基于安全域的电力系统有功和无功定价及阻塞管理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力市场化、电网互联和风电并网给电力系统安全经济运行带来了新的挑战,系统运行点越来越接近稳定边界,网络阻塞日趋严重。因此,如何充分利用竞争机制和价格手段的激励作用,使市场成员积极参与维护系统安全性,是值得深入研究的问题。本文利用安全域方法学,对有功和无功定价、阻塞成本的合理分摊、以及风电场对电力系统优化运行的影响进行了研究。
     本文首先提出了一种基于安全域的有功和无功定价模型及相应的求解算法。该模型利用割集功率空间上的静态电压稳定域和注入功率空间上的实用动态安全域表示静态电压稳定约束和暂态稳定约束,以总生产成本最小为目标函数,无功功率生产成本采用机会成本。模型中目标函数和约束表达式中的全部变量都是事故前注入功率空间上的量,不同预想事故的计及均通过约束表达式的系数来反应,因此该模型不仅便于计及预想事故集,而且表达式的形式简明、物理意义清晰。模型采用对有功生产成本和无功生产成本解耦优化—迭代的处理方法,利用边际成本理论和K-T优化条件,对有功和无功分别定价,并推导出了与各种安全约束相关的分量电价。分量电价反映了不同节点的功率注入对每一种安全约束的影响,从而可以通过节点电价激励市场参与者主动与输电网调度合作,实时调整市场参与者发电和用电行为,共同维护系统安全。
     其次,本文建立了基于安全域的阻塞管理模型。模型中同时计及输电线路热稳定极限约束、系统静态电压稳定约束和暂态稳定约束,在各种安全约束中既考虑了当前网络,又考虑了预想事故后的网络,使模型更为合理,所得的含安全约束分量的节点电价隐含了阻塞成本的分摊。针对被动越限约束的出现,提出了一种修正Aumann-Shapley值积分初值的方法,并对其合理性进行了论述。该方法保证了Aumann-Shapley值求取公式中沿主对角线积分的要求,使被动越限的约束不参与阻塞成本分摊,进而实现阻塞成本在各市场成员间的合理分摊。
     最后,本文将基于安全域的电力系统有功定价模型用于拟并网的风电场装机容量和风电场位置的论证中。该模型中通过比例因子来反映负荷随时间的变化,采用日平均发电曲线表示风电场的运行约束。由于模型中计及了线路热稳定约束和暂态稳定约束,从而更准确地研究了风电场装机容量和风电场位置对市场价格、发电成本和安全成本的影响,并按市场价格给出了风电场投资的合理性判据。所得的影响分析结果可辅助电网规划人员和风电开发商对风电上网问题做出科学的评估。
Electricity marketization, power grids interconnection and wind farm connected with power system have brought new challenges. Power systems are operated more and more close to the stability border, and transmission congestion is increasingly severe. Therefore, it is worth researching that how to make full use of the competition mechanism and price means to stimulate market members participating in the maintenance of system security actively. In this dissertation, active and reactive power pricing and reasonable congestion cost allocation, as well as the impact of wind farm on power system optimal operation are studied using security region methodology.
     Firstly, a pricing model of real and reactive power based on security region and the corresponding algorithm are developed. The static voltage stability region in the cut set power space and the practical dynamic security region in the injection power space are used to represent the constraints of voltage stability and transient stability. In the proposed model, the objective function is to minimize total generation costs, and the reactive power production cost is represented as the opportunity cost. All the variables in the objective function and constraints are injection power space values of pre-fault, and different contingency considerations are reflected by the constraint expression coefficients. These make the model not only more convenient to consider the contingency set, but also have concise expressions and clear physical meaning. In the proposed algorithm, a decoupled optimization and iteration method of active power production cost and reactive power production cost is suggested. Using the theory of marginal cost and K-T optimality condition, active power and reactive power are priced respectively, and the component prices related to various security constraints are derived. The components of spot price can reflect the influences of different node power injections on each kind of security constrains, thereby the market participants can be motivated to cooperate with the transmission network dispatchers forwardly by the spot price, to maintain system security through real-time adjustment of their generation and consumption behaviors.
     Secondly, the congestion management model based on security region is presented, which contains transmission line thermal stability constraint and static voltage stability constraint and transient stability constraint simultaneously. The current network configuration and post-fault network configuration are all considered in the security constraints, which makes the model more reasonable. The derived spot prices containing security constraint components imply the allocation of congestion cost. For the emergence of passive over-limit constraints, a method of modifying the integral initial value of Aumann-Shapley value is proposed and its rationality is discussed. This method ensures the integral request along the main diagonal of Aumann-Shapley value formula, and makes the passive over-limit constraints not to participate in sharing the congestion cost, and realizes the reasonable allocation of the congestion cost between market participants.
     Finally, the active power pricing model based on security region is applied to the feasibility study of wind farm location and its capacity. The hourly average daily generation curve is used to express the wind farm operation constraint and the load changes over time are reflected through the scaling factor. Due to the consideration of line thermal stability constraint and transient stability constraint, the impact of installed location and capacity of wind farm on market price, generation cost and security cost can be studied more accurately. The rationality criterion of wind power investment is proposed according to the market price. The results of impact analysis can help power grid planners and wind power developers assess the integration of wind farm into power grid scientifically.
引文
[1] U.S.-Canada Power System Outage Task Force. Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations. Apr., 2004
    [2] (美)曼昆.经济学原理.北京:北京大学出版社, 1999
    [3]于尔铿,韩放,谢开,曹昉.电力市场.北京:中国电力出版社, 1998
    [4]尚金成,黄永皓,夏清等.电力市场理论研究与应用.北京:中国电力出版社, 2002
    [5]王永干,王广庆,孙天祥,等.电力市场概论.北京:中国电力出版社, 2002
    [6]曾鸣.电力市场理论与应用.北京:中国电力出版社, 2000
    [7]杜松怀,温步瀛,蒋传文.电力市场.北京:中国电力出版社, 2004
    [8]刘喜梅,罗国亮.电力市场理论的若干基本概念辨析.华北电力大学学报(社会科学版), 2005, 4(3): 50-55
    [9]周浩,文福拴,张富强,等.电力市场风险管理.杭州:浙江大学出版社, 200
    [10] Felix F. Wu, Pravin Varaiya. Coordinated multilateral trades for electric power networks- theory and implementation. Electrical Power and Energy Systems, 1999, 21(2): 75-102
    [11] J. Carpentier. Contributionálétude du dispatchingéconomique. Bullletin de la SociétéFrancaise des Electricients, 1962, 3: 431- 447
    [12] Xie K, Song Y H, Stonham J, et al. Decomposition model and interior point methods for optimal spot pricing of electricity in deregulation environments. IEEE Transactions on Power Systems, 2000, 5(1): 39-50
    [13] Wang X, Song Y H, Lu Q. Primal-dual interior-point linear programming optimal power flow for real time congestion management. Proceedings IEEE /PES Winter Meeting, Singapore, 2000, 3:1643-1649
    [14]林曦,顾锦汶.用最优潮流计算电力转送费用.电力系统自动化, 2000, 24 (7): 11-15
    [15] D. W. Wells. Method for economic secure loading of a power system. Proceedings of IEEE, 1968, 115(8):606-614
    [16] C. M. Shen, M. A. Laughton. Power system load scheduling with security constraints using dual linear programming. Proceedings of IEEE, 1970, 117(1): 2117-2127
    [17] Momoh J A, DiasL G, Guo S X, et al. Economic operation and planning of mult-area interconnected power systems. IEEE Transactions on Power Systems, 1995, 10(2): 1044-1053.
    [18] Mamandur K R C, Chenoweth R D. Optimal control of reactive power flow for improvements in voltage profiles and for real power loss minimization. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(7): 3185-3194
    [19] Iyer S R, Ramachandran K, Hariharan S. Optimal reactive power allocation for improved system performance. IEEE Transactions on Power Apparatus and Systems, 1984, PAS-103(6): 1509-1515
    [20] H. W. Dommel, W. F. Tinney. Optimal power flow solutions. IEEE Transactions on Power Apparatus and Systems, 1968, 87(10): 1866-1876
    [21] Albert M. Sasson. Combined use of the parallel and Fletcher-Powell non-linear programming methods for optimal load flows. IEEE Transactions on Power Apparatus and Systems, 1969, PAS-88(10): 1530-1537
    [22] Albert M. Sasson. Decomposition technique applied to the non-linear programming load flow method. IEEE Transactions on Power Apparatus and Systems, 1970, PAS-89(1): 78-82
    [23] R. Divi, H. K. Kesavan. A shifted penalty function approach for optimal power flow. IEEE Transactions on Power Apparatus and Systems, 1982, PAS-101(9): 3502-3512
    [24] Wu F F, Gross G F, et al. A Two stage approach to solving large scale optimal power flows. Proceedings of Power Industry Computer Applicatioms Conference. Cleveland: 1979
    [25] G. F. Reid, L. Hasdorf. Economic dispatch using quadratic programming. IEEE Transactions on Power Apparatus and Systems, 1973, PAS-92(6): 2015-2023
    [26] R. C. Burchett, H. H. Happ, D. R. Vierath. Quadratically convergent optimal power flow. IEEE Transactions on Power Apparatus and Systems, 1984, 103(11): 3267-3276
    [27] Sun D I, Ashley B, Brewer B, et al. Optimal power flow by Newton Approach. IEEE Transactions on Power Apparatus and Systems, 1984, 103(10): 2864-2875
    [28]赵晋泉,侯志俭,吴际舜.改进最优潮流牛顿算法有效性的对策研究.中国电机工程学报, 1999, 19(12): 70-75
    [29] Maria G A, Findlay J A. A Newton optimal power flow program for Ontario hydro EMS. IEEE Transactions on Power Systems, 1987, 2(3): 576-584
    [30]诸骏伟,金心明,朱正明.一种快速收敛的牛顿法最优潮流.南大学学报, 1992, 22(4): 1-7
    [31] Crisan O, Mohtadi M A. Eficient identification of binding inequality constraints for the optimal power flow Newton approch. IEE Proceedings-C, 1992, 139(5): 365-370
    [32]严正,陈雪青,相年德.优化潮流牛顿算法的研究及应用.清华大学学报, 1989, 29(1): 69-79
    [33] Sun D I, Hu Tsang-I, Lin Gen-Sheng, et al. Experiences with implementingoptimal power flow for reactive scheduling in the Taiwan power system. IEEE Transactions on Power Systems, 1988, 3(3): 1193-1200
    [34]郝玉国,张靖,于尔铿,刘广一.最优潮流的实用化研究.中国电机工程学报, 1996, 15 (5): 388- 391
    [35] Karmarkar N. A new polynomial-time algorithm for linear programming. Cambinatorica. 1984, 4 : 373-395
    [36]郝玉国,刘广一,于尔铿.一种基于Karmarkar内点法的最优潮流算法.中国电机工程学报, 1996, 16 (6): 409-412
    [37] Yu-Chi wu, Atif S. Debs, Roy E. Marsten. A direct nonlinear predictor-corrector primal-dual interior-point algorithm for optimal power flows. IEEE Transactions on Power Systems, 1994, 9(2): 876-883
    [38] Torres G L, Quintana V H. An interior point method for nonlinear optimal power flow using voltage rectangular coordinates. IEEE Transactions on Power Systems, 1998, 13(4): 1211-1218
    [39] G. L. Torres, V. H. Quintana. On a nonlinear multiple-centrality-corrections interior-point method for optimal power flows. IEEE Transactions on Power Systems, 2001, 16(2): 222-228
    [40] Quintana V H, Torres G L, Medina-Palomo. Interior-point methods and their applications to power systems: a classification of publications and software codes. IEEE Transactions on Power Systems, 2000, 15(1): 170-176
    [41]韩祯祥,文福栓.模拟进化优化方法简介.电力系统自动化, 1995, 19(12): 5-10
    [42]文福栓,韩祯祥.模拟进化优化方法在电力系统中的应用综述(连载).电力系统自动化, 1996, 20(1)(2)(3)
    [43]石立宝,徐国禹.基于进化规划的最优潮流计算.电网技术, 1998, 2(2): 23-25
    [44]石立宝,徐国禹.自适应进化规划及其在多目标最优潮流中的应用(Ⅰ)—自适应进化规划算法.电力系统自动化, 2000, 24(7):23-25
    [45]石立宝,徐国禹.自适应进化规划及其在多目标最优潮流中的应用(Ⅱ)—自适应进化规划算法.电力系统自动化, 2000, 24(8): 33-36
    [46] K. Y. Lee, F. F. Yang. Optimal reactive power planning using evolutionary algorithms: a comparative study for evolutionary programming, evolutionary strategy, genetic algorithm, and linear programming. IEEE Transactions on Power Systems, 1998, 13(1): 101-108
    [47] L. L. Lai, J. T. Ma, R. Yokoyama, et al. Improved genetic algorithms for optimal power flow under both normal and contingent operation state. Electrical Power & Energy Systems, 1997, 19(5): 287-292
    [48] Bakirtzis A G, Biskas P N, Zoumas C E, et al. Optimal power flow by enhanced genetic algorithm. IEEE Transactions on Power Systems, 2002, 17(2): 229-236
    [49]孙勇智,韦巍.基于人工免疫算法的电力系统最优潮流计算.电力系统自动化, 2002, 26(12): 30-34
    [50] Ramesh V C, Li Xuan. A fuzzy multiobjective approach to contingency constrained OPF. IEEE Transactions on Power Systems, 1997, 12(3): 1348-1354
    [51]刘明波,段晓军,赵艳.多目标最优潮流问题的模糊建模及内点解法.电力系统自动化, 1999, 23(14): 37-40
    [52] Xiaohong G, Liu W.-H. E, Papalexopoulos A D. Application of a fuzzy set method in an optimal power flow. Electric Power Systems Research, 1995, 34(1):11-18
    [53] Hsiao Ying-tung, Liu Chun-chang, Chiang Hsiao-dong, et al. A new approach for optimal var sources planning in large scale electric power systems. IEEE Transactions on Power Systems, 1993, 8(3): 988-996
    [54]丁晓莺,王锡凡.最优潮流在电力市场环境下的最新发展.电力系统自动化, 2002, 26(13): 1-7
    [55] F. C. Schweppe, M. C. Caramanis, R D Tabors, et al. Spot pricing of electricity. MA: Kluwer Academic Publisher, Boston, 1988
    [56] D. Ray, F. Alvarado. Use of an engineering model for economic analysis in the electricity utility industry. In: Presented at the Advanced Workshop on Regulation and Public Utility Economics, 1988
    [57] M. L. Baughman, S. N. Siddiqi. Real time pricing of reactive power: theory and case study results. IEEE Transactions on Power Systems, 1991, 6 (1): 23-29
    [58]李平,宋燕敏,曹荣章.电力市场中的阻塞调度.电力系统自动化, 2001, 25(13): 11-12
    [59]刘科研,盛万兴,李运华.基于分布式最优潮流算法的跨区输电阻塞管理研究.中国电机工程学报, 2007, 27(19): 56-61
    [60] Transmission Transfer Capability Task Force. Available transmission capability definitions and determination. North American Electric Reliablity Council. Princeton, New Jersey, 1996
    [61] D. Hur, J. K. Park, B. H. Kim, et al. Security constrained optimal power flow for the evaluation of transmission capability on Korea electric power system. IEEE Power Engineering Society Summer Meeting. Vancouver, 2001, 2: 1133-1138
    [62] Y. J. Dai, J. D. McCalley, V. Vittal. Simplification, expansion and enhancement of direct interior point algorithm for power system maximum loadability. IEEE Transactions on Power Systems, 2000, 15(3): 1014-1021
    [63]汪峰,白晓民.基于最优潮流方法的传输容量计算研究.中国电机工程学报, 2002, 22(11): 35-40
    [64]刁勤华, Mohamed Shaaban,倪以信.运用连续二次规划法计算区间极限传输容量.电力系统自动化, 2000, 24(24): 5-8
    [65] G. Hamoud. Assessment of available transfer capability of transmission system. IEEE Transactions on Power Systems, 2000, 15 (1): 27-32
    [66] X. Luo, A. D. Patton, C. Singh. Real power transfer capability calculations usingmulti-layer feed-forward neural networks. IEEE Transactions on Power Systems, 2000, 15 (2): 903-908
    [67] S. N. Siddiqi, M. L. Baughman. Reliability differentiated pricing of spinning reserve. IEEE Transactions on Power Systems, 1993, 10(3): 1211-1218
    [68] M. L. Baughman, S. N. Siddiqi, J. M. Zarnikau. Advanced pricing in electrical system. PartⅠ: theory. IEEE Transactions on Power Systems, 1997, 12 (1): 489-495
    [69] M. L. Baughman, S. N. Siddiqi, J. M. Zarnikau. Advanced pricing in electrical system. PartⅡ: implications. IEEE Transactions on Power Systems, 1997, 12(1): 496-502
    [70] Y. Dai, Y. X. Ni, Shen C M, et al. A study of reactive power marginal price in electricity market. Electric Power Systems Research. 2001, 57(1): 41-48
    [71] Scala M L, Trovato M, Antonelli C. On-line dynamic preventive control: an algorithm for transient security dispatch. IEEE Transactions on Power Systems, 1998, 13(2): 601-610
    [72] Gan D, Thomas R J, Zimmerman R D. Stability-constrained optimal power flow. IEEE Transactions on Power systems, 2000, 15 (2): 535-540
    [73] Chen L, Tada Y, Okamoto H, et al. Optimal operation solutions of power systems with transient stability constraints. IEEE Transactions on Circuits and Systems, 2001, 48(3): 327-339
    [74]袁越,久保川淳司,佐佐木博司,等.基于内点法的含暂态稳定约束的最优潮流计算.电力系统自动化, 2002, 26(13): 14-19
    [75] F. C. Schweppe, R. D. Tabors, J. L. Kirtley, et al. Homeo static utility control. IEEE Transactions on Power Apparatus and Systems, 1980, 99(3): 1151-1163
    [76] M. C. Caramanis, R. E. Bohn, F. C. Schweppe. Optimal spot pricing: practice and theory. Transactions on Power Apparatus and Systems, 1982, 101(9): 3234-3245
    [77] M. C. Caramanis, R. E. Bohn, F. C. Schweppe. The costs of wheeling and optimal wheeling rates. IEEE Transactions on Power Systems, 1986, 1(1): 63-73
    [78] A. A. El-Keib, X. Ma. Calculating of short-run marginal costs of active and reactive power production. IEEE Transactions Power Systems,1996,11(1): 226-232
    [79]常宝波,孙红波,周家启,等.新的实时有功无功电价模型和方法.电网技术, 1997, 21(10): 62-65
    [80] Kai Xie, Yong-Hua Song, J.Stonham, et al. Decomposition model and interior point methods for optimal spot pricing of electricity in deregulation environments. IEEE Transactions on Power Systems, 2000, 15 (1): 39-50
    [81] J. Y. Choi, S. H. Rim, J. K. Park. Optimal real time pricing of real and reactive powers. IEEE Transactions on Power Systems, 1998, 13(4): 1226-1231
    [82] N. H. Dandachi, M. J. Rawlines, O Alsac, et al. OPF of reactive pricing studies onthe NGC system. IEEE Transactions Power Systems,1996,11(1): 226-232
    [83] D. Chattopadhyay, K. Bhattacharya, Jyoti Parikh. Optimal reactive power planning and its spot-pricing: an integrated approach. IEEE Transactions on Power Systems, 1995, 10(4): 2014-2020
    [84] Y. Dai, Y. X. Ni, F. S. Wen, et al. Analysis of reactive power pricing under deregulation. IEEE Power Engineering Society Summer Meeting, 2000, 4: 2162-2167
    [85] S. Hao, A. Papalexopoulos. Reactive power pricing and management. IEEE Transactions on Power System, 1997, 12 (1): 95-102
    [86]于辉,赵冬梅.单边开放电力市场下的无功电价研究.电网技术, 2004, 28 (14): 62-67
    [87]舒立平,陈允平.一种新的无功电力定价方法.电网技术, 2004, 28 (5): 59-63
    [88]周明华,徐敏.基于最优潮流的实时电价及其算法的研究.继电器, 2006, 34 (21): 63-67
    [89] R. D. Christie, B. F. Wollenberg, I. Wangensteen. Transmission management in the deregulated environment. Proceeding of the IEEE, 2000, 88(2): 170-195
    [90]张永平,焦连伟,陈寿孙,等.电力市场阻塞管理综述.电网技术, 2003, 27 (8): 1-9
    [91]彭慧敏,薛禹胜,许剑冰,等.关于输电阻塞及其管理的述评.电力系统自动化, 2007, 31(13): 101-107
    [92] Leotard J-P, Ilic M. On the objectives of transmission pricing under open access. Power Engineering Society 1999 Winter Meeting, IEEE, 1999, 1: 476-483
    [93] T. W. Gedra. On transmission congestion and pricing. IEEE Transactions on Power Systems, 1999, 14(1): 241-248
    [94]柯进,管霖.电力市场下的输电阻塞管理技术.电力系统自动化, 2002 , 26 (14): 20-25
    [95] Doll M, Verstege J F. Congestion management in a deregulated environment using corrective measures. IEEE Power Engineering Society Winter Meeting, 2001, 2: 393-398
    [96] Srivastava S C, Kumar P. Optimal power dispatch in deregulated market considering congestion management. In: Proceedings of the International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. 2000, 53-59
    [97]王锡凡,王秀丽,陈皓勇.电力市场基础.西安:西安交通大学出版社, 2003. 141-144
    [98] Singh S N, David A K. Congestion management by optimizing FACTS device location. In: Proceedings of the International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. 2000, 23-28
    [99]王秀丽,甘志,雷兵,等.输电阻塞管理的灵敏度分析模型及算法.电力系统自动化, 2002, 26 (4) : 10-13
    [100]方印,丁晓莺,王锡凡.基于市场报价的阻塞管理模型及内点法实现.电力系统自动化, 2001, 25(13): 6-10
    [101]张粒子,郑华,程瑜,等.区域电力市场电价机制.北京:中国电力出版社, 2004
    [102]任震,吴杰康,吴重民.在竞争的电力市场下的传输阻塞管理与定价.电力系统自动化, 2001, 25(2): 19-22
    [103] William H. Contract networks for electric power transmission. Journal of Regulatory Economics, 1992, 4(9): 211-242
    [104] Singh H, Hao S, Papalexopoulos A. Transmission congestion management in competitive electricity markets. IEEE Transactions on Power Systems, 1998, 13(2): 672-680
    [105] David A K. Dispatch methodologies for open access transmission systems. IEEE Transactions on Power Systems, 1998, 13 (1): 46-53
    [106] Marannino P, Vailati R, Zanellini F, et al. OPF tools for optimal pricing and congestion management in a two sided auction market structure. Power Tech Proceedings, 2001 IEEE Porto, 2001, Page (s): 7 pp. vol.1
    [107] Lei J S, Deng Y M, Zhang R C. Congestion management for generation scheduling in a deregulated Chinese power system. IEEE Power Engineering Society Winter Meeting. 2001, 3: 1262-1265
    [108]王成山,魏炜.联营体模式下考虑静态电压稳定性约束的阻塞管理.电工技术学报, 2005, 20 (3): 53-57
    [109] Kabouris J, Vourans C D, Efstathiou S, et a1. Voltage security considerations in an open power market. Proceedings of the 2000 International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2000, London, UK. Piscataway , IEEE, 2000: 278-283
    [110] Fang R S, David A K. Optimal dispatch under transmission contracts. IEEE Transactions on Power Systems, 1999, 14(2): 732-737
    [111] Losi A. Trade curtailment schemes for the security control of the transmission network in a deregulated environment. International Journal of Electrical Power & Energy Systems, 2002, 24(1): 9-17
    [112]张永平,焦连伟,倪以信,等.区域电力市场双边交易阻塞管理实用计算方法,电力系统自动化, 2003, 27(14): 18-53
    [113]王成山,魏炜.双边交易模式下考虑静态电压安全性的阻塞管理.中国电机工程学, 2004, 24 (10): 45-49
    [114] Galiana F D, Ilic M. A mathematical framework for the analysis and management of power transactions under open access. IEEE Transactions on Power Systems, 1998, 13 (2): 681-687
    [115] Galiana F D, Kockar I, Franco P C. Combined pool/bilateral dispatch—Part I:performance of trading strategies. IEEE Transactions on Power Systems, 2002, 17 (11): 92-99
    [116] Fang R S, David A K. Transmission congestion management in an electricity market. IEEE Transactions on Power Systems, 1999, 14 (3): 877-883
    [117] Gomes M H, Saraiva J T. Congestion management by maximizing the overall satisfaction degree of all participants in the market. Power Tech Proceedings, IEEE Porto, 2001, vol.1
    [118] Gribik P R, Angelidis G A, Kovacs R R. Transmission access and pricing with multiple separate energy forward markets. IEEE Transactions on Power Systems, 1999, 14(3): 865-876
    [119] Lo E O, Xie Kai. A congestion management formulation with inter-temporal constraints. Power Industry Computer Applications, 2001. 22nd IEEE Power Engineering Society International Conference on Innovative Computing for Power-Electric Energy Meets the Market. 2001: 348-354
    [120] Lo E O, Xie Kai, Senthil J, et al. Adjustable inter-SC trade modeling in congestion management. Power Engineering Society Summer Meeting, IEEE, 2001, 2: 1063-1069
    [121] X. Wang, Y. H. Song, Q. Lu. Primal-dual interior point linear programming optimal power flow for real-time congestion management. Power Engineering Society Winter Meeting, IEEE, 2000, 3: 1643-1649
    [122] Wang Xing, Song Yonghua, Lu Qiang. A coordinated real-time optimal dispatch method for unbundled electricity market. IEEE Transactions on Power Systems, 2002, 17(2): 482-490
    [123] Fu Jian, Lamont J W. A combined framework for service identification and congestion management. IEEE Transactions on Power Systems, 2001, 16(1): 56-61
    [124] Baran M E, Banunarayanan V, Garren K E. Equitable allocation of congestion relief cost to transactions. IEEE Transactions on Power Systems, 2000, 15(2): 579-585
    [125]杨洪明,段献忠,何仰赞.阻塞费用的计算和分摊方法.电力自动化设备, 2002, 22(5): 10-12
    [126]李帆,朱敏.英国电力市场及输电系统简介.电力系统自动化, 1999, 23 (2): 33-40
    [127] Oren S S, Spiller P T, Varaiya P, et al. Nodal prices and transmission rights: a critical appraisal. The Electricity Journal, 1995, 8 (3): 24-35
    [128] Wu F, Varaiya P, Oren S. Folk theorems on transmission access: proofs and counterexamples. Journal of Regulatory Economics, 1996, 10(1): 5-23
    [129] Christie R D, Wollenberg B F, Wangensteen I. Transmission management in the deregulated environment. Proceedings of the IEEE, 2000, 88(2): 170-195
    [130] Rosenberg A E. Congestion pricing or monopoly pricing. The Electricity Journal, 2000, 13(3): 33-41
    [131] Rau N S. Transmission loss and congestion cost allocation-an approach based on responsibility. IEEE Transactions on Power Systems, 2000, 15 (4): 1401-1409
    [132] Baran M E, Banunarryanan V, Garren K E. A transaction assessment method for allocation of t ransmission services. IEEE Transactions on Power Systems, 1999, 14 (3): 920-928
    [133]肖宏飞,李卫东.双边交易模式下阻塞成本的快速分配.电网技术, 2005, 29 (6): 37-42
    [134] Rudnick H, Palma R, Femandez J E. Marginal pricing and supplement cost allocation in transmission open access. IEEE Transactions on Power Systems, 1995, 10(2): 1125-1132
    [135]苏健,彭建春,江辉,等.基于交流潮流的双边交易模式下阻塞费用分摊.继电器, 2007, 35(5): 41-44
    [136] Yang J, Anderson M D. Tracing the flow of power in transmission networks for use-of-transmission-system charges and congestion management. IEEE Power Engineering Society 1999 Winter Meeting, 1999, 1: 399-405
    [137]肖宏飞,李卫东,魏立明.基于阻塞支路潮流变化量的阻塞成本分摊.中国电机工程学报, 2004, 24 (2): 83-87
    [138]肖宏飞,李卫东.基于潮流变化量的解析阻塞成本分配.中国电机工程学报, 2007, 27(4): 72-78
    [139] Jung H S, Hur D, Park J K. Congestion cost allocation method in a pool model. IEE Proceedings: Generation, Transmission and Distribution, 2003, 150 (5): 604-610
    [140]杨洪明,段献忠.双边交易模式下基于Aumann-Shapley值的阻塞成本分摊方法研究.中国电机工程学报, 2002, 22 (11): 592-63
    [141]陈晓明.电力市场中投标策略纳什均衡计算及安全成本分摊.天津大学博士论文, 2005
    [142] Bakirtzis A G. Aumann-Shapley transmission congestion pricing. IEEE Power Engineering Review, 2001, 21(3): 67-69
    [143]许林,余贻鑫,刘怀东,等.双侧输电阻塞管理与拟Aumann-Shapley定价.中国电机工程学报, 2002, 22 (11): 56-60
    [144] Singhs N, David A K. Congestion management in dynamic security constrained open power markets. Computers and Electrical Engineering, 2003, 29 (5): 575-588
    [145] Ma J, Song Y H, Lu Q, et al. Framework for dynamic congestion management in open power markets. IEE Proceedings: Generation, Transmission and Distribution, 2002, 149(2): 157-164
    [146]郭磊,房大中.实时电力市场中暂态稳定约束下的阻塞管理模型研究.电网技术, 2006, 30(3): 36-40
    [147]姜成,房大中.基于贡献因子理论的动态阻塞管理费用分摊方法.电网技术, 2007, 31(14): 31-35
    [148]赵群,王永泉,李辉.世界风力发电现状与发展趋势.机电工程, 2006, 23(12): 16-18
    [149]张丽香.可再生能源发电的发展现状及前景.电力学报, 2008, 23(1): 29-33
    [150]黎发贵.中国风能概况.水电勘测设计, 2005( 4)
    [151]计崔.大型风力发电场并网接入运行问题综述.上海电力, 2008, 1: 59-63
    [152]雷亚洲,王伟胜,印永华,等.一种静态安全约束下确定电力系统风电准入功率极限的优化方法.中国电机工程学报, 2001, 21(6): 25-28
    [153]迟永宁,刘燕华,王伟胜,等.风电接入对电力系统的影响.电网技术, 2007, 31(3): 77-81
    [154] Chai Chompoo-inwai, Lee Wei-Jen, Fuangfoo P, et al. System impact study for the interconnection of wind generation and utility system. IEEE Transactions on Industry Applications, 2005, 41(1): 163-168
    [155] Piwko R, Miller N, Sanchez-Gasca J, et al. Integrating large wind farms into weak power grids with long transmission lines. Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES
    [156] Ha L T, Saha T K. Investigation of power loss and voltage stability limits for large wind farm connections to a subtransmission network. IEEE Power Engineering Society General Meeting, 2004, 2: 2251-2256
    [157] Salman K, Anita L J. Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator. IEEE Transactions on Power Systems, 2003, 18 (2): 793-802
    [158] Nunes M V A, Lopes J A P, Zurn H H, et al. Influence of the variable-speed wind generator in transient stability margin of the conventional generators integrated in electrical grids. IEEE Transactions on Energy Conversion, 2004, 19(4): 692-701
    [159]迟永宁,王伟胜,刘艳华,等.大型风电场对电力系统暂态稳定性的影响.电力系统自动化, 2006, 30(15): 10-14
    [160] Tamura J, Yamazaki T, Ueno M, et al. Transient stability simulation of power system including wind generator by PSCAD/EMTDC. Proceeding of IEEE Porto Power Tech Conference, 2001 4: 538-542
    [161] Senjyu T, Sueyoshi N. Stability analysis of wind power generating system. Proceedings of the Power Conversion, 2002: 1441-1446
    [162]吴俊岭,周双喜,孙剑锋,等.并网风力发电场的最大注入功率分析.电网技术, 2004, 28(20): 28-32
    [163] Papadopoulos M. Simulation and analysis of small and medium size power systems containing wind turbine. IEEE Transactions on Power Systems, 1991, 6(4): 1453-1458
    [164]郑国强,鲍海,陈树勇.基于近似线性规划的风电场穿透功率极限优化的改进算法.中国电机工程学报, 2004, 24(10): 68-71
    [165]雷亚洲,王伟胜,印永华,等.基于机会约束规划的风电穿透功率极限计算.中国电机工程学报, 2002, 22(5): 32-35
    [166]申洪,梁军,戴慧殊.基于电力系统暂态稳定分析的风电穿透功率极限计算.电网技术, 2002, 26(8): 8-11
    [167] Vachtsevanos G J, Kalaitzakis K C. Penetration of wind electric conversion systems into the utility grid. IEEE Transactions on Power Apparatus and Systems, 1985, 104(7): 1677-1683
    [168] Chen Z, Spooner E. Grid power quality with variable speed wind turbines. IEEE Transactions on Energy Conversion, 2001, 16(2): 148-154
    [169] Saad-Saoud Z, Jenkins N. Models for predicting flicker induced by large wind turbines. IEEE Transactions on Energy Conversion, 1999, l4(3): 743-748
    [170] Feijoo A E, Cidoas J. Wind speed simulation in wind farms for steady-state security assessment of electrical power systems. IEEE Transactions on Energy Conversion, 1999, 14(4): 1582-1588
    [171]王海超,周双喜,鲁宗相,等.含风电场的电力系统潮流计算的联合迭代方法及应用.电网技术, 2005, 29(18): 59-62
    [172]吴义纯,丁明,张立军.含风电场的电力系统潮流计算.中国电机工程学报, 2005, 25(4): 36-39
    [173]雷亚洲,王伟胜,印永华,等.含风电场电力系统的有功优化潮流.电网技术, 2002, 26(6): 18- 21
    [174]陈海焱,陈金富,段献忠.含风电场电力系统经济调度的模糊建模及优化算法.电力系统自动化, 2006, 30(2): 22- 26
    [175]陈金富,陈海焱,段献忠.含大型风电场的电力系统多时段动态优化潮流.中国电机程学报, 2006, 26(3): 31- 35
    [176]顾承红,艾芊.基于改进内点法的含风电场的系统最优潮流计算.中国电力, 2007, 40(1): 89-93
    [177] El-Flouly T H M, Zeineldin H H, El-Saadany E F, et al. Impact of wind generation control strategies, penetration level and installation location on electricity prices. IET Renewable Power Generation, 2008, 2 (3): 162-169
    [178]余贻鑫.电力系统安全域方法研究述评.天津大学学报, 2008, 41(6): 635-646
    [179] Yu Yixin, Feng Fei. Active power steady-state security region of power system. Science in China: Series A, 1990, 33(12): 1488-1500
    [180] Yu Yixin, Huang Chunhua, Feng Fei. A study on reactive power steady-state security regions. Hemisphere Publishing Corporation, Electric Machine and Power Systems, 1989, 17: 155-166
    [181] Yu Yixin, Jia Hongjie, Wang Chengshan. Chaotic Phenomena and small signal stability region of electrical power systems. Sciene in China: Series E, 2001,44(2): 187-199
    [182] J. Zaborszky, V. Venkatasubramanian, H. Schattler, et al. Application of taxonomy theory (Volume 1): computation a Hopf Bifurcation-related segment of the feasibility boundary. EPRI Final Report, TR-105492-V1
    [183]余贻鑫,李鹏,孙强,等.电力系统潮流可行域边界拓扑性质及边界算法.电力系统自动化, 2006, 30(10): 6-11
    [184] F. F. Wu, Y. K. Tsai, Y. X. Yu. Probabilistic steady-state and dynamic security assessment. IEEE Transactions Power Systems, 1988, 3(1): 1-9
    [185]余贻鑫,李鹏,贾宏杰.基于混合法的潮流可行域边界计算.电力系统自动化, 2004, 28 (13): 18-25
    [186] Yu Yixin. Security region of bulk power system. Proceedings of Power Conference 2002, Kun Ming, China, 2002: 13-17
    [187]余贻鑫,栾文鹏.利用拟合技术决定实用电力系统动态安全域.中国电机工程学报, 1990, 10(增): 22-28
    [188] Yu Yixin. Direct Method for Voltage and Transient Stability Regions (Final Report, Product ID 1010553). EPRI, Palo Alto, CA: 2005
    [189]余贻鑫,董存,等.复功率注入空间中电力系统的实用动态安全域.天津大学学报, 2006, 39(2): 129-134
    [190]曾沅,余贻鑫,贾宏杰.基于有功功率小扰动分析的动态安全域求解.电力系统自动化, 2006, 30 (20): 5-9
    [191]闵亮,余贻鑫, Stephen T Lee,等.失稳模态识别方法及其在动态安全域中的应用.电力系统自动化, 2004, 28(11): 28-32
    [192] Yu Yixin, Zeng Yuan, Feng Fei. Differential topological characteristics of the DSR on injection space of electrical power system. Science in China: Series E, 2002, 32(4): 503-509
    [193]余贻鑫.安全域的方法学及实用性结果.天津大学学报, 2003, 36(5): 525-528
    [194]王成山,许晓菲,余贻鑫,等.基于割集功率空间上的静态电压稳定域局部可视化方法.中国电机工程学报, 2004, 24(9): 13-18
    [195]李慧玲,余贻鑫,韩琪,等.割集功率空间上静态电压稳定域的实用边界.电力系统自动化, 2005, 29(4): 18-23
    [196]赵金利,余贻鑫,贾宏杰,等.电力系统割集空间静态电压稳定域的可视化及实现.电力系统自动化, 2005, 29(5): 56-61
    [197]哈比比,余贻鑫,孙刚.基于安全域的电力系统有功及无功优化.中国电机工程学报, 2006, 26(12): 1-10
    [198]刘辉,余贻鑫.基于实用动态安全域的电力系统安全性综合控制.中国电机工程学报, 2005, 25(20): 31-36
    [199] Yu Yixin, Liu Hui, Zeng Yuan. A novel optimization method of transient stability emergency control based on practical dynamic security region (PDSR) of power systems. Science in China: Series E, 2004, 47(3): 376-384
    [200]余贻鑫,赵义术,刘辉.基于实用动态安全域的电力系统安全成本优化.中国电机工程学报, 2004, 24(6): 13-18
    [201] Yu Yixin. Security region based security pricing. The Proceedings of ICEE-2005 (International Conference on Electrical Engineering 2005) PN1-02 ICEE-C0800, Kunming, China
    [202] Gross G, Tao S, Bompard E, et al. Unbundled reactive support service: Key characteristics and dominant cost component. IEEE Transactions on Power Systems, 2002, 17(2): 283-289
    [203]徐楠,文福栓,余志伟.电力市场环境下的无功问题.电力系统自动化, 2006, 30(11): 93-104
    [204]李卫东,孙辉,武亚光.潮流追踪迭代算法.中国电机工程学报, 2001, 21(11): 38-42
    [205]刘路登,张粒子,杨静.电力市场联营-双边交易模式下的阻塞费用分摊. 2006, 30(5): 50-53
    [206] [加]马丁J.奥斯本, [美]阿里尔·鲁宾斯坦.博弈论教程,北京:中国社会科学出版社, 2000
    [207]王建华.对策论.北京:清华大学出版社, 1986
    [208] Myerson Roger B. Game theory: analysis of conflict. Harvard University Press, 1991
    [209]迈尔森(于寅,费剑平译).博弈论:矛盾冲突分析.北京:中国经济出版社, 2001: 347-353
    [210] Bowden G J, Barker P R, Shestopal V O, et el. The Weibull distribution function and wind power statistics. Wind Engineering, 1983, 7: 85-98
    [211] Piwko R, Osborn D, Geamlich R, et al. Wind energy delivery issues. IEEE Power and Energy Magazine, 2005, 3(6): 47-56
    [212] Zeineldin H H, Bhattacharya K, El-Saadany E F, et al. Impact of intentional islanding of distributed generation on electricity market prices. IEE Proceedings Generation, Transmission and Distribution, 2006, 153(2): 147-154
    [213] Yu Yixin, Wang Yanjun. Security region based real and reactive power pricing of power systems. Science in China, Series E: Technological Sciences, 2008, 51(12): 2095-2111
    [214]赵国杰.工程经济学.天津:天津大学出版社, 2004
    [215] http://www.ewea.org/fileadmin/ewea_documents/documents/publications/Wind Energy, The Facts

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700