe K J, Bolourchi S. Large displacement analysis of three-dimensional beam structures[J]. International journal for Numerical Methods in Engineering,1979, 14:961-986.
    [70]刘磊,许克宾.杆系结构非线性分析中的TL列式和UL列式[J].工程力学增刊,2000,1:361-365.
    [71]Hsiao K M, Homg H J,Chen Y R. A corotational procedure that handles large rotations of spatial beam structures[J]. Computers & structures,1987,27(6):769-781.
    [72]Mattiasson K, Bengtsson A, Samuelsson A. On the accuracy and efficiency of unmerical algorithms for geometrically nonlinear structural analysis[M]. Berlin:Springer, 1986.
    [73]Crisfield M A, Moita G F. A unified co-rotational framework for solids, shells and beams[J]. International Journal of Solids and Structures,1996,33:2969-2992.
    [74]梁志广,齐岳,石现峰.杆系结构几何非线性分析方法的讨论[J].石家庄铁道学院学报,1997,10(3):55-59.
    [75]Pankn C C, Brogan F A. An element independent corotational procedure for the treatment of large rotations[J]. Journal of Pressure Vessel Technology,1986, 108:165-174.
    [76]Hsiao K, Lin W Y. Co-rotational finite element formulation for bucking and postbuckling analyses of spatial beams[J]. Computer Methods in Applied Mechanics and Engineering,2000,188(3):567-594.
    [77]Argyris J H, Balmer H, Doltsinis J S. Finite element method—the nature approach[J]. Computer Methods in Applied Mechanics and Engineering,1979,17(18):1-106.
    [78]梁鹏.超大跨度斜拉桥几何非线性及随机模拟分析[D].上海:同济大学,2004.
    [79]潘永仁.悬索桥的几何非线性静力分析及工程控制[D].上海:同济大学,1996.
    [80]大连理工大学桥梁工程研究所.大连市跨海大桥可行性研究报告[M].2005.12.
    [81]肖海波,余亚南,高庆丰.自锚式悬索桥主缆成桥线形分析[J].浙江大学学报(工学版),2004,38(11):1470-1473.
    [82]唐茂林,强士中,沈锐利.悬索桥成桥主缆线形计算的分段悬链线法[J].铁道学报,2003,25(1):87-91.
    [83]唐茂林,沈锐利,强士中.悬索桥施工过程线形计算原理及软件开发.交通土建及结构工程计算机应用学术研讨会论文集[C],成都:2001.
    [84]檀永刚,张哲,黄才良.一种自锚式悬索桥主缆线形的解析法[J].公路交通科技,2007,24(1):88-90.
    [85]李传习.混合梁悬索桥非线性精细计算理论及其应用[D].长沙:湖南大学,2006.
    [86]刘毅,李爱群,郭彤.悬索桥恒载作用下缆索线形及内力的计算方法[J].桥梁建设,2007(3):24-26.
    [87]沈世钊,徐崇宝,赵臣.悬索结构设计[M].北京:中国建筑工业出版社,1997.
    [88]史建三.悬索桥大缆架设计算的索长分析法[J].桥梁建设,1993(4):30-37.
    [89]Irvine H M. Cable structures[M]. New York:Dover,1981.
    [90]罗喜恒.悬索桥主缆线形的鞍座影响[J].公路交通科技,2005,22(8):36-39.
    [91]万田保.悬索桥主鞍座的几何位移特征及与总体布置的关系[J].桥梁建设,2003(3):28-31.
    [92]李建慧,李爱群,袁辉辉等.空间缆索悬索桥主鞍座结构设计与分析[J].公路交通科技,2009,26(8):73-76.
    [93]贾界峰,涂金平,周永涛等.空间索面自锚式悬索桥主索鞍计算方法[J].桥梁建设,2007(5):38-41.
    [94]唐茂林.大跨度悬索桥空间几何非线性分析[D].成都:西南交通大学,2003.
    [95]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发[D].成都:西南交通大学,2003.
    [96]Crisfield M A.A consistent co-rotational formulation for nonlinear, three-dimensional, beam elements [J]. Computer Methods in Applied Mechanics and Engineering,1990,81:131-150.
    [97]Fleming J F. Nonlinear Static Analysis of Cable-stayed Bridge Structures[J]. Computers & structures,1979,10:621-635.
    [98]李传习,夏桂云.大跨度桥梁结构计算理论[M].北京:人民交通出版社,2002.
    [99]李国豪.桥梁结构稳定与振动(修订版)[M].北京:中国铁道出版社,1996.
    [100]Len L J, Yang Y B. Effects of rigid body and stretching on nonlinear analysis with beam elements[J]. Journal of Structural Engineering,1990,116(10):2582-2598.
    [101]Yang Y B, Chou J H, Len L J. Rigid body considerations for non-linear finite element analysis[J]. International journal for Numerical Methods in Engineering,1992,33: 1597-1610.
    [102]Chen W F, Lui E M.Structural stability:theory and implementation[M]. New York: Elsevier Science Publishing,1987.
    [103]吕和祥,朱菊芬,马莉颖.大转动系的几何非线性分析讨论[J].计算结构力学及其应用,1995,12(4):485-489.
    [104]Leu L J, Yang Y B. Effects of rigid body and stretching on nonlinear analysis with beam elements. [J]. Journal of Structural Engineering,1990,116(10):2582-2598.
    [105]Yang Y B, Leu L J. Force recovery procedures in nonlinear analysis [J]. Computers & structures,1991,41 (6):1255-1261.
    [106]潘家英,程庆国.大跨度悬索桥有限位移分析[J].土木工程学报,1996,27(1):1-10.
    [107]Saafan S A. Theoretical analysis of suspension bridges, Proc[J]. ASCE,1966,92(4): 1-11.
    [108]陈政清,曾庆元,颜全胜.空间杆系结构大挠度问题内力分析的UL列式法[J].土木工程学报,1992,25(5):34-44.
    [109]Meek J L, Tan H S. Geometrically nonlinear analysis of space frames by an incremental iterative technique[J]. Computer Methods in Applied Mechanics and Engineering,1984,47:261-282.
    [110]Chen Z Q, Agar T J A. Geometric Nonlinear analysis of flexible spatial beam structures[J]. Computers & structures,1993,49(6):1083-1094.
    [111]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2002.
    [112]潘永仁.悬索桥结构非线性分析理论与方法.[M].北京:人民交通出版社,2004.
    [113]陈仁福.大跨度悬索桥理论[M].成都:西南交通大学出版社,1994.
    [114]铁摩辛柯著,肖敬勋等译.材料力学[M].天津:天津科学技术出版社,1989.
    [115]胡建华.大跨度自锚式悬索桥结构体系及静动力性能研究[D].长沙:湖南大学,2006.
    [116]Mattiasson K. Numerical Results from Large Deflection Beam and Frame Problems Analyzed by Means of Elliptic Integrals[J]. International journal for Numerical Methods in Engineering,1981,17(1):145-153.
    [117]Knudson W C. Static and dynamic analysis of cable net structures[D].Berkely: University of California,1971.
    [118]梁立农,韩大建.索的非线性有限元与调索方法研究[J].工程力学,2007,24(11):146-152.
    [119]颜东煌.斜拉桥合理设计状态确定与施工控制[D].长沙:湖南大学,2001.
    [120]颜东煌,李学文,刘光栋等.用应力平衡法确定斜拉桥主梁的合理成桥状态[J].中国公路学报,2000,13(3):56-60.
    [121]陈德伟,范立础.确定预应力混凝土斜拉桥恒载初始索力的方法[J].同济大学学报(自然科学版),1998,26(2):120-123.
    [122]杨俊.基于影响矩阵的大跨桥梁合理成桥状态与施工控制研究[D].武汉:武汉理工大学,2008.
    [123]Wang P H, Tseng T C, Yang C G. Initial shape of cable-stayed bridges. [J]. Computers & structures,1993,47(1):111-123.
    [124]檀永刚.自锚式悬索桥的力学特性与施工控制研究[D].大连:大连理工大学土木水利学院,2008.
    [125]杜国华,姜林.斜拉桥的合理索力及其施工张拉力[J].桥梁建设,1989,3:11-17.
    [126]范立础,杜国华,马僵中.斜拉桥索力优化及非线性理想倒拆分析[J].重庆交通学院学报,1992,11(01):1-13.
    [127]陆楸,徐有光.斜拉桥最优索力的探讨[J].中国公路学报,1990,3(1):38-48.
    [128]罗喜恒,肖汝诚,项海帆.几何非线性问题求解的改进算法[J].公路交通科技,2005,22(12):75-77.
    [129]王战国,余亚南,王伟等.自锚式悬索桥吊索索力优化的影响矩阵法[J].中国市政工程,2005,3:68-69.
    [130]肖汝诚,项海帆.斜拉桥索力优化的影响矩阵法.第12届全国桥梁学术会议论文集[C],1996.
    [131]肖汝诚,项海帆.斜拉桥索力优化及其工程应用[J].计算力学学报,1998,15(1):118-126.
    [132]李乔,唐亮.悬臂拼装桥梁制造与安装线形的确定.中国土木学会桥梁分会2004年桥梁年会论文集[C],北京:2004.
    [133]葛耀军.分段施工桥梁分析与控制[M].北京:人民交通出版社,2003.
    [134]杨兴旺.大跨度斜拉桥施工全过程非线性行为研究[D].成都:西南交通大学,2007.
    [135]郝超.大跨度钢斜拉桥的施工监控及其目标精度值[J].中国公路学报,2003,16(1):54-57.
    [136]秦顺全.桥梁施工控制—无应力状态法理论与实践[M].北京:人民交通出版社,2007.
    [137]Yiu P K A, Brotton D M. Computation of fabrication dimensions for cable-stayed bridges[J]. The Structure Engineering,1988,66(15):237-243.
    [138]梁鹏.超大跨度斜拉桥的安装构形与无应力构形[J].长安大学学报(自然科学版),2006,26(4):49-53.
    [139]秦顺全.斜拉桥安装计算—倒拆法与无应力状态控制法评述.全国桥梁结构学术大会[C],上海:1992.
    [140]肖汝诚,林平.计算结构力学在桥梁结构施工设计与施工控制中的应用[J].计算结构力学及其应用,1993,10(1):92-98.
    [141]颜东煌,刘光栋.确定斜拉桥合理施工状态的正装迭代法[J].中国公路学报,1999,12(2):59--64.
    [142]徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社,2000.
    [143]陈德伟,郑信光.混凝土斜拉桥的施工控制[J].土木工程学报,1993,26(1):1-11.
    [144]陈德伟,许俊.预应力混凝土斜拉桥施工控制新进展[J].同济大学学报(自然科学版),2001,29(1):99-103.
    [145]Adeli H, Zhang J.Fully nonlinear analysis of composite girder cable-stayed bridges [J]. Computers & structures,1995,54(2):267-277.
    [146]Wang P H, Tang T Y. Study on nonlinear analysis of a highly redundant cable-stayed bridges[J]. Computers & structures,2002,80(2):165-182.
    [147]韩大建,官万轶,颜全胜等.斜拉桥施工过程的预测和控制[J].华南理工大学学报(自然科学版),2001,29(1):14-17.
    [148]辛克贵,冯仲.大跨度斜拉桥的施工非线性倒拆分析[J].工程力学,2004,21(5):31-35.
    [149]李乔,单德山,卜一之等.大跨度桥梁施工控制倒拆分析法的闭合条件.第十七届全国桥梁学术会议论文集(下)[C],2006.
    [150]陈常松,颜东煌,陈政清.超大跨度斜拉桥的自适应无应力构形控制法[J].中外公路,2008,28(1):64-67.
    [151]中交公路规划设计院.公路桥涵设计通用规范(JTG D60-2004)[M].北京:人民交通出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700