轧机非线性振动建模及其动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轧钢机是现代钢铁工业中关键和核心装备之一。近年来,随着现代钢铁工业向着大型化、高荷载、高速化方向发展,轧制过程中非线性因素日益增多,使得轧机在某种轧制条件或轧制过程参数扰动下,诱发不同程度的非线性振动问题。轧机振动问题一直是困扰钢铁企业的重大技术难题,传动系统和机座系统频繁发生的振动不仅影响轧制生产的稳定运行,降低轧制产品的质量及生产效率,剧烈的振动还会导致轧制设备的瞬时破坏,造成巨大的经济损失。因此为了提高轧制生产率和产品质量、降低轧制成本,亟需对轧机非线性振动的特性及其振动形成机制进行深入理论分析。
     本文在国家十一五重大攻关课题“大型冷连轧成套装备关键技术研究与示范应用(批准号:2007BAF02B10)”和河北省自然科学基金“轧机传动系统扭振非线性动力学行为研究(批准号:F2008000882)”的资助下,考虑轧机轧制过程中非线性摩擦阻尼、滞后、分段等非线性因素,采用非线性振动理论研究轧机在非线性因素及外部激励下的动态响应,分析轧机的共振和分岔特性,从系统的内在联系上研究了非线性因素对轧机振动的影响,为进一步揭示轧机非线性振动机理及特性提供理论依据。
     基于广义耗散系统Lagrange原理,分别考虑轧机传动系统在轧制过程中轧辊端受到的非线性摩擦阻尼、传动系统中滞后弹性力等非线性因素,建立了轧机传动系统的非线性扭振动力学模型;考虑轧机传动系统的连续分布质量,建立了轧机传动系统的连续扭振动力学模型,并研究了存在间隙时非线性连续扭振模型。
     根据轧机的结构及受力特点,以机架中轧辊为研究对象,分别考虑机架与轧辊间分段非线性刚度、含三次项非线性刚度以及非线性阻尼影响,建立了辊系的非线性垂直振动动力学模型,为进一步分析轧机非线性动力学特性提供理论模型。
     运用渐近法和平均法求解轧机非线性振动系统在自由振动和受外部周期激励下动态响应的解析近似解。在求解轧机非线性振动系统动态响应解的基础上,构造系统在主共振、超谐共振以及亚谐共振时的幅频特性方程,研究非线性参数对系统共振特性的影响,得到轧机的共振特征及动力学响应规律。
     应用奇点稳定性理论研究轧机非线性自治系统在奇点附近的分岔形态,得到系统在不同参数下拓扑结构的变化情况;采用奇异性理论研究轧机非线性非自治系统的分岔形态,得到系统的转迁集及其在不同转迁集上的拓扑结构。同时,采用数值仿真研究轧机的全局分岔情况,获得轧机出现周期运动、倍周期运动以及混沌运动的条件,为避免或抑制轧机非线性振动奠定了基础。
     通过对承钢1780精轧机中F_1和F_7轧机传动系统扭转振动和机座系统垂直振动数据进行分析,验证本课题提出的连续扭振模型以及非线性垂直振动相关理论的有效性。
The rolling mill is one of the key and core equipment in modern iron and steel industry.In recent years, as the development of modern steel industry towards to large-scale, highload, high-speed direction, the nonlinear factors of rolling process are progressivelyincreasing, which makes various nonlinear vibrations of rolling mill frequently occurredunder perturbation of rolling conditions or parameters in rolling process. The vibration ofrolling mill is always the major technical problems in steel industry. The vibration ofdrive system and frame system not only affects the stability of rolling process, butreduced the quality of product and productivity of production, especially severevibrations will cause the instantaneous destruction of device and lead to huge economiclosses. Therefore, in order to improve rolling productivity and product quality, reducerolling costs, the analysis on the characteristics and mechanism of rolling mill’s nonlinearvibration have been an increasingly important task.
     The project was supported by the National Major Research Topics for 11~(th)-5-year Planof China (Grant No. 2007BAF02B10) and the Hebei Natural Science Foundation (studyon nonlinear dynamic behaviors of torsional vibration system on rolling mill. Grant No.F2008000882). Considering nonlinear factors in rolling process such as nonlinear friction,hysteresis stiffness and piecewise stiffness and so on, the dynamic response of rollingmill under nonlinear factors and external excitation is analyzed by using the theory ofnonlinear vibration, and the resonance characteristics and bifurcation behaviors of rollingmill are studied from inner relationship of the system. It provide the theoretical basis forfurther revealing the mechanism of nonlinear vibration and characteristic of rolling mill.
     Firstly, considering the nonlinear factors such as nonlinear friction of roller surface,hysteresis force of shaft, the nonlinear dynamic models of rolling mill’s torsionalvibration system are modeling by generalized dissipation Lagrange theory; consideringthe continuous distribution of mass and clearance of rolling mill’s drive system, thecontinuous dynamic model of torsional vibration with clearance and no clearance areestablished, respectively.
     Secondly, according to the structural and mechanical characteristics of rolling mill, the nonlinear dynamic models of roller system’s vertical vibration are established whichconsidering the effect of piecewise stiffness, nonlinear stiffness with cubic item andnonlinear friction. Based on these models, nonlinear vibration dynamic behavior ofrolling mill can be analyzed further.
     Thirdly, the approximate solution of dynamic response of nonlinear vibration modelsunder periodic excitation and no excitation are studied by means of KBM method andaverage method, respectively. On the basis of dynamic response, the amplitude frequencyequation of main resonance, ultraharmonics resonance and subharmonics resonance areobtained, and the influence of resonance characteristics under nonlinear parameters areanalyzed. The dynamic characteristic of resonance and response of rolling mill areobtained.
     Fourthly, the stability of nonlinear autonomous system of rolling mill nearby singularpoint are studied by using the stability theory of singular and the topology under differentparameters is obtained. Then the bifurcation characteristics of nonlinear non-autonomoussystem are studied by using singularity theory and the transfer concourse and topology ofbifurcation function are obtained. The global bifurcation is studied by using numericalsimulation and, the conditions of periodic motion, period-doubling motion and chaos areestablished. These theoretical solutions offer base for avoiding or suppressing nonlinearvibration of rolling mill.
     Finally, the torsional vibration of drive system and vertical vibration of frame systemin 1780 rolling mill of Chengde Iron and Steel Company are designed and tested. Thefeasibility and effectiveness of studied were verified about mentioned related theoryabove.
引文
1 Adam Bar, Andrzej Swiatoniowski. Interdependence between the rolling speed and non-linearvibrations of the mill system. Journal of Materials Processing Technolog, 2004, 155:2116-2121
    2 Fujita. K, Saito. T. Unstable vibration of roller mills. Journal of Sound and Vibration, 2006,297(1):329-350
    3 Younes. Mohammad, Shahtout. M, Damir. M. A parameters design approach to improve productquality and equipment performance in hot rolling. Journal of Material Process Technology, 2006,171(1):83-92
    4 Jingcheng Wang, Chunzhao Chen. On the optimization of a rolling force model for a hot stripfinishing line. ISA Transactions, 2007, 46(4):527-531
    5侯福祥,张杰,曹建国,等.带钢冷轧机振动问题的研究进展及评述.钢铁研究学报,2007,19(10):6-10
    6 X. D. Shu, C. M. Li, J. Zhao. Theoretical and experimental study of varying rule of rollingmoment about cross-wedge rolling. Journal of Materials Processing Technology, 2007, 187(12):752-756
    7 Brusa. Eugenio, Lemma. Luca, Benasciutti. D. Vibration analysis of a Sendzimir cold rollingmill and bearing fault detection. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2010, 224(8):1645-1654
    8 Brusa. Eugenio, Lemma. Luca. Numerical and experimental analysis of the dynamic effects incompact cluster mills for cold rolling. Journal of Materials Processing Technology, 2009,209(5):2436-2445
    9 Bar. A, Bar. O. Types of mid-frequency vibrations appearing during the rolling mill operation.Journal of Materials Processing Technology, 2005, 162:461-464
    10时培明.轧机非线性扭振系统动力学行为研究. [燕山大学工学博士论文],2008
    11马维金.轧机自激振动诊断及结构动力学修改. [太原理工大学工学博士论文],2006
    12 Farley. Tom. Rolling mill vibration and its impact on productivity and product quality. LightMetal Age, 2006, 64(6):12-14
    13 L. Hua, Z.J. Zuo, J. Lan and D.S. Qian. Research on following motion rule of guide roller in coldrolling groove ball ring. Journal of Materials Processing Technology, 2007, 187(12):743-746
    14 V. Gagmp;. B.C Bpizgarrpi, P. Ray, et al. Model-based chatter stability prediction for high-speedspindles. Internal Journal of Machine Tools and Manufacture. 2007, 47(7): 1176-1186
    15刘爽,张业宽,刘彬.轧机主传动机电耦联扭振系统的动态分岔研究.机械工程学报,2010,46(3):83-89
    16 Petit.B, Decrequy. D, Jakubowski. A, et al. Global approach of 3rd octave chatter vibrations atArcelor Mardyck cold rolling mill and analysis of technological interactions. Revue demetallurgie cahiers D’Informations Techniques, 2005, 102(7):535-541
    17 Peihua Hu, Huyue Zhao, Ehmann.K.F. Third-octave-mode chatter in rolling. Part 3: Stability of amulti-stand mill. Proceedings of the Institution of Mechanical Engineers, Part B: Journal ofEngineering Manufacture, 2006, 220(8): 1293-1303
    18 Farley. Tom. Mill vibration during cold rolling. MPT Metallugical Plant and TechnologyInternational, 2007, 38(1): 62-66
    19 Yukio Kimura, Yasuhiro Sodani,Nobuo Nishiura,et al. Analysis of chatter in tandem cold rollingmills. ISIJ International, 2003, 43(1):77-84
    20 S.r.petersen. Impact torsional vibration of direct-current hot strip mill drive motors. Iron andSteel Engineer, 1964, 10:105-110
    21 Jewik H, Stratford RP, Thomas CW. Torque amplification and torsional vibration in large milldrives. IEEE Conf Rec 4th Annu Meet Ind & Gen Appl Group, Mich,Oct 12-16 1969,Detroit, MI,USA:261-279
    22 C.W. Thomas. Torque amplification and torsional vibration in large reversing mill drives. AISEYear Book, 1969, 5:55-73
    23 Herman JR AS. Determination of hot strip mill torque amplification factors. Iron and SteelEngineer, 1969, 46(12):49-58
    24 Alexm M Kashay. Torque Amplification and Vibration Investigation Project. Iron and SteelEngineer, 1973, 7:55-70
    25 John Wright. Mill drive system to minimize torque amplification. Iron and Steel Engineer, 1976,7:56-60
    26李友荣. 1000mm初轧机主传动系统的扭转振动.武汉钢铁学院学报, 1992, 15(4):387-397
    27王文元,李真.轧机中冲击扭振的TAF计算.振动与冲击, 1991, 37(1):66-70
    28王章海,王德俊.一种新的冶金机械主传动系统建模方法.冶金设备, 1998, 108(2):1-7
    29 Zhanghai Wang,Dejun Wang. Dynamic characteristics of a rolling mill drive system withbacklash in rolling slippage. Journal of Materials Processing Technology, 2000, 97:69-73
    30王章海,王德俊.轧机主传动系统动态特性计算与分析方法.力学与实践, 1998, 20(2):20-23
    31黄培文,刘蕴予. 1700带钢冷连轧机主传动系统扭振研究.重型机械, 1995, 6:9-15
    32黄培文,张怀亮.求解一般粘性阻尼多自由度系统瞬态响应方法的探讨及其程序设计.振动与冲击, 1990, 9(2):66-73
    33黄培文,魏敏杰,范正心,等.轧钢机主传动系统结构参数的特征灵敏度分析.武汉科技大学学报, 1998, 21(1):44-49
    34黄培文,孙林,陈志勇. 2800四辊轧机主传动系统动态特性研究.重型机械, 1993, 3:33-38
    35李平.攀钢冷轧厂HC轧机扭振研究,冶金设备, 2002, 1:21-23
    36李平,刘晓星. HC轧机主传动扭振系统的建模及其动态性能的研究.昆明理工大学学报,2004, 29(2):31-35
    37 Wang, Jifeng, Cartright, Lionel M. Torsional vibration modeling and dynamic simulation of arolling stand power transmission system. Iron and Steel Engineer, v 76, n 7, Jul, 1999, 30-34
    38 Belli, P,Bittanti, S.; De Marco. On the origin of torsional vibrations in hot rolling mills and apossible remedy. Journal of Dynamic Systems, Measurement and Control, Transactions of theASME, 2004, 126(4):811-823
    39郑万平,廖伯瑜.轧机传动系统动态特性的分析计算原理及其应用.昆明工学院学报, 1987,1:9-24
    40林鹤. 4200厚板轧机扭振动力学研究.北京钢铁学院学报, 1981, 44(6):14-16
    41 James J. Smith, Russell R. Pfahler. Torque monitoring for failure prevent on mill spindles andcouplings. Iron and Steel Engineer, 1976, 11:37-39
    42曾顺华.轧机传动的扭矩放大及动力学参数的优化设计.武汉钢铁学院学报, 1988, 2:36-45
    43黄世霖,田吉芳.机械结构动特性的灵敏度分析与修改.清华大学学报, 1986, 26(4):29-43
    44李鸿光,闻邦椿.具有间隙和振动边界的自激振动系统的非线性振动.振动工程学报, 2000,13(1):122-127
    45 Li Hongguang, Meng Guang. Harmonic component extraction from a chaotic signal based onempirical mode decomposition method. Applied Mathematics and Mechanics, 2006,27(2):221-225
    46李鸿光,闻邦椿.一类具有可运动边界的机械振动系统的混沌行为.东北大学学报, 1999,20(4):376-379
    47陈莹莹.初轧机打滑时自激振动的分析.东北工学院学报, 1979, 2:44-53
    48陈莹莹,陈昌鸣,赵庭家.初轧机粗轧机有间隙时的打滑与自激振动.机械工程学报, 1986,22(1):93-103
    49徐业宜.有间隙系统的自激振动.全国第四届非线性振动会议论文集,沈阳, 1982:256-261
    50徐业宜,刘钊,张芷芬,等.具有间隙和带负阻尼的机械系统自激振动理论及应用.机械工程学报, 1995, 31(5):13-20
    51唐华平,李旭宇,钟掘.轧机扭转自激振动分析.湘潭矿业学院学报, 2002, 17(2): 21-24
    52唐华平,钟掘.单辊驱动轧机水平自激振动定性分析.机械工程学报, 2001, 37(8):55-59
    53范小彬,臧勇,吴迪平,等. CSP热连轧机振动问题.机械工程学报, 2007, 43(8):198-201
    54范小彬,臧勇,吴迪平,等. CSP轧机振动和振纹的试验研究.钢铁, 2006, 41(10): 54-58
    55范小彬,臧勇,王永涛,等. CSP轧机界面摩擦特性及轧机振动实验研究.润滑与密封, 2006,182:92-98
    56孟令启,王建勋,吴浩亮,等.中厚板立辊轧机主传动系统的非线性扭振.华南理工大学学报,2009, 37(2):25-28
    57孟令启,吴浩亮,王建勋,等.立辊轧机主传动系统扭振的非线性分析.中南大学学报, 2009,40(5):1288-1293
    58时培明,刘彬.相对转动非线性动力系统的稳定性与强迫激励下的近似解.物理学报, 2007,56(7):3678-3682
    59时培明,刘彬,刘爽.一类谐波激励相对转动非线性动力系统的稳定性与近似解.物理学报,2008, 57(8):4675-4684
    60时培明,刘彬,侯东晓.一类相对转动非线性动力系统的混沌运动.物理学报, 2008,57(3):1321-1328
    61 Shi Peiming, Liu Bin, Hou Dongxiao. Global Dynamic Characteristic of Nonlinear TorsionalVibration System under Harmonically Excitation. Chinese Journal of Mechanical Engineering,2009, 45(1):132-139
    62时培明,刘彬,蒋金水.耦合相对转动非线性动力系统的稳定性与近似解.物理学报, 2009,58(4):2147-2154
    63 Yarita I, Furukawa K, Seino Y. An Analysis of Chattering in cold rolling of Ultrathin Gauge SteelStrip. Transctions ISIJ, 1978, 19(1):1-10
    64 L. Chefneux, J.P. Fischbach, J. Gouzou. Study and control of chatter in cold rolling. Iron andSteel Engineer, 1980,17-26
    65 Tamiya T, Furui K, Lida H, et al. Analysis of chattering Phenomenon in cold Rolling. In: ISIJ ed.Proceedings of the International Conference on Steel Rolling, Tokyo, 1980,1191-1202
    66 J. Tlusty, G Chandra, S. Critchley, et al. Chatter in cold rolling. CIRP Annals- ManufacturingTechnology. 1982, 31(1):195-199
    67 O. Pawelski, W. Rasp, K. Friedewald. Chattering in cold rolling-Theory of interaction of plasticand elastic deformation. Proceeding of 4th International Steel Rolling Conference: The Scienceand Technology of Flat Rolling, Deauville, France, 1987, 2,E.11.1-E.11.5
    68 Yukio Kimura, Yasuhiro Sodani, Nobuo Nishiura,et al. Analysis of Chatter in Tandem ColdRolling Mills. ISIJ International, 2003, 43(1):77-84
    69 Robert E. Jone, Quan Qi. Chatter Dynamics in Sheet Rolling. International Journal ofMechanical Science, 1994, 36(7):617-630
    70 G.L. Nessler, J.F. Cory. Cause and solution of fifth-octave backup roll chatter on 4-h cold millsand temper-mills. Iron and Steel Engineer, 1989,482-486
    71 R E Johnson, Q Qi. Chatter dynamics in sheet rolling. Int. J. Mech. Sci, 1994, 36(7): 617-630
    72 I.S Yun, W.R.D. Wilson, K.F. Ehmann. Chatter in the strip rolling process, Part I: dynamicmodel of rolling. Trans. ASME: J. Manufact. Sci. Eng. 1998, 120(2):330-336
    73 I.S Yun, W.R.D. Wilson, K.F. Ehmann. Chatter in the strip rolling process, Part II: dynamicrolling experiments. Trans. ASME: J. Manufact. Sci. Eng. 1998, 120(2): 337-342
    74 I.S Yun, W.R.D. Wilson, K.F. Ehmann. Chatter in the strip rolling process, Part III: chattermodel. Trans. ASME: J. Manufact. Sci. Eng,1998, 120(2):343-348
    75 I.S Yun, W.R.D. Wilson, K.F. Ehmann, et al. Review of chatter studies in cold rolling.International Journal of Machine Tools & Manufactrue, 1998, 38(1):1499-1530
    76 I.S Yun, W.R.D. Wilson, K.F. Ehmann, et al. Chatter in rolling. Transactions of the NAMRIXXIII of SME, 1995:13-19
    77 Pei-Hua Hu, Huyue Zhao, Kornel F. Ehmann. Third-octave-mode chatter in rolling. Part 1:chatter model. Proceedings of the Institution of Mechanical Engineer, Part B: Journal ofEngineering Manufacture, 2006, 220(8):1267-1277
    78 Peihua Hu, Huyue Zhao, Ehmann.K.F. Third-octave-mode chatter in rolling. Part 2: Stability of asingle-stand mill. Proceedings of the Institution of Mechanical Engineers, Part B: Journal ofEngineering Manufacture, 2006, 220(8): 1293-1303
    79 Pei-Hua Hu, Kornel F. Ehmann. A dynamic model of the rolling process. Part I: homogeneousmodel. International Journal of Machine Tools & Manufacture, 2000, 40(1):1-19
    80 Pei-Hua Hu, Kornel F. Ehmann. A dynamic model of the rolling process. Part II: inhomogeneousmodel. International Journal of Machine Tools & Manufacture, 2000, 40(1):21-31
    81 Pei-Hua Hu, Kornel F. Ehmann. Fifth octave mode chatter in rolling. Proc. Instn. Mech. Engrs.2001, (1):797-809
    82王长松,贺毓辛.冷轧带材时的振动.钢铁, 1984, 19(2):20-2
    83王长松,孙民生,袁希.宽带钢冷轧机颤振仿真与分析.北京科技大学学报, 1994, 16:57-60
    84王长松,陈志健,陈先霖.冷带轧机颤振现象的分析与仿真.北京科技大学学报, 1991,13(1):15-19
    85邹家祥,徐乐江.冷连轧机系统振动控制.北京:冶金工业出版社,1998
    86刘力,岳海龙,邹家祥.高速冷轧机辊缝摩擦系数影响因素的研究.重型机械, 2001, 2:9-12
    87孙志辉,邹家祥.轧制润滑摩擦对轧机振动的影响.重型机械, 1998, 6:25-27
    88林鹤,邹家祥,岳海龙.轧制液对带钢冷轧机颤振的影响.钢铁, 1996, 31(10):60-79
    89杨其俊,连家创.高速冷带轧机垂直自激振动稳定性分析的数值计算方法.振动与冲击,1996, 15(3):16-22
    90杨其俊,连家创,段振勇.宽带钢冷轧机颤振控制的数值模拟.北京科技大学学报, 1996,98(4):13-17
    91杨其俊,连家创,段振勇.四辊冷轧机减振装置的研究.钢铁, 1996(11):71-75
    92陈勇辉,李巍华,史铁林,等.四辊冷带轧机五倍频再生颤振机理的研究.华中科技大学学报,2003, 31(5):55-57
    93陈勇辉,史铁林,林梅香.四辊冷带轧机再生颤振稳定性的统一理论.中国机械工程, 2003,14(16):1408-1412
    94陈勇辉,刘世元,廖广兰.四辊冷带轧机三倍频颤振机理的研究.机械工程学报, 2003,39(6):118-123
    95陈勇辉,廖广兰,史铁林,等.四辊冷带轧机摩擦型颤振机理的研究.华中科技大学学报, 2003,31(1):105-107
    96陈勇辉,史铁林,杨叔子.四辊冷带轧机非线性参激振动的研究[J].机械工程学报,2003,39(4):56-60
    97张宏,熊诗波,武兵,等.热连轧机垂直振动的建模与仿真.中国机械工程, 2006,17(23):2434-2438
    98 H.Gao, S.C. Ramalingam, G.C. Barber, et al. Analysis of asymmetrical cold rolling with varyingcoefficients of friction. Journal of Materials Processing Technology, 2002, 124(2):178-182
    99 J. Niziol, A. Swiatoniowski. Numerical analysis of the vertical vibrations of rolling mills andtheir negative effect on the sheet quality. Journal of Materials Processing Technology, 2005,162:546-550
    100 M. Saniei, M. Salimi. Development of a mixed film lubrication model in cold rolling. Journal ofMaterials Processing Technology, 2006, 177(1):575-581
    101 Xincai Tan, Xiu-Tian Yan, Neal P.Juster, et al. Dynamic friction model and its application in flatrolling. Journal of Materials Processing Technonogy, 2008, 207(1): 222-234
    102瞿志豪,柴绍宽,叶黔元. 1420冷连轧机的动态特性及颤振分析.振动与冲击, 2006,25(4):25-29
    103 Yildiz. Sansal K, Forbes. J. Fraser, Huang. Biao, et al. Dynamic modelling and simulation of ahot strip finishing mill. Applied Mathematical Modelling, 2009, 33(7):3208-3225
    104 Bar. A, Bar. O. Types of mid-frequency vibrations appearing during the rolling mill operation.Journal of Materials Processing Technology, 2005, 162:461-464
    105 Ma. Weijin, Wang. Junyuan, Li. Fenglan, et al. Experimental modal analysis of roller gap sensorstructure on hot rolling mill. Advanced Materials Research, 2010, 97:4328-4331
    106 A.Swiatoniowski, A.Bar. Parametrical excitement Vibration in tandem mills mathematical modeland its analysis. Journal of Materials Processing Technology, 2003, 134(2):214-224
    107孟令启,徐如松,王建勋,等.中厚板轧机非线性参激的振动.重庆大学学报, 2008,31(4):393-397
    108 Sims R B, Arthur D F. Speed-dependent variables in cold strip rolling. Journal of Iron and SteelInstitute, 1952, 172(3):285-295
    109李韶华,杨绍普.滞后非线性模型的研究进展.动力学与控制学报, 2006, 4(1):8-13.
    110 Davidenkov NN. Hysteretic Property of the Ferrous Metal. J. Tech. Phys, 1939, 8:483-489
    111 Tamsa Kalmar-Nagy, Ashivni Shekhawat. Nonlinear dynamic of oscillators with bilinearhysteresis and sinusoidal excitation. Physica D: Nonlinear Phenomena, 2009,238(17): 1768-1786
    112丁千,陈予恕,叶敏,等.一类非自治滞后-自激系统的主共振与锁模现象.力学学报, 2002,34(1):123-130.
    113 Younghae D, Sang D K, Phil S K. Stability of fixed points placed on the border in the piecewiselinear systems. Chaos, solitons and Fractals. 2008, 38(2):391-399
    114 M.U Akhmet. Almost periodic solutions of differential equations with peicewise constantargument of generalized type. Nonlinear Analysis Hybrid Systems, 2008,2(2):456-467
    115徐灏.机械设计手册(一).北京:机械工业出版社, 2003
    116闻邦椿.非线性振动理论中的解析方法及工程应用.东北大学出版社, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700