微网控制及运行特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微网是一种可将各种小型分布式电源组合起来为当地负荷提供电能的低压电网。它具有联网和孤岛两种运行模式,能提高负荷侧的供电可靠性。微网中的分布式电源常采用电力电子接口连接到微网,这增加了分布式电源接口控制的灵活性,减少了系统的惯性。微网缺少惯性和运行模式的多样性增加了系统在维持能量平衡及频率稳定等方面的控制难度。如何连接多种不同类型的分布式电源形成微网是微网必须解决的问题。本文研究了分布式电源通过逆变器接口形成微网的微网控制策略,并在该控制策略下分析了微网的运行特性。主要工作如下:
     首先,总结和比较了现存的两种微网控制策略及每种控制策略中的主要控制方法的优劣性。
     其次,分析了微网中多个分布式电源采用P-f和Q-V下垂控制时,微网的频率稳定性。在考虑微网中分布式电源的分散性以及不同分布式电源容量不同等特点下,论述了当微网中多个不同容量的分布式电源采用下垂控制时,下垂增益的确定方法。分析了微网联网运行时的频率稳定性,并且比较了它与大型同步发电机在功角稳定性方面的异同。采用小信号状态空间模型研究了多个分布式电源同时参与系统频率调节时孤岛运行微网的频率稳定性。计算了负荷阻抗变化、等效线路阻抗变化和下垂控制器下垂增益变化时的系统特征值,分析了它们对微网频率稳定的影响,并给出了相应的时域仿真结果。
     然后,根据微网内分布式电源的输出特性和负荷需求特性,设计了一种分布式电源层对等控制与主从控制相结合的微网控制策略。在该控制策略中,对于适合采用P-f和Q-V下垂控制的分布式电源,设计了基于该控制方法的多环反馈控制器。在该多环反馈控制器中,外环为P-f和Q-V下垂控制器,内环为电压电流双环控制器。通过采用内环控制器,减少了负荷和其它分布式电源扰动对其接口逆变器输出电压的影响,保证分布式电源接口逆变器输出的端口电压等于其外环控制器输出的参考电压。同时通过对内环控制器参数的设计,使逆变器闭环输出阻抗呈感性,减少了传输的有功和无功功率受线路阻抗影响的耦合程度。对适合采用恒功率控制(PQ)的分布式电源,设计了适用于电流源逆变器和电压源逆变器接口的PQ控制器,该控制器确保了分布式电源的输出功率等于其参考功率。最后,进行了不同运行状况下微网的暂态特性分析。分析了感应电动机负荷对微网暂态稳定的影响和微网有目的的孤岛运行、断开分布式电源、分布式电源输出功率变化、负荷功率变化及微网联入主电网时微网的暂态响应。同时,分析了不同故障类型和不同故障点对微网暂态稳定的影响。
A MicroGrid is a low voltage network with different micro generators (micro sources) and loads operating to supply electric power for the local area. It can operate in grid-connected or islanded, which has the ability to enhance the reliability of electrical energy supply. Most of micro sources in a MicroGrid are interfaced through power electronic converters. The interfaces of converters increase the flexibility of control but reduce the inertia of the MicroGrid. Lack of inertia and two operation modes pose difficulties in maintaining a power balance between generation and consumption and controlling the network frequency of an islanded MicroGrid. The connection of different types of micro sources to form a MicroGrid is an important task. This thesis concentrates on a control strategy and operation characteristics of an inverter-interfaced MicroGrid. The main jobs of the thesis are as the following.
     Firstly, the various control techniques and different control approaches in a MicroGrid used to date are summarised and comparied.
     Secondly, the frequency stability of a MicroGrid, in which the frequency is regulated by different micro sources using P-f & Q-V droop control,was analyzed. Considering the decentralization and the capacity difference of micro sources in a MicroGrid, how to choose the right droop gains is investigated when different micro sources use P-f&Q-V droop controllers. Then the frequency stability of a grid-connected and an islanded MicroGrid is investigated based on the right droop gains. The differences between the frequency stability of a grid-connected MicroGrid and the power angle stability of the conventional generator are analyzed. Moreover, a small-signal state-space model is used to explore the frequency stability of an islanded MicroGrid in which the frequency is regulated by different micro sources using P-f&Q-V droop controllers. The eigenvalues are calculated when the load resistance and impedance, the equivalent line impedance and the droop gains change. And the factors that induce the frequency unstable are analysed.
     Thirdly, the control scheme of inverter-interfaced MicroGrid based on the peer-to-peer and master-slave is designed considering the generation characteristics of micro sources and the characteristics of the load power demand. A multi-loop feedback controller is obtained to control the micro sources that are controlled by the P-f&Q-V droop. The outer loop of the multi-loop feedback controller is P-f&Q-V droop controller. The inner voltage controller and current controller insure the output voltage of the inverter of the micro source equal to the output voltage of the outer P-f&Q-V droop controller by reducing the effect of the disturbances of loads or other micro sources. The closed-loop output impedance of the interfaced inverter can be inductive by designing the parameters of the inner controller that can decouple the transferred active power and reactive power. Difference PQ controllers for the interface of current source inverter and the voltage source inverter, are designed to control the output power of the micro sources equal to the reference power.
     Finally, the transient characteristics of the MicroGrid are investigated in different operation conditions based on the control scheme. The impact of induction machine loads on the transient stability of the MicroGrid, and the transient response of the intentional islanding, the disconnection of a micro source, the output power change of the micro source using PQ control, the change of load power and the connection with the main grid, are shown in this thesis. The impact of different types of faults and the different locations of faults on the transient stability of the MicroGrid are also investigated.
引文
[1]世界电力工业概况[Online]. Available: http://www.sp.com.cn/sjdl/ggdlgygk/200805 /t20080515 _104131.htm.
    [2] Ditributed generaion policy, USA [Online]. Available: http://www.powerco.co.nz/NR/rdonlyres /1D8DB8E2-03FF-497C-B510-2AF09E233923/0/PowercoDistributedGenerationDGPolicy.pdf.
    [3] Energy Information Administration (EIA), US Department of Energy [Online]. Available: http://www.eia.doe.gov/oil_gas/natural_gas/info_glance/natural_gas.html.
    [4] Draft Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems[S]. IEEE Standard P1547.4, 2008.
    [5] Distributed generation-the futrure for energy resources, EU [Online]. Available: http://www.iea.org /dbtw-wpd/Textbase/work/2004/distgen/Minett.pdf.
    [6] Commission of the European communities. A European strategy for sustainable, competitive and secure energy: Green paper. 2006.
    [7] European Renewable Energy Council. Renewable energy target for Europe: 20% by 2020 [Online]. Available:http://www.erec-renewables.org/fileadmin/erec_docs/Documents/Publications/EREC_Targets_2020_def.pdf
    [8]白明,许敏,崔新雨,等.基于可再生能源的分布式发电技术的应用及前景[J].节能与环保,2008, 2: 20-23.
    [9]国家发展改革委.能源节约与资源综合利用“十一五”规划[R]. 2007.
    [10]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述[J].电力系统自动化, 2005, 29(24): 90-97.
    [11]梁振锋,杨晓萍,张娉.分布式发电技术及其在中国的发展[J].西北水电, 2006, 1: 51-53.
    [12]王仲颖,李俊峰,梁志鹏,等. 2002中国新能源和可再生能源发展分析[R].国家发展委员会,2002.
    [13] Distributed generation[Online]. Available: http://www.theiet.org/factfiles.
    [14] European Renewable Energy Council. Renewable energy scenario to 2040: half of the global energy supply from renewables in 2040[R]. May 2004.
    [15] G. Pepermans, J. Driesen, D. Haeseldonckx, and et al. Distributed generation: definition, benefits aissues[J]. Energy Policy, 2005, 33(6): 787-798.
    [16] European Technology SmartGrids Platform. SmartGrids: Vision and strategy for European electricity networks of the future[Online]. Available: http://www.smartgrids.eu/docments /vision.pdf
    [17] Using distributed energy resources--a how-to guide for federal facility managers[Online]. Available: http://www1.eere.energy.gov/femp/pdfs/31570.pdf.
    [18]吴捷,杨俊华.绿色能源与生态环境控制[J].控制理论与应用, 2004, 21(6): 864-869.
    [19] T. Kawabata and S. Higashino. Parallel operation of voltage source inverters[J]. IEEE Transactions on Industry Applications, 1988, 24(2): 281-287.
    [20] D. Shanxu, M. Yu, X. Jian, and et al. Parallel operation control technique of voltage source inverters in UPS[C]. IEEE International Conference on Power Electronics and Drive Systems, Hong Kong, 1999: 883-887.
    [21] M. Barnes, J. Kondoh, H. Asano, and et al. Real-world MicroGrids - an overview[C]. IEEE Interna -tional Conference on System of Systems Engineering, USA, 2007: Z535-Z542.
    [22] N. Hatziargyriou, H. Asano, R. Iravani, and et al. An overview of ongoing research, development, and demonstration projects [J]. IEEE power & energy magazine, 2007: 78-94.
    [23] European Research Project MicroGrids [Online]. Available: http://MicroGrids.power.ece.ntua.gr.
    [24] European Research Project More MicroGrids [Online]. Available: http://MicroGrids.power. ece.ntua.gr.
    [25] R. Lasseter,A. Akhil, C. Marnay, and et al. White paper on integration of distributed energy resources--the CERTS MicroGrid concept [Online]. Available: http://certs.lbl.gov/pdf/LBNL_50 829.pdf.
    [26] J. Driesen, P. Vermeyen, and R. Belmans. Protection issues in microgrids with multiple distributed generation units[C]. Fourth Power Conversion Conference, Japan, 2007: 646-653.
    [27] W. E. Feero, D. C. Dawson, J. Stevens and et al. White paper on protection issues of the MicroGrid concept [Online]. Available: http://certs.lbl.gov/pdf/Protection-mg.pdf.
    [28] F. Van Overbeeke, and V. Roberts. Active networks as facilitators for embedded generation[C]. IQPC Conference on Embedded Generation within Distribution Networks, 2002.
    [29] R. H. Lasseter and P. Piagi. MicroGrid: a conceptual solution[C]. Power Electronics Specialists Conference, IEEE 35th Annual, Germany, 2004, 6: 4285-4290.
    [30] US Department of Energy Electricity Distribution Programme. Advanced distribution technologies and operating concepts– MicroGrids [Online]. Available: http://www.electricdistribution.ctc.com /MicroGrids.htm.
    [31] J. Stevens, H. Vollkommer, and D. Klapp. CERTS MicroGrid system tests[C]. IEEE Power Engineering Society General Meeting, USA, 2007, p4275559.
    [32] V. Budharja, C. Martinez, J. Dyer, and M. Kundragunta. Grid of the future white paper on interconnection and controls for reliable, large scale integration of distributed energy resources [Online]. Available: http://certs.lbl.gov/pdf/CERTS-Interconnection.pdf.
    [33] S. Morozumi. Overview of MicroGrid research and development activities in Japan[C]. International Symposium on MicroGrids, Montreal, 2006.
    [34] S. Morozumi. Micro-grid demonstration projects in Japan[C]. Fourth Power Conversion Conference-NAGOYA, Japan, 2007: 635-642.
    [35] S. Morozumi, K. Nara. Recent trend of new type power delivery system and its demonstrative project in Japan[J]. IEEJ Transactions on Power and Energy, 2007, 127(7): 770-775.
    [36] B. Kroposki, C. Pink, T. Basso, and R. DeBlasio. MicroGrid standards and technology development[C]. IEEE Power Engineering Society General Meeting, USA, 2007, p4275819.
    [37] T. Funabashi and R. Yokoyama. MicroGrid field test experiences in Japan[C]. IEEE Power Engineering Society General Meeting, Canada, 2006, p1709312.
    [38] T. Funabashi, G. Fujita, K. Koyanagi, and et al. Field tests of a MicroGrid control system[C]. Proceedings of the 41st International Universities Power Engineering Conference, UK, 2006, 1: 232-236.
    [39] L. Dignard-Bailey and F. Katiraei. Overview of MicroGrid research and development activities in Canada [Online]. Available: http://www.ctec-varennes.nrcan.gc.ca/.
    [40] J. Driesen, and F. Katiraei. Design for distributed energy resources[J]. IEEE Power and Energy Magazine, 2008, 6(3): 30-40.
    [41] Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality[Online]. Available: http://eetd.lbl.gov/EA/emp/ der-pubs.html.
    [42]林在豪.上海浦东机场能源中心冷、热、电三联供系统[J].上海节能,2005,6: 158-164.
    [43]周小谦.中国电力改革和推进热电联产、分布式供电的发展[J].热电技术,2006,2: 1-3, 14.
    [44]王成山,郑海峰,谢莹华.计及分布式发电的配电系统随机潮流计算[J].电力系统自动化,2005,29(24): 39-45.
    [45]鲁宗相,王彩霞,闵勇,等.微网研究综述[J].电力系统自动化,2007, 31(19): 100-106.
    [46]丁明,包敏,吴红斌,等.复合能源分布式发电系统的机组组合问题[J].电力系统自动化,2008,.32(6): 46-50.
    [47]王守相,李晓静,肖朝霞.含分布式电源的配电网供电恢复的多代理方法[J].电力系统自动化, 2007, 31(10):61-65.
    [48]王成山,马力,王守相.基于双PWM换流器的微型燃气轮机系统仿真[J].电力系统自动化,2008,32(1):56-60.
    [49] A. Arulampalam, M. Barnes, A. Engler, and et al. Control of power electronic interfaces in distributed generation MicroGrids [J]. International Journal of Electronics, 2004, 91: 503-523.
    [50] R. Lasseter, A. Abbas, C. Marnay, and et al. Integration of distributed energy resources: The CERTS MicroGrid concept[R]. California Energy Commission, 2003.
    [51] David Milborrow. Goodbye gas and squaring up to coal [J]. Wind power monthly news magazine, 2005, 21(1): 31-35.
    [52] N. D Hatziargyrious, and A. P. S Meliopoulos. Distributed energy sources: Technical challenges[C]. IEEE Power Engineering Society Winter Meeting, USA, 2002, 2: 1017-1022.
    [53] R. H. Lasseter. MicroGrids[C]. IEEE Power Engineering Society Winter Meeting, USA, 2002, 1: 305-308.
    [54] A. P. Robert, B.G. Joseph, and P. Piagi. Design and Testing of an Inverter-Based Combined Heat and Power Module for Special Application in a Micro Grid[C]. IEEE Power Engineering Society General Meeting, USA, 2007, p 4275471.
    [55] R. H. Lasseter, and P. Paigi. Microgrid: a conceptual solution[C]. Power Electronics Specialists Conference, Germany, 2004, 6: 4285–4290.
    [56] P. J. Binduhewa, A. C. Renfrew, and M. Barnes. MicroGrid power electronics interface for photovoltaics[C]. IET Conference on Power Electronics, Machines and Drives, UK, 2008: 260- 264.
    [57] P. Biczel, A. Jasinski, and J.Lachecki. Power Electronic Devices in Modern Power Systems[C]. The International Conference on "Computer as a Tool", Poland, 2007: 1586-1586.
    [58] C. Marnay, F. J. Robio, and A. S. Siddiqui. Shape of the microgrid[C]. IEEE Power Engineering Society Winter Meeting, USA, 2001, 1:150-153.
    [59] N. Jayawarna, M. Barnes, C. Jones, and et al. Operating MicroGrid Energy Storage Control during Network Faults[C]. IEEE International Conference on System of Systems Engineering, USA, 2007, Z479-Z485.
    [60] Z. Wang, X. Huang, and J. Jiang, Design and Implementation of a Control System for a Microgrid involving a Fuel Cell Power Module[C]. Electrical Power Conference, Canada, 2007: 207-212.
    [61] P. Biczel. Power Electronic Converters in DC MicroGrid[C]. 5th International Conference- Workshop. Compatibility in Power Electronics, Poland, 2007, 208-213.
    [62] B. Kroposki, C. Pink, J. Lynch, and et al. Development of a high-speed static switch for distributed energy and Microgrid applications[C]. Fourth Power Conversion Conference-Nagoya, Japan, 2007:1418-1423.
    [63] C. K. Sao, and P. W. Lehn. Intentional islanded operation of converter fed microgrids[C]. IEEE Power Engineering Society General Meeting, Canada, 2006: 1-6.
    [64] A. Borghetti, M. Bosetti, C. Bossi, and et al. An energy resource scheduler implemented in the automatic management system of a Microgrid test facility[C]. International Conference on Clean Electrical Power, Italy, 2007: 94- 100.
    [65] H. Nikkhajoei, and R. H.Lasseter. Microgrid protection[C]. IEEE Power Engineering Society General Meeting, USA, 2007, p 4275571.
    [66] A. G. Tsikalakis, and N. D. Hatziargyriou. Centralized control for optimizing microgrids operation[J]. IEEE Transaction on Energy Conversion, 2008, 23(1): 241-248.
    [67] A. P. Agalgaonkar, C. V. Dobariya, S. A. Khaparde, and et al. Optimal sizing of distributed genera- tors in microgrid[C]. IEEE Power India Conference, India, 2006, 8 pp.
    [68] J.A. Pe?as Lopes. Management of MicroGrids[C]. JIEEC 2003, Bilbao, 2003: 1-16.
    [69] G. Venkataramanan, C. Marnay. A larger role for microgrids [J]. IEEE Power and Energy Magazine, 2008, 6(3): 78-82.
    [70] C. L. Moreira, and J. A. Pecas Lopes. MicroGrids Dynamic Security Assessment[C]. 2007International Conference on Clean Electrical Power, Italy, 2007: 26-32.
    [71] B. Kroposki, R. Lasseter, T. Ise, and et al. Making microgrids work [J]. IEEE Power and Energy Magazine, 2008, 6(3): 40-53.
    [72] N. Jayawarna, N. Jenkins, M. Barnes, and et al. Safety analysis of a Micro Grid[C]. International Conference on Future Power Systems, Netherlands, 2005, p1600501.
    [73] F. Katiraei, R. Iravani, N. Hatziargyriou, and et al. Microgrids management [J]. IEEE Power and Energy Magazine, 2008, 6(3): 54–65.
    [74] T. Ota, K. Mizuno, K. Yukita, H. Nakano, and et al. Study of load frequency control for a microgrid[C]. Universities Power Engineering Conference, Australasian, 2007: 1-6.
    [75] C. Yuen, and A. Oudalov. The feasibility and profitability of ancillary services provision from multi-MicroGrids[C]. 2007 IEEE Lausanne Power Tech, Switzerland, 2007: 598-603.
    [76] A. M. Faisal, and N. K. Heikki. Online management of MicroGrid with battery storage using multiobjective optimization[C]. International Conference on Power Engineering, Energy and Electrical Drives, Portugal, 2007: 231-236,.
    [77] H. Asanol, and S. Bandol. Economic analysis of Microgrids[C]. Fourth Power Conversion Conference, Japan, 2007: 654-658.
    [78] C. L. Moreira, F. O. Resende, and J. A. P. Lopes. Using low voltage MicroGrids for service restoration[J]. IEEE Transactions on Power Systems, 2007, 22(1): 395-403.
    [79] P. Piagi and R. H. Lasseter. Control and design of MicroGrid components [Online]. Available: http://www.pserc.org/cgi-pserc/getbig/publicatio/reports/2006report/lasseter_MicroGridcontrol_final_ project_report.pdf.
    [80] J. Sachau, and A. Engler. Static and rotating grid formation for modularly expandable island grids[C]. 8th European Conference on Power Electronics and Applications (EPE’99), Lausanne, 1999, CD-ROM.
    [81] T. Kawabata and S. Higashino. Parallel operation of voltage source inverters[J]. IEEE Transactions on Industry Applications, 1988, 24(2): 281-287.
    [82] E. Jones, C. Fitzer, and M. Barnes. Investigation of MicroGrids[C]. The 3rd IET International Conference on Power Electronics, Machines and Drives, Ireland, 2006: 510-514.
    [83]王长贵,崔容强,周篁.新能源发电技术[M].北京:中国电力出版社, 2003.
    [84] F. Katiraei, M. R. Iravani, and P. Lehn. MicroGrid autonomous operation during and subsequent to islanding process[C]. IEEE Power Engineering Society General Meeting, USA, 2004, 2: 2175-2183.
    [85] M. A. Pedrasa and T. Spooner. A survey of techniques used to control MicroGrid generation and storage during island operation [Online]. Available: http://www.ceem.unsw.edu.au/content/ userDocs/PedrasaSpoonerAUPEC2006.pdf.
    [86] A. M. Faisal and N. K. Heikki. System modelling and online optimal management of MicroGrid using multi-objective optimization[C]. IEEE International Conference on Clean Electrical Power, Italy, 2007: 148-153.
    [87] N. Jenkins. Embeded generation [J]. Power Engineering Journal, 1995, 9(3): 145-150.
    [88] O. Osika. Stability of MicroGrids and inverter-dominated grids with high share of decentralised sources [D]. ISET, Germany, PhD thesis, 2005.
    [89] S. A. Al-Askari, S. J. Ranade, and J. Mitra. Designing a sufficient reactive power supply scheme to multi islands in a MicroGrid[C]. IEEE Power Engineering Society General Meeting, Canada, 2006, p1709361.
    [90] D. Georgakisl and S. Papathanassiou. Operation of a prototype MicroGrid system based on micro-sources equipped with fast-acting power electronics interfaces[C]. IEEE 35th Annul Power Electronics Specialists Conference, Germany, 2004, 4: 2521-2526.
    [91] M. Barnes, A. Dimeas, A. Engler and et al. MicroGrid laboratory facilities[C]. 2005 International Conference on Future Power Systems, Netherlands, 2005, 6 pp.
    [92] X. Wu, Y. Zhang, A. Arulampalam, and N. Jenkins. Electrical stability of large scale integration of micro generation into low voltage grids [J]. International Journal of Electronics, 2005, 1(4): 1-23.
    [93] P. Kunder. Power system stability and control [M]. New York: McGraw-Hill, 1994.
    [94] C. E. Jones. Local control of MicroGrids using energy storage [D]. University of Manchester, UK, PhD thesis, 2007.
    [95] N. Jayawarna, X. Wut, Y. Zhangt, and et al. Stability of a MicroGrid[C]. The 3rd IET International Conference on Power Electronics, Machines and Drives, Ireland, 2006: 316-320.
    [96] J. Liang, T. C. Green, G. Weiss, and et al. Hybrid control of multiple inverters in an island-mode distribution system[C]. IEEE Annual Power Electronics Specialists Conference, USA, 2003, 1: 61-66.
    [97] J. A. Pe?as Lopes and C. L. Moreira. Defining control strategies for MicroGrids islanded operation[J]. IEEE Trans on Power Systems, 2006, 21(2): 916-924.
    [98] J. D. Kueck, R.H. Staunton, S. D. Labinov, and et al. MicroGrid energy management system [Online]. Available: http://www.ornl.gov/sci/btc/apps/Restructuring/TM2002-242.pdf.
    [99] A. L. Dimeas and N. D. Hatziargyriou. Operation of a multi-agent system for MicroGrid control [J]. IEEE Trans on Power Systems, 2005, 20(3): 1447-1455.
    [100] A. L. Dimeas and N. D. Hatziargyriou. Multi-agent based automatic generation control of isolated stand alone power system [J]. Power Systems Technology, 2005, 1(1): 139-143.
    [101] A. L. Dimeas and N. D. Hatziargyriou. A MAS architecture for MicroGrids control[C]. Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems USA, 2005: 402-406.
    [102] P. Piagi and R. H. Lasseter. Autonomous control of MicroGrids[C]. IEEE Power Engineering Society General Meeting, Montreal, 2006, p 1708993.
    [103] M. Prodanovic and T. C. Green. High-quality power generation through distributed control of a power park Micro Grid [J]. IEEE Transactions on Industrial Electronics, 2006, 53(5):1471-1482.
    [104] F. Katiraei, and M.R.Iravani. Power management strategies for a Microgrid with multiple distributed generation units [J]. IEEE Transactions on Power Systems, 2006, 21(4): 1821-1831.
    [105] A. Engler. Applicability of droops in low voltage grids [J]. International Journal of Distributed Energy Resources, 2005, 1(1): 1-6.
    [106] K. De Brabandere, B. Bolsens, J.Vanden Keybus, and et al. A voltage and frequency droop dontrol method for parallel inverters [J]. IEEE Transactions on Power Systems, 2007, 22(4): 1107-1115.
    [107] K. De Brabandere, K.Vanthournout, J.Driesen, G.Deconinck, and et al. Control of Microgrids[C]. IEEE Power Engineering Society General Meeting, USA, 2007, p4275808 .
    [108] M. C. Chandorkar, D. M. Divan, and R. Adapa. Control of parallel connected inverters in standalone ac supply systems [J]. IEEE Trans on Industry Applications, 1993, 29(1): 136-141.
    [109] M. Hauck and H. Spath. Control of a three phase inverter feeding an unbalanced load and operating in parallel with other power sources[C]. International Power Electronics and Motion Control Conference, Croatia, 2002: p.1-p.10.
    [110] F. Katiraei, M. R. Iravani, and P. W. Lehn. Small-signal dynamic model of a micro-grid including conventional and electronically interfaced distributed resources [J]. IET Generation, Transmission & Distribution, 2007, 1(3): 369-378.
    [111] S. Barsali, M. Ceraolo, and P. Pelacchi. Control techniques of dispersed generators to improve the continuity of electricity supply[C]. Power Engineering Society Winter Meeting, USA, 2002, 2: 789-794,.
    [112] U. Borup, F. Blaabjerg, and P. N. Enjeti. Sharing of nonlinear load in parallel-connected three- phase converters [J]. IEEE Transactions on Industry Applications, 2001, 37(6): 1817-1823.
    [113] R. H. Lasseter. MicroGrids and distributed generation [J]. Journal of Energy Engineering American Society of Civil Engineers, 2007, 133(3): 144-149.
    [114] C. A. Hernandez-Aramburo and T. C. Green. Fuel consumption minimisation of a MicroGrid [J]. IEEE Transactions on Industry Applications, 2005, 41(3): 673-681.
    [115] N. Pogaku, M. Prodanovic′, and T. C. Green. Modelling, analysis and testing of autonomous operation of an inverter-based MicroGrid [J]. IEEE Transactions on power electronics, 2007, 22(2): 613-625.
    [116] Y. Li and M. Viathgamuwa. Design, analysis, and real-time testing of a controller for multi-bus MicroGrid system [J]. IEEE Transactions on Power Electronics, 2004, 19(5): 1195-1204.
    [117] M. S. Illindala, P. Piagi, and H. Zhang. Hardware development of a laboratory-scale MicroGrid phase 1: operation and control of a two-inverter MicroGrid [Online]. Available: http:// www.nrel.gov/docs/fy03osti/32527.pdf.
    [118] M. S. Illindala, P. Piagi, and H. Zhang. Hardware development of a laboratory-scale MicroGrid phase 2: operation and control of a two-inverter MicroGrid [Online]. Available: http:// www.nrel.gov/docs/fy03osti/32528.pdf.
    [119] J. M. Guerrero, L. García de Vicu?a, J. Matas, and et al. A Wireless controller to enhance dynamic performance of parallel inverters in distributed generation system [J]. IEEE Transactions on Iindustrial Electronics, 2004, 19(5): 1205-1213.
    [120] J. M. Guerrero, L. García de Vicu?a, J. Matas, and et al. Wireless-control strategy for parallel operation of distributed-generation inverters [J]. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1461-1470.
    [121] H. Laaksonen, P. Saari, and R. Komulainen. Voltage and frequency control of inverter based weak LV network MicroGrid[C]. International Conference for Future Power Systems, Netherlands, 2005, 6 pp.
    [122] F. Gao, and M. R Iravani. A control strategy for a distributed generation unit in grid-connected and autonomous modes of operation [J]. IEEE Transactions on Power Delivery, 2008, 23(2): 850-859.
    [123] N. Mohammad, D. Min, and A. Keyhani. Robust Stability Analysis of voltage and current control for distributed generation systems [J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 516-526.
    [124] A. G. Madureira and J. A. Pecas Lopes. Voltage and reactive power control in MV networks integrating MicroGrids [Online]. Available: microgrids.power.ece.ntua.gr/micro/documents/322. pdf.
    [125] N. Jenkins, R. Li, and B. Awad. On load tap changers and Microgrid voltage control strategies [Online]. Available: microgrids.power.ece.ntua.gr/micro/documents/333.pdf.
    [126] E. Barklund, N. Pogaku, M. Prodanovic, and et al. Energy management system with stability constraints for stand-alone autonomous MicroGrid[C]. IEEE International Conference on System of Systems Engineering, USA, 2007: Z114-Z119.
    [127] G. Venkataramanan and M. Illindala. Small signal dynamics of inverter interfaced distributed generation in a chain-MicroGrid[C]. IEEE Power Engineering Society General Meeting, USA, 2007, p 4275737.
    [128] M. S. Illindala. Vector control of PWM VSI based distributed resources in a MicroGrid [D]. University of Wisconsin, U.S., PhD thesis, 2005.
    [129] A. Engler. Control of inverters in isolated and in grid tied operation with regard to expandability[C]. Power Electronics for Regenerative Energy at IEEE Power Electronics Specialists Conference, Aachen, 2004.
    [130] A. Bertani, C. Bossi, and F. Fornari. A microturbine generation system for grid connected and islanding operation[C]. IEEE PES Power Systems Conference and Exposition, Italy, 2004, 1: 360-365.
    [131] A. M. Azmy, and I. Erlich. Dynamic simulation of fuel cells and microturbines integrated with a multimachine network[C]. IEEE Bologna Power Tech Conference Proceedings, 2003, 2:6 pp.
    [132] C. Wang, M. H. Nehrir, and H.Gao. Control of PEM fuel cell distributed generation systems. IEEE Transactions on Energy Convertion, 2006, 21(4):586-595.
    [133] Y. Zhu, and K. Tomsovic. Development of models for analyzing the load-following performance of micro turbines and fuel cells [J]. Electric Power Systems Research, 2002, 62(1): 1-11.
    [134]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2002.
    [135] V. Galdi, A. Piccolo, and P. Siano. Dynamic performances and control of dispersed generators connected through inverter[C]. International Conference on Computational Intelligence for Modelling, Control and Automation, Austria, 2005: 1060-1065.
    [136] T. Shimizu, M. Hirakata, T. Kamezawa, and et al. Generation control circuit for photovoltaic modules [J]. IEEE Transactions on Power Electronics, 2001, 16(3): 293-300.
    [137] R. Esmaili, and L. Xu. A new control method of permanent magnet generator for maximum power tracking in wind turbine application[C]. IEEE Power Engineering Society General Meeting, USA, 2005, 3: 2090-2095.
    [138] R. W. Erickson, and D. Maksimovi. Fundamentals of power electronics [M]. Norwell, MA, USA: Kluwer Academic Publishers, second edition, 2001.
    [139]徐德鸿.电力电子系统建模及其控制[M].北京:机械工业出版社,2006.
    [140]王崇武,任章,李宏. PWM逆变电路输出波滤波器的分析与设计[J].西安工程科技学院学报, 2002, 16(3): 247-250.
    [141]王长勇,张寅孩,张仲超.有源滤波器中LC滤波器的特性及其设计[J].电源技术, 2000,4: 12-14.
    [142]王志群,朱守真,周双喜.逆变型分布式电源控制系统的设计[J].电力系统自动化, 2004, 28(24): 61-66.
    [143]余贻鑫,王成山.电力系统稳定性理论与方法[M].北京:科学出版社,1999.
    [144] Carson W. Taylor. Power system voltage stability [M].北京:中国电力出版社,2001.
    [145] Thierry Van Cutsem, Costas Vournas著(王奔译).Voltage stability of electric power systems [M].北京:电子工业出版社,2008.
    [146] Paul C. Krause, Oleg Wasynczuk, Scott D.Sudhoff. Analysis of electric machinery and drive systems [M]. IEEE Press,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700