自锚式斜拉—悬索协作体系桥合理成桥状态确定与若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自锚式斜拉—悬索协作体系桥作为一种新型的桥梁结构形式,具有结构新颖,受力合理,抗风性能好,施工安全和工程造价低等优点,具备了传统的缆索承重桥所具备的许多优点,并且由于取消了庞大的锚碇,使其在软土地基、强风地区具有突出的优越性,在大跨桥型尤其是跨海大桥中极具竞争力。目前国内外关于自锚式斜拉—悬索协作体系桥的相关研究较少,而该桥型在特定条件下有其独特的优势,因此有必要对该桥型展开系统的研究,本文结合交通部西部交通建设科技项目“斜拉—悬索协作体系桥梁的研究”课题,以拟建的大连跨海大桥为工程背景,对自锚式斜拉—悬索协作体系桥的合理成桥状态计算方法、非线性随机静力响应、非线性动力响应及减震设计优化进行了深入的研究,主要研究内容如下:
     1.由于自锚式斜拉—悬索协作体系桥这种桥型比较特殊,它结合了斜拉桥和自锚式悬索桥的受力特点和结构特征,利用现有的斜拉桥和悬索桥计算合理成桥状态的方法已经无法得到理想的结果,推导了不变形预张力的索力不变原理,在现有方法的基础上,基于几何非线性计算,结合该原理提出了自锚式斜拉—悬索协作体系桥合理成桥状态确定的分步算法。利用相关有限元计算程序及自行编制的辅助程序MCFS可以方便地实现该计算方法。计算实例表明利用该方法计算得到的成桥状态下加劲梁位于设计曲线上并且恒载弯矩较为均匀,分布合理,主塔弯矩较小且塔顶水平变位接近于零,斜拉索索力分布均匀。计算时主缆、斜拉索和吊索均采用弹性悬链线索单元模拟,得到的不变形预张力(或无应力索长)结果可以直接应用于施工阶段的分析计算。
     2.考虑结构构件的材料、几何尺寸等各项参数的随机性,应用响应面法对自锚式斜拉-悬索协作体系桥的加劲梁跨中挠度以及结构的整体稳定性进行了随机静力分析,其中针对加劲梁跨中挠度为研究对象的随机静力分析采用了非线性有限元计算模型,研究了自锚式-斜拉悬索协作体系桥加劲梁跨中挠度和结构整体稳定性在各项基本随机变量变化下的变化规律,结果表明主缆的各项参数为自锚式-斜拉悬索协作体系桥结构整体刚度的主要影响因素:而混凝土加劲梁的各项参数对其稳定性影响最为显著。通过这一研究结果可以使设计者能清楚地了解各种随机因素对自锚式斜拉—悬索协作体系桥结构响应的影响程度,为合理设计提供理论依据。
     3.通过大连跨海大桥的空间有限元动力分析,讨论了漂浮体系的自锚式斜拉—悬索协作体系桥的动力特性:利用修正的反应谱分析了结构在纵向、横向、竖向及三向正交分两组合作用下的地震反应;采用国际常用实录波和人工生成的地震波进行了非线性动力时程分析,取其结果平均值作为非线性动力时程的分析结果。将其结果与反应谱分析结果进行了对比,揭示了对于该类大跨度桥梁进行非线性动力时程分析的必要性,所得结论可以作为该类桥梁的抗震设计参考,地震反应分析的结果表明结构需要进行减、隔震设计。
     4.采用Maxwell模型来模拟阻尼器对结构进行了考虑几何非线性和边界非线性的动力时程分析,从阻尼器参数变化和安装位置的选择出发,对结构在地震荷载作用下的响应展开了具体研究,结果表明:当阻尼器的速度指数α一定时,随着阻尼系数C的增加,阻尼器的耗能能力增加,阻尼器位移、梁端位移以及塔顶位移单调减小,但是在阻尼系数较高的区域,较低的速度指数对应的位移值非常接近且变化平缓;而塔底弯矩的变化则是在阻尼系数达到一定数值以后趋于平缓,且速度指数在一定范围内对应的弯矩值非常接近,甚至影响曲线存在交叉的现象,这说明对于塔底弯矩来说并非速度指数越小减震效果就越好:阻尼器对塔底剪力的影响很小,但从其变化规律来看塔底剪力的变化有一个低谷,在阻尼系数较小时塔底剪力随阻尼系数的增大而减小,但是在低谷之后塔底剪力随阻尼系数的增大而增大。根据这一变化规律确定了合理有效的减震设计方案。采用该减震方案可以在不改变结构静力性能的前提下使加劲梁及主塔纵向位移的地震响应最大值均减小近60%,塔底纵向弯矩地震响应最大值也减小近50%,表明该方案具有显著的减震效果,能够有效的减小地震对结构引起的危害。
As a new type of bridge structure, self-anchored cable-stayed suspension bridge has not only many advantages as new structure, reasonable load, well wind resistant, safety of construction and low cost, but also has the merits just like that of traditional cable-supported bridge has. Owing to huge anchorage being canceled, this type of bridge structure becomes outstanding superior in soft soil base and strong wind areas, and also highly competitive in large-span bridge construction, especially in the cross-sea bridge construction. At present, there is little related research on self-anchored cable-stayed suspension bridge home and abroad. While because this type of bridge structure has its unique advantages in some special conditions, it is necessary to develop systematic research on it. Combining the scientific research project-the study on cable-stayed suspension bridges, which is the transportation construction scientific item for western regions held by the Ministry of Communications, with the engineering background of Dalian Gulf Bridge to be built, this paper focuses on calculating method for the reasonable finished dead state of the self-anchored cable-stayed suspension bridge and damping optimization design. Moreover, nonlinear stochastic static response and nonlinear dynamic response are both investigated systematically in the paper. The research work mainly covers the following aspects:
     1. Self-anchored cable-stayed suspension bridge structure is different from other bridge structures, which combines both stress characteristics and structural characteristics of cable-stayed bridge and self-anchored suspension bridge. According to the present available calculating methods for reasonable finished dead state of cable-stayed bridges and suspension bridges, the reasonable result couldn't be got. Under this condition, unreformed pretension principle of how to keep the internal Force of the cable remaining unchanged is deduced in this paper. Based on this principle and geometric nonlinear calculation, the step-by-step calculating method for the reasonable finished dead state of the self-anchored cable-stayed suspension bridge is proposed on the basis of some available methods. Utilizing related finite element calculating program and the self-developed MCFS program, the step-by-step calculating method could be conveniently carried out. It is shown from the practical calculation examples that the stiffening girder under finished dead state drawn through the step-by-step calculating method lies on the design curve and the dead load bending moment is well distributed. Moreover, the bending Moment of main tower is relatively small, horizontal displacement of pylon top is coming to zero and the cable force is even distributed. During calculation, the main cable and the stay cable as well as the sling are all simulated by using elastic catenaries cable elements. The results drawn from the calculation about undeformed pretension or unstressed cable length can be directly used in analyzing construction phases.
     2. Considered the randomness in material properties, physical dimensions and other parameters of structural elements, the response surface approach is utilized to analyze mid-span deflection in stiffening girder and the whole stability of self-anchored cable-stayed suspension bridge structure. Taken mid-span deflection in stiffening girder as the research object, the nonlinear finite element calculation model is utilized in the stochastic static analysis. The variation of random variables for the mid-span deflection in stiffening girder and the whole stability of self-anchored cable-stayed suspension bridge structure is also analyzed. The result shows that the parameters of main cable have a great effect on the whole rigidity of self-anchored cable-stayed suspension bridge structure. The parameters of the concrete stiffening girder significantly influence the stability of the bridge structure. The above research results will help designers clearly know how different kinds of random parameters affect the response of self-anchored cable-stayed suspension bridge structure and provide reasonable theoretical evidence for bridge designing.
     3. Through the space finite element dynamic analysis for Dalian Gulf Bridge, the dynamic characteristic of self-anchored cable-stayed suspension bridge structure is analyzed. The modified response spectrum is utilized to analyze the structural seismic response in longitudinal, vertical, horizontal and under the effect of the two from the above three. Based on the memoir wave commonly used and the seismic wave artificial generated, the nonlinear dynamic time-history is analyzed. The average of the result is taken as the analysis result for the whole nonlinear dynamic time-history analysis. Compared this analysis result with the result from response spectrum analysis, it is obviously shown that the nonlinear dynamic time-history analysis is of great importance for this kind of bridge structure with huge span. The conclusion drawn from the analysis can provide reference for seismic design of the similar bridge structure and the analysis result shows that shock absorption design and isolation design are both necessary.
     4. Considered both geometric nonlinearity and boundary nonlinearity, the nonlinear dynamic time-history is analyzed by using Maxwell model to simulate damper. Proceeded from parameter variation of damper and option of installation position, the structural response under the effect of seismic load is specifically studied.
     The result from the study shows that energy dissipation of damper will be enhanced with the increase of damping coefficient C when velocity indexes a keeps certain and the displacement of damper, beam end and tower top will decrease monotonously. But in the area where the damper parameter is higher, the displacements for the lower velocity index are very similar and change mildly.
     While the variation for bending moment of pylon bottom remains slight only when damping coefficient comes to a certain value. The bending moments corresponding to velocity index are so similar in certain extend that they may affect the curves cross over each other. This suggests that, for bending moment, it doesn't mean that the smaller the velocity index, the better the damping effect. Damper has little effect on shear of Pylon bottom, but it is shown from the change of shear that there is a declining period. When damping coefficient is smaller, shear of pylon bottom will decrease with the increase of damper coefficient. While except the declining period, shear of Pylon bottom will increase along with the damper coefficient. According to this change, the reasonable and efficient shock absorption design scheme is studied. Based on shock absorption design scheme, the longitudinal displacement of gird and pylon under earthquake action can be reduced nearly 60% on the premise of no change static structural performance. The longitudinal bending Moment of Pylon bottom also can be reduced nearly 50%. All of this proves that shock absorption design scheme has significant effect on damping and it can efficiently minimize the harm caused by earthquake on bridge structure.
引文
[1]杜高明.大跨度自锚式斜拉-悬索协作体系桥结构性能分析[D].大连:大连理工大学,2006.
    [2]王会利.自锚式斜拉-悬索协作体系桥结构性能分析与试验研究[D].大连:大连理工大学,2006.
    [3]胡隽.大跨度吊拉组合索桥的理论研究[D].北京:北方交通大学,2001.
    [4]金增洪.明石海峡大桥简介[J].国外公路,2001(1):13-18.
    [5]胡兆同,刘健新.明石海峡大桥的施工特点[J].国外公路,1997(6):20-23.
    [6]肖汝诚,项海帆.大跨径悬索桥结构分析理论及其专用程序系统的研究[J].中国公路学报,1998(4):42-50.
    [7]吴宏业.自锚式斜拉-悬索协作体系桥静力性能分析[D].大连:大连理工大学,2007.
    [8]王伯惠.斜拉桥结构发展和中国经验[M].北京:人民交通出版社,2004.
    [9]陈政清,颜全胜.大跨度斜拉桥的非线性分析[J].长沙铁道学院学报,1991(3):29-33.
    [10]Brqno D.,Leonardi A.Natural periods of long-span cable-stayed bridges[J].Journal of Bridge Engineering,1997,2(3):105-115.
    [11]周念先.特大跨斜张桥与悬索桥的对比[J].江苏交通工程,1993(1):16-20.
    [12]Agocs Z.,Brodniansky J.Cable structures[J].Journal of Constructional Steel Research,1998,46(1):488-488.
    [13]Walther R.Cable stayed bridges[M]:Thomas Telford Services Ltd,1999.
    [14]Wenzel.H.Cable Stayed Bridge History Design Application[M]:Northern Gate Book Co.Ltd,1998.
    [15]HH Jacobsen,F Rouvillain,M Nielsen.World's longest welded bridge spans[J].Welding in the world,1996,38:91-110.
    [16]王伯惠.斜拉-悬索协作体系桥[J].辽宁省交通高等专科学校学报,2000,2(3):1-6.
    [17]肖汝诚,贾丽君.斜拉-悬吊协作体系的设计探索[J].土木工程学报,2000,33(5):46-51.
    [18]肖汝诚,项海帆.斜拉-悬索协作体系桥力学特性及其经济性能研究[J].中国公路学报,1999,12(3):43-48.
    [19]靳国胜,杨子江,刘炎海.斜拉-悬索协作体系桥的主要设计参数分析[J].公路,2007(3):80-84.
    [20]罗福午.19世纪第一悬索桥-布鲁克林桥[J].建筑技术,2001,32(10):690-691.
    [21]Barsotti R.,Ligar6 S.S.,Royer-Carfagni G.F.The web bridge[J].International Journal of Solids and Structures,2001,38(48-49):8831-8850.
    [22]大连理工大学桥梁工程研究所.大连小平岛圣岛大桥改造工程[R].大连:大连理工大学:2006.
    [23]金增洪.迪辛格(Dischinger)型对超长桥梁的适用性[J].中外公路,2001,21(4):35-39.
    [24]蒙云,孙淑红.吊拉组合桥结构体系研究与决策[C].中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会:厦门,2000.691-697.
    [25]蒙云,刘东.大跨度PFC吊拉组合桥设计研究[J].重庆交通学院学报,1999,18(4):8-12.
    [26]铁道部大桥工程局桥梁科学研究所.斜拉桥[M].北京:科学技术文献出版社,1992.
    [27]赵跃宇,吕建根,易壮鹏.斜拉拱桥的力学性能及经济性能的研究[J].世界桥梁,2005.1:29-32.
    [28]黎祖华.超大跨度桥梁形式的探讨[J].国外桥梁,1992(4):13-15.
    [29]尼尔斯.J.吉姆辛著,姚玲森,林长川译.缆索承重桥梁一构思与设计[M].北京:人民交通出版社,1992.
    [30]潘家英编译.直布罗陀海峡桥渡[J].国外桥梁,1991,69(4):1-8.
    [31]Gimsing N.J.Cable Systems for Bridges[C].Int Assoc for Bridge and Struct Eng;Vienna,Austria:Zurich,1980.727--732.
    [32]Gimsing N.J.Cable supported bridges:Concepts and design[M].Chicherster,Engl:John Wiley&Sons,1983.
    [33]金增洪.介绍吉姆辛的未来长大桥梁概念[J].国外公路,2000,20(3):8-14.
    [34]Gimsing N.J.Cable supported bridges with spatial cable systems[J].Bulletin of the International Association for Shell and Spatial Structures,1992,33(108):33-42.
    [35]陈明宪.斜拉桥的发展与展望[J].中外公路,2006,26(4):76-86.
    [36]方明山,项海帆.超大跨径桥梁结构中的特殊力学问题[J].重庆交通学院学报,1998,17(4):5-9.
    [37]唐寰澄.世界长大桥梁技术和艺术的发展趋向[J].广东公路交通,2000(66):73-79.
    [38]万国朝.大贝尔特悬索桥设计[J].国外公路,1995,15(1):11-17.
    [39]陈炳坤.土耳其伊兹米特海湾上混合型缆索承重桥的设计-为纪念伟大的预想家弗兰茨·迪辛格而作[J].国外桥梁,1997(3):11-14.
    [40]周孟波,刘自明,王邦楣.悬索桥手册[M].北京:人民交通出版社,2006.
    [41]王伯惠.台湾的斜拉桥[J].东北公路,2000,23(4):56-61.
    [42]杨光华,蔡义前.乌江吊拉组合索桥--种新的桥型及施工方法[J].公路,2001(3):1-6.
    [43]孙淑红,蒙云.吊拉组合体系预应力连续加劲梁性能分析[J].重庆交通学院学报,1999,18(4):30-39.
    [44]孙淑红.大跨度吊拉组合体系及计算方法研究[D].重庆:重庆交通学院,1999.
    [45]王伯惠.伶仃洋三大航道桥桥方案探讨(二)伶仃东桥[C].中国公路学会桥梁和结构工程学会1999年桥梁学术讨论会,2000.565-577.
    [46]方世乐,王萍.伶仃东航道桥方案设计与构思[J].广东公路勘察设计,1999(3):36-48.
    [47]张新军,张丹.吊拉组合体系桥的研究进展[J].浙江工业大学学报,2007,35(5):553-558.
    [48]包龙生,杨炳成,于玲.吊拉组合索桥的模型建立与初始索力确定[J].沈阳建筑大学学报:自然科学版,2004,20(4):265-268.
    [49]皮萨连科F.C著.,范钦珊,朱祖成译.材料力学手册[M]:中国建筑工业出版社,1981.
    [50]肖汝诚,项海帆.拉吊协作桥的施工控制与吊索疲劳控制研究[J].同济大学学报:自然科学版,1999,27(2):234-238.
    [51]叶觉明,钟建驰.江阴长江大桥吊索组件动静载试验研究[J].桥梁建设,1999(4):49-53.
    [52]刘高,王秀伟.交叉吊索用于改善悬索桥架设计阶段的颤振稳定性[J].振动与冲击,2000,19(4):18-21.
    [53]大连理工大学桥梁工程研究所.大连市跨海大桥工程预可行性研究报告[R].大连:大连理工大学;2004.
    [54]张永杰.自锚式吊拉组合桥设计及力学性能分析[D].大连:大连理工大学,2006.
    [55]张哲,王会利,黄才良等.自锚式斜拉-悬索协作体系桥梁设计与分析[J].公路,2006(7):44-48.
    [56]大连理工大学桥梁工程研究所.大连庄河建设大桥[R].大连:大连理工大学;2005.
    [57]黄海新,张哲,石磊.自锚式斜拉-悬索协作体系桥动力分析[J].大连理工大学学报,2007,47(4):557-562.
    [58]张凯.自锚式斜拉-悬索协作体系桥地震反应分析[D].大连:大连理工大学,2006.
    [59]黄海新.自锚式斜拉-悬索协作体系桥动力响应研究[D].大连:大连理工大学,2006.
    [60]杨俊.基于影响矩阵的大跨度桥梁合理成桥状态与施工控制研究[D].武汉:武汉理工大学,2008.
    [61]颜东煌,李学文,刘光栋等.混凝土斜拉桥合理成桥状态确定的分步算法[J].中国公路学报,2003,16(1):43-46.
    [62]肖汝诚.确定大跨径桥梁结构合理设计状态的理论与方法研究[D].上海:同济大学,1996.
    [63]王为圣,邱龙,李建伟.斜拉桥成桥合理索力确定方法的研究[J].重庆交通大学学报(自然科学版),2007,26(004):24-28.
    [64]陆楸,徐有光.斜拉桥最优索力的探讨[J].中国公路学报,1990,3(1):38-48.
    [65]李熠,颜东煌,李学文.混凝土斜拉桥合理成桥状态研究[J].重庆交通大学学报:自然科学版,2008,27(6):1017-1019.
    [66]陈德伟,范立础.确定预应力混凝土斜拉桥恒载初始索力的方法[J].同济大学学报:自然科学版,1998,26(2):120-124.
    [67]汪劲丰,施笃铮,徐兴.确定斜拉桥最优恒载索力方法的探索[J].浙江大学学报:工学版,2002,36(2):152-155.
    [68]肖汝诚,项海帆.斜拉桥索力优化的影响矩阵法[J].同济大学学报(自然科学版),1998,26(3):3.
    [69]刘毅,李爱群,缪长青.大跨悬索桥成桥状态初始构形及内力的确定方法[J].特种结构,2006,23(4):60-63.
    [70]谭冬莲.大跨径自锚式悬索桥合理成桥状态的确定方法[J].中国公路学报,2005,18(2):51-55.
    [71]张志国,张庆芳,邹振祝.悬索桥成桥状态计算方法[J].长安大学学报(自然科学版),2006,26(1):59-62.
    [72]唐茂林,强士中,等.悬索桥成桥主缆线形计算的分段悬链线法[J].铁道学报,2003(1):87-91.
    [73]肖汝诚,贾丽君.确定大跨径悬索桥主缆成桥线形的虚拟梁法[J].计算力学学报,1999,16(1):108-114.
    [74]邱文亮.自锚式悬索桥非线性分析与试验研究[D]:大连理工大学,2004.
    [75]颜东煌,张太科,李学文等.荆州大桥南汉通航孔主桥合理成桥状态确定[J].中外公路,2003,23(3):15-18.
    [76]石磊,刘春城,张哲.自锚式悬索桥挠度理论基础微分方程近似推导[J].哈尔滨工业大学学报,2004,36(12):1733-1735.
    [77]秦顺全,桥梁施工控制-无应力状态法理论与实践[M].北京:人民交通出版社,2007.
    [78]钟万勰,刘元芳,纪峥.斜拉桥施工中的张拉控制和索力调整[J].土木工程学报,1992,25(3):9-15.
    [79]杜蓬娟,谭素杰,崔建宇.不变形预张力在斜拉桥设计中的应用[J].大连民族学院学报,2007(5):108-111.
    [80]杜蓬娟,张哲,谭紊杰.斜拉桥合理成桥状态索力确定的优化方法[J].公路交通科技,2005,22(7):82-84.
    [81]张哲.混凝土自锚式悬索桥[M]:北京:人民交通出版社,2005.
    r82]潘永仁,杜国华.悬索桥恒载结构几何形状及内力的精细计算[J].中国公路学报,2000.13(4):33-36.
    [83]Kim H.K.,Lee M.J.,Chang S.P.Determination of hanger installation procedure for a self-anchored suspension bridge[J].Engineering Structures,2006,28(7):959-976.
    [84]Kim K.S.,Lee H.S.Analysis of target configurations under dead loads for cable-supported bridges[J].Computers and Structures,2001,79(29-30):2681-2692.
    [85]魏建东,刘忠玉.拉索的悬链线解答在斜拉桥调索中的应用[J].公路交通科技,2005,22(12):78-80.
    [86]Karoumi R.Some modeling aspects in the nonlinear finite element analysis of cable supported bridges[J].Computers and Structures,1999,71(4):397-412.
    [87]Chang S.P.Geometrically nonlinear buffeting response of a cable-stayed bridge[J].Journal of Engineering Mechanics,2004,130:848.
    [88]Kim H.K.,Lee M.J.,Chang S.P.Non-linear shape-finding analysis of a self-anchored suspension bridge[J].Engineering Structures,2002,24(12):1547-1559.
    [89]Peyrot A.H.,Goulois A.M.Analysis of Cable Structures[J].Computers and Structures,1979,10(5):805-813.
    [90]Chen Changsong,Su Long,Yan Donghuang.Accurate nonlinear analysis of tower and cable in construction of main cable for suspension bridge[J].Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University,2007,42(1):44-48.
    [91]Adeli H.,Zhang J.Fully nonlinear analysis of composite Girder cable-stayed bridges[J].Computers and Structures,1995,54(2):267-277.
    [92]王頠,瞿伟廉.考虑几何非线性的斜拉桥成桥索力计算[J].武汉理工大学学报,2008,30(7):53-56.
    [93]张哲,朱巍志,王会利.自锚式斜拉-悬索协作体系桥的方案设计[J].桥梁建设,2009,2009(4):50-53.
    [94]程进,肖汝诚.斜拉桥结构静力可靠度分析[J].同济大学学报:自然科学版,2004,32(12):1593-1598.
    [95]陈铁冰.斜拉桥几何,材料非线性静力分析及其可靠度评估[D]:上海:同济大学,2000.
    [96]李生勇.自锚式悬索桥结构可靠性研究[D].大连:大连理工大学,2006.
    [97]石磊.混凝土自锚式悬索桥设计理论研究[D].大连:大连理工大学,2003.
    [98]秦权.随机有限元及其进展:Ⅱ.可靠度随机有限元和随机有限元的应用[J].工程力学,1995,12(1):1-9.
    [99]林道锦,秦权.一座现有拱桥面内失稳的可靠度随机有限元分析[J].工程力学,2005,22(6):122-126.
    [100]Bucher C.G.,Bourgund U.A fast and efficient response surface approach for structural reliability problems[J].Structural Safety,1990,7(1):57-66.
    [101]佟晓利,赵国藩.一种与结构可靠度分析相结合的响应面方法儿J].土木工程学报,1996,3:51-57.
    [102]Hopperstad O.S.,Leira B.J.,Remseth S.等.Reliability-based analysis of a stretch-bending process for aluminium extrusions[J].Computers and Structures,1999,71(1):63-75.
    [103]龚尧南,钱纯.非线性随机过程的有限元分析[J].计算结构力学及其应用,1994,11(1):9-18.
    [104]Thimmhardy E.G.,Marsh C.,Chen H.等.Nonlinear analysis of steel and concrete bridge compOnents[J].Computers and Structures,1995,56(2-3):439-459.
    [105]Bu Yi-Zhi,Yang Xing-Wang.Nonlinear analysis of long-span suspended arch bridge[J].Xinan Jiaotong Baxue Xuebao/Journal of Southwest Jiaotong University,2002,37(4):357.
    [106]辛克贵,杨国平.大跨度斜拉桥恒载非线性静力分析[J].清华大学学报:自然科学版,2002,42(6):818-821.
    [107]Ohkoshi Shin-Ichi,Saito Shintaro,Matsuda Tomoyuki 等.Continuous change of second-order nonlinear optical activity in a cyano-bridged coordination polymer[J].Journal of Physical Chemistry C,2008,112(34):13095-13098.
    [108]方志,郭棋武,刘光栋.混凝土斜拉桥施工及运营阶段的非线性影响分析[J].工程力学,2005,22(1):200-205.
    [109]田启贤.悬索桥非线性结构分析[J].桥梁建设,1998(2):63-66.
    [110]赵文婷.空间缆索悬索桥主缆成桥线形的迭代计算[D].武汉:武汉理工大学,2008.
    [111]陈务军,关富玲.斜拉桥施工控制分析中线性与非线性影响分析[J].中国公路学报,1998(2):52-58.
    [112]Song Weon-Keun,Kim Seung-Eock,Ma Sang Soo.Nonlinear analysis of steel cable-stayed bridges[J].Computer-Aided Civil and Infrastructure Engineering,2007,22(5):358-366.
    [113]李德寅.钢悬索桥非线性计算基本理论一[J].国外桥梁,1994(3):204-216.
    [114]徐君兰,向中富.关于悬索桥的重力刚度[J].重庆交通学院学报,2000,19(2):71-74.
    [115]刘钊,刘厚军.悬索桥主缆变形及重力刚度新算法[J].工程力学,2009(6):127-132.
    [116]潘家英,吴亮明,高路彬.大跨度斜拉桥活载非线性研究[J].土木工程学报,1993,26(1):31-37.
    [117]罗喜恒,肖汝诫,项海帆.几何非线性问题求解的改进算法[J].公路交通科技,2005,22(12):75-77.
    [118]唐建民,卓家寿.拉索穹顶结构非线性分析的混合有限元增量法[J].计算力学学报,2000,17(1):81-88.
    [119]程翔云.桩柱式高桥墩几何非线性效应分析的迭代法[J].公路,2003(8):58-62.
    [120]吕明.不同跨度斜拉桥施工过程中几何非线性的影响[D]:西南交通大学,2008.
    [121]秦孟佳,薛建荣.大跨度斜拉桥大位移影响的非线性静力分析[J].华北水利水电学院学报,2007,28(1):43-45.
    [122]顾安邦,向中富.大跨砼斜拉桥的线性与非线性稳定分析[J].重庆交通学院学报,2001,20(11):1-6.
    [123]项海帆,姚玲森.高等桥梁结构理论[M].北京:人民交通出版社,2001.
    [124]李国豪.桥梁结构稳定与振动[M]:中国铁道出版社,1992.
    [125]戴公连,李德建.桥梁结构空间分析设计方法与应用[M]:人民交通出版社,2001.
    [126]Lin Y.K.,Li Q.C.New stochastic theory for bridge stability in turbulent flow[J].Journal of Engineering Mechanics,1993,119(1):113-127.
    [127]Luo Jian-Hui,Chen Zheng-Qing,Liu Guang-Dong.Research on instability mechanism of long-span cable-stayed bridges due to nonlinear aerostatic torsion[J].Gongcheng Lixue/Engineering Mechanics,2007,24(SUPPL 2):145-154.
    [128]刘春城,张哲.自锚式悬索桥的纵向地震反应研究[J].武汉理工大学学报:交通科学与工程版,2002,26(5):607-610.
    [129]范立础.桥梁抗震[M]:上海:同济大学出版社,1997.
    [130]林家浩.随机地震响应的确定性算法[J].地震工程与工程振动,1985,5(1):89-94.
    [131]李国豪.工程结构抗震动力学[M]:上海科学技术出版社,1980.
    [132]克拉夫R.W.,彭津J.,王光远.结构动力学[M]:科学出版社,1981.
    [133]范立础,胡世德.大跨度桥梁抗震设计[M]:人民交通出版社,2001.
    [134]朱位秋.随机振动[M].北京:科学出版社,1992.
    [135]庄表中,陈乃立,高瞻.非线性随机振动理论及应用[M]:杭州:浙江大学出版社,1986.
    [136]林家浩,张亚辉.大跨度结构抗震分析方法及近期进展[J].力学进展,2001,31(3):350-360.
    [137]赵国栋.斜拉桥地震反应分析与减震设计[D]:北京交通大学,2008.
    [138]范立础,王志强.桥梁减隔震设计[M]:人民交通出版社,2001.
    [139]刘健新,胡兆同.桥梁结构减震设计方法研究[J].中国公路学报,2000。13(2):73-75.
    [140]张哲,朱巍志,余报楚等.自锚式斜拉-悬索协作体系桥的动力特性和三维地震反应分析[J].公路,2009(3):1-6.
    [141]余报楚,张哲,朱巍志等.基于反应谱法的金马大桥的三维地震响应分析[J].武汉理工大学学报:交通科学与工程版,2007,31(1):157-160.
    [142]王亚飞.自锚式悬索桥地震响应分析和减震措施研究[D]:大连理工大学,2008.
    [143]交通部公路规划设计院.中华人民共和国交通部标准公路工程抗震设计规范(JTJ004-89).[S].北京:人民交通出版社,1989.
    [144]王君杰,范立础.规范反应谱长周期部分修正方法的探讨[J].土木工程学报,1998,31(6):49-55.
    [145]楼梦麟,雍国柱,李建元.阻尼特性对组合结构地震反应的影响[J].建筑科学与工程学报,2007,24(2):24-29.
    [146]方国强.斜拉桥地震反应及其弹性约束减震研究[D]:大连理工大学。2007.
    [147]赵雅丽.大跨度钢管混凝土拱桥的地震响应分析[D]:浙江大学。2005.
    [148]周锡元,董娣,苏幼坡.非正交阻尼线性振动系统的复振型地震响应叠加分析方法[J].土木工程学报,2003,36(5):30-36.
    [149]朱东生,刘世忠,虞庐松.曲线桥地震反应研究[J].中国公路学报,2002,15(3):42-48.
    [150]赵岩,林家浩.转子系统的平稳/非平稳随机地震响应分析[J].计算力学学报,2002,19(1):7-11.
    [151]Yilmaz O.,Doherty S.M.Seismic data analysis[M]:Society of Exploration Geophysicists Tulsa,2001.
    [152]张亚辉,林家浩.香港青马桥抗震分析[J].应用力学学报,2002,19(3):25-30.
    [153]刘小弟,苏经宇.具有天然地震特征的人工地震波研究[J].工程抗震,1992(3):33-36.
    [154]翟希梅,吴知丰.人工地震波反应谱拟合技术的改进[J].哈尔滨工业大学学报,1995,27(6):130-133.
    [155]黄朝光,彭大文.人工合成地震波的研究[J].福州大学学报:自然科学版,1996,24(4):82-88.
    [156]陈永祁,刘锡荟,龚思礼.拟合标准反应谱的人工地震波[J].建筑结构学报,1981,2(4):34-42.
    [157]张亚辉,张守云,赵岩等.桥梁受移动荷载动力响应的一种精细积分法[J].计算力学学报,2006,23(3):290-294.
    [158]李鸿晶,孙广俊.结构平稳随机地震反应时域分析方法[J].地震工程与工程振动,2005,25(4):31-36.
    [159]储德文,王元丰.精细直接积分法的积分方法选择[J].工程力学,2002,19(6):115-119.
    [160]刘季,孙作玉.结构可变阻尼半主动控制[J].地震工程与工程振动,1997,17(2):92-97.
    [161]段吉安,严珩志.平整机自激振动与轧制界面阻尼特性的关系[J].华中科技大学学报:自然科学版,2001,29(10):62-64.
    [162]黄胜江,潘文,施继余.工程结构抗震设计方法综述[J].云南建筑,2006(6):44-47.
    [163]方海,刘伟庆,王仁贵.自锚式悬索桥结构纵向消能减震设计方法研究[J].地震工程与工程振动,2006,26(3):222-224.
    [164]Jankowski R.,Wilde K.,Fujino Y.Pounding of superstructure segments in isolated elevated bridge during earthquakes[J].Earthquake Engineering & Structural Dynamics,1998,27(5):487-502.
    [165]Delis E.A.,Malla R.B.,Madani M.Energy dissipation devices in bridges using hydraulic dampers[J].ASCE,NEW YORK,NY,(USA),1996,2:1188-1191.
    [166]周云,刘季.新型耗能(阻尼)减震器的开发与研究[J].地震工程与工程振动,1998,18(1):71-79.
    [167]Kwon S.D.,Park K.S.Suppression of bridge flutter using tuned mass dampers based on robust performance design[J].Journal of Wind Engineering & Industrial Aerodynamics,2004,92(11):919-934.
    [168]Ruangrassamee A.,Kawashima K.Control of nonlinear bridge response with pounding effect by variable dampers[J].Engineering Structures,2003,25(5):593-606.
    [169]魏琏,郑久建,韦承基等.论粘滞阻尼减震结构及其抗震设计方法[J].建筑结构,2004,34(10):10-16.
    [170]戴显荣,刘建勋.大跨度斜拉桥减震耗能非线性纵向地震反应分析[J].桥梁建设,2004(6):17-19.
    [171]李建中,袁万城.斜拉桥减震,耗能体系非线性纵向地震反应分析[J].中国公路学报,1998,11(1):71-76.
    [172]周云.粘滞阻尼器减震结构设计[M].武汉:武汉理工大学出版社,2006.
    [173]王志强,胡世德,范立础.东海大桥粘滞阻尼器参数研究[J].中国公路学报,2005,18(3):37-42.
    [174]Soong T.T.,Dargush G.F.Passive energy dissipation systems in structural engineering[M].New York:John Willy&sons Inc,1997.
    [175]熊世树,周正华,王补林.铅芯橡胶隔震支座恢复力模型的分析方法[J].华中科技大学学报:城市科学版,2003,20(2):28-31.
    [176]李忠献,岳福青,周莉.地震时桥梁碰撞分析的等效Kelvin撞击模型[J].工程力学,2008,25(4):128-133.
    [177]李兴田.设有Maxwell阻尼器的连续梁桥的减震效果分析[J].兰州理工大学学报,2007,33(5):123-127.
    [178]宋旭明,戴公连,曾庆元.自锚式悬索桥的粘滞阻尼器减震控制[J].华南理工大学学报:自然科学版,2009(3):104-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700