直驱永磁同步风力发电系统功率平滑策略的研究与控制系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界范围内环境日趋恶化和能源危机日益突显,充分开发利用可再生能源已成为世界各国的共识。风能作为最常见的可再生清洁能源之一,受到了人们的广泛关注,风力发电技术在近二十年取得了迅猛的发展。
     在各种风力发电系统中,直驱式永磁同步风力发电系统由于其传动系统简单、运行可靠性较高、发电效率较高等优点而得到广泛应用。为了提高直驱永磁同步风力发电系统性能,必须采用适当的控制策略。对于使用双PWM交-直-交电压型变流器的直驱永磁同步风力发电系统来说,既要对它的电机侧变流器进行控制,又要对电网侧变流器进行控制。控制电机侧变流器的目的是为了控制风力发电机的输出有功功率和机组的风能利用率,同时还可对电机转矩的脉动加以限制;控制电网侧变流器是为了控制发电机输送到电网的有功功率和无功功率。
     由于风能具有不确定性、不可控性和随机波动性,使得风力发电机输出的电功率存在很大的波动,如果不加限制并网,不仅会影响电网运行的经济性,甚至还会威胁到电网的安全运行。特别是随着风力发电总装机容量的不断增大,这个问题显得越来越突出。因此,引入先进的控制策略来提高并网风力发电系统输出电能的质量成为亟待解决的问题。
     本文针对直驱永磁同步风力发电系统,深入研究了抑制其输出有功功率波动的控制策略。
     论文首先建立了直驱永磁同步风力发电系统各组成部分的数学模型,作为进行各种仿真分析的基础;根据经过坐标变换后的永磁同步电机数学模型,建立了电机侧变流器的矢量控制模型;在分析电网侧变流器数学模型的基础上,提出了按照电网电压矢量定向的电网侧变流器矢量控制模型;考虑到风力机因受气动性能的影响而具有很强的非线性,且其桨叶具有很大的惯性,传统的PID变桨距控制难以获得良好的性能,因此设计了模糊变桨距控制器,仿真结果表明,与PID控制的变桨距相比,模糊变桨距控制的具有更好的控制性能;考虑到风力发电机组属于强耦合、非线性、参数易变的系统,因此在其功率控制环节引入滑模控制,仿真结果表明,与PI控制相比,采用滑模控制的系统不仅具有更好的动态性能,还能有效消除电机参数变化和外来扰动的影响,鲁棒性好;论文分析了采用传统功率控制策略的风力发电系统的主要不足,提出了一种无需增加辅助设备的新的功率控制策略,即在有效风速范围内,既采用模糊变桨距控制来调节机组的运行转速,又同时采用转矩动态滑模控制来调节有功功率,仿真结果表明,在恰当设置平滑功率给定的情况下,该控制策略可有效抑制因风速波动等原因引起的发电机输出有功功率波动;同时,论文还研究了直流侧采用飞轮储能系统,在不改变变频器中电网侧变流器和电机侧变流器控制策略的基础上,结合飞轮储能系统的能量控制策略,从而实现了输出有功功率的平滑控制;最后,以高速数字信号处理器和集成智能功率模块为核心,研制了直驱永磁同步风力发电实验平台,并在该平台上进行了有功独立调节、无功独立调节、变速恒频运行、最大风能捕获控制等实验,实验结果验证了前述相关设计及分析的正确性。
     本文力图站在电网的角度,对直驱永磁同步风力发电系统的控制策略加以改进。所做工作可为相关工程设计提供一定的理论依据,为实际应用奠定一定的基础。
With the deteriorating environment and the growing energy crisis around the world,the full development and utilization of renewable energy has become the consensus of the world countries. As one of the most common renewable clean energy sources,wind energy has been made widely attention, and wind power technologies have made a rapid development in the past two decades.
     In all kinds of wind power generation systems, a wind energy generation system(WEGS) with direct-driven permanent magnet synchronous generators (DDPMSG) has been widely applied due to its simple drive train system, high operational reliability, and high power generation efficiency and so on. To improve its performance, some appropriate control strategies have to be used. As for the WEGS with DDPMSG using the dual PWM AC/DC/AC voltage source converter, both the machine-side converter and the grid-side converter have to be controlled.
     The purposes of controlling the machine-side converter is to control the active power of wind turbines and wind energy availability, at the same time, the torque ripple can be also limited. In addition, the purposes of controlling grid-side converter is to control the active and reactive power delivered to the grid.
     Due to the uncertainty, uncontrollablety and stochasticly of wind energy, the output electric power of a WEGS has usually large fluctuation. If the grid-connected system is unrestricted, the power fluctuation not only will affect the economics of the grid operation, but also may even threaten the safe operation of the whole electrical power. Especially,with the increaseing total installed capacity of wind turbine systems, this problem may become more and more obvious. Therefore, it is an urgent task to improve the output power quality of grid-connected WEGS by introducting advanced control strategies .
     In this thesis , the control strategies of damping the active power output fluctuations of a WEGS with DDPMSG are deeply researched. Firstly, as for the base of simulation and analysis, the mathematical models in the components of the WEGS with DDPMSG are established, respectively. The vector control mathematical model of the machine-side converter is also established by the coordinate transformation. Based on the analysis on the mathematical model of the grid-side converter, a voltage orienting vector control model of grid-side converter is proposed. Taking into account the highly nonlinear of the wind turbine due to the effect of aerodynamic performance and the great inertia of the blade, it is difficult to obtain good performance by using the conventional PID pitch control strategy. Thus, a fuzzy variable pitch controller is designed, and the simulation results have shown that the fuzzy variable pitch control has better performance by comparing with the traditionall PID pitch control. In addition, considering the WEGS is the strongly coupled, nonlinear, parameter variable system, a sliding mode control is introduced in the power control loop. The simulation results have shown that the sliding mode control system not only has better dynamic performance, but also eliminate the effects on the machine parameters variations and external disturbances, and has good robustness. Also, the main shortcoming of the WEGS with the conventional power control strategy is analyzed, and a new control strategy which do not require auxiliary equipment is proposed. That is , within the effective range of the wind speed, the fuzzy control is used to regulate the operation speed of the wind turbine , and torque dynamical sliding mode control is used to regulate the active power, the simulation results have shown that the control strategy can effectively control the output active power fluctuations due to the wind speed fluctuations and so on. At the same time, a flywheel energy storage system in the DC-link is studied without changing the control strategies on the grid-side and the machine-side converter. The smooth control of the output active power is achieved based on the energy control strategy of the flywheel energy storage system; Finally, an experimental platform applied to WEGS with DDPMSG is set up by using the high-speed digital signal processor(DSP) and integrated intelligent power modules (IPM). A series of experiments have been performed in this platform, such as the independent control of active power, the independent regulation of the reactive power, variable-speed constant-frequency operation, the largest wind power tracking control and so on. And the experimental results verify the correctness of the foregoing analysis.
     From the viewpoint of electrical power, this thesis seeks to improve the control strategy of a WEGS with DDPMSG. The related work maybe provide a theory basis for the engineering design and lay the foundation for the practical application.
引文
[1]周志强.中国能源现状、发展趋势及对策[J].能源与环境, 2008, (6): 9-10.
    [2]李景明,王红岩,赵群.中国新能源资源潜力及前景展望[J].天然气工业, 2008, 28(1):149-153.
    [3]狄丹.开发风力发电促进能源结构多元化——世界风力发电情况扫描[J].华中电力, 2006, 19(5):42-44,47.
    [4]周燕莉.风力发电的现状与发展趋势[J].甘肃科技, 2008, 24(3):9-11.
    [5]赵群,王永泉,李辉.世界风力发电现状与发展趋势[J].机电工程, 2006 ,23(12):16-18
    [6]王柏臣.风力发展:借得好风扬劲帆[J].电力设备, 2006, 7(4):97-98.
    [7]尹超.浅谈我国风力发电的现状和前景[J].山东电力高等专科学校学报, 2009, 12(1):74-76.
    [8]易跃春.风力发电现状、发展前景及市场分析[J].国际电力, 2004, (10):18-22.
    [9]张绍杰,刘炳国.风力发电技术概述[J].山东轻工业学院学报, 2005, 19(3):50-53.
    [10]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制[J].电力系统自动化, 2003, 27(20): 62-67.
    [11]沙非,马成廉,刘闯,孙黎.变速恒频风力发电系统及其控制技术研究[J].电网与清洁能源, 2009, 25(1):44-47.
    [12]吴聂根,程小华.变速恒频风力发电技术综述[J].微电机, 2009, 42(8):69-72.
    [13]马洪飞,徐殿国,苗立杰.几种变速恒频风力发电系统控制方案的对比分析[J].电工技术杂志, 2000, (10): 1-4.
    [14]邱凤蓉.变速恒频风力发电系统主要方案[J].电器工业, 2009, (6):69-71.
    [15]闫永勤.变速恒频风力发电系统试验平台的研制[D].北京,北京交通大学电气工程学院, 2007.
    [16]李晶,王伟胜,宋家骅.变速恒频风力发电机组建模与仿真[J].电网技术,2003,27(9):14-17.
    [17]郭金东,赵栋利,林资旭,等.兆瓦级变速恒频风力发电机组控制系统[J].中国电机工程学报,2007,27(6):1-6.
    [18]郎永强,张学广,徐殿国,等.双馈电机风电场无功功率分析及控制策略[J].中国电机工程学报,2007,27(9):77-82.
    [19] Chen Z. Compensation schemes for SCR converter in variable speed wind power systems[J]. IEEE Trans. on Power Delivery. 2004, 19(2): 813-821.
    [20]代洪涛. 15kW变速恒频双馈风力发电机励磁控制系统[D].辽宁,沈阳工业大学, 2003.
    [21]程显忠.风力发电试验系统的研究[D].安徽,合肥工业大学, 2007.
    [22]徐锋,王辉,杨韬仪.兆瓦级永磁直驱风力发电机组变流技术[J].电力自动化设备, 2007, 27(7):57-61.
    [23]尹明,李庚银,张建成,等.直驱式永磁同步风力发电机组建模及其控制策略[J].电网技术,2007,31(15):61-65.
    [24]侯庆明.中小型永磁直驱风力发电控制系统的设计和仿真[D].辽宁,沈阳工业大学, 2006.
    [25]徐科,胡敏强,郑建勇,等.风力发电机无速度传感器网侧功率直接控制[J].电力系统自动化, 2006, 30(23):43-47.
    [26] Polinder H, van der Pijl F F A., de Vilder G.. Comparison of direct-drive and geared denerator concepts for wind turbines[J]. IEEE Transactions on Energy Conversion, 2006, 21(3):725-733.
    [27] Kilk A., Kallaste A. Multipole surface-mounted permanent magnet synchronous generators for wind application[C]. 2008 Power Quality and Supply Reliability Conference, PQ 2008, 27-29 Aug., 2008:235-240.
    [28] Yifan Tang, Longya Xu. A flexible active and reactive power control strategy speed for a constant frequency generation system[J]. IEEE Trans.On Power Electronics, 1995.10(4): 472-478.
    [29] Kgs. Lyngby. Analysis of dynamic behaviour of electric power systems with large amount of wind power[D].Technical University of Denmark.Denmark, 2003.
    [30]恒毅,汪至中.风力发电机极其控制系统的对比分析[J].中小型电机, 2002, 29(4):41-45.
    [31]刘士阁. 750kW变桨直驱风力发电机组中心控制器研究[D].辽宁,沈阳工业大学, 2006.
    [32] Yazdani A, Iravani R. A neutral-point clamped converter system for direct-drive variable-speed wind power unit[J]. IEEE Transactions on Energy Conversion, 2006, 21(2):596-607.
    [33] M. R. Behnke,E. Muljadi. Reduced order dynamic model for variable-speed wind turbine with synchronous generator and full power conversion topology[C]. 2005 International Conference on Future Power Systems, 2005: 456-461
    [34]刘忠明.风力发电齿轮箱技术发展趋势及若干关键问题[J].电气制造, 2009, (9):62-64.
    [35] Wang Quincy, Chang Liuchen. An intelligent maximum power extraction algorithm for inverter-based variable speed wind trubine systems[J]. IEEE Trans. on Energy Conversion, 2004,19(5):1242-1249
    [36] Chinchilla M, Arnaltes S, Burgos J C. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid[J]. IEEE Trans. on EnergyConversion. 2006, 21(1): 130-135.
    [37]胡书举.直驱型风力发电系统概述[J].变频器世界, 2009, (10):55-59.
    [38] Yang Chuanwei, Liang Hui, Jiang Jiuchun. Modeling and simulation of AC-DC-AC converter system for MW-level direct-drive wind turbine grid interface[C]. IEEE Applied Power Electronics Conference and Exposition. Austion, Texas, USA, 2005:327-333.
    [39]魏昊,张淼,严克剑.基于空间矢量控制的PWM整流系统的研究[J].广东有色金属学报, 2006, 16, (3):221-224.
    [40]李文龙,王辉,高平,等.永磁电机直接驱动变速恒频风力发电控制技术[J].自动化博览, 2006, (4): 72-74.
    [41]付勋波,郭金东,赵栋利,许洪华.直驱式风力发电系统的仿真建模与运行特性研究[J].电力自动化设备, 2009, 29(2):1-5.
    [42]朱涛.对变桨距及定桨距叶片气动性能与功率控制方式的分析[J].科技情报开发与经济, 2006, 16(16):175-176.
    [43] Sahin A D. Progress and recent trends in wind energy[J]. Progress in Energy and Combustion Science, 2004, 30(5):501-543.
    [44] Horiuchi N, Kawahito T. Torque and power limitations of variable speed wind turbines using pitch control and generator power control[C]. IEEE Power Engineering Society Summer Meeting, Vancouver, 2001:638-643.
    [45] Rolf Hoffmann. A comparison of control concepts for wind turbines in terms of energy capture[D]. Technology University Darmstadt, 2002.
    [46]贾要勤.风力发电实验用模拟风力机[J].太阳能学报,2004,25(6):735-739.
    [47]姚红菊,许洪华,赵斌.变速恒频风电机组额定风速以上恒功率控制[J].电气时代, 2005, (11):84-85.
    [48]刘光德,邢作霞,李科,等.风力发电机组电动变桨距系统的研究[J].电机与控制应用, 2006, 33(10):31-34.
    [49]林勇刚.大型风力机变桨距控制技术研究[博士学位论文].浙江,浙江大学, 2005.
    [50] Chedid R, Mrad F, Basma M. Intelligent control of a class of wind energy conversion systems [J]. IEEE Transactions on Energy Conversion, 1999,14(4): 1597-1604.
    [51] Abdin E S, XU Wilson. Control design and dynamic performance analysis of a wind turbine-induction generator unit [J]. IEEE Transactions on Energy Conversion, 2000,15(1):91-96.
    [52] Maureen H M. Systematic Control Design Methodology for Variable-Speed Wind Turbine, NREL/TP-500-29415 [R]. Colorado USA: National Renewable Energy Laboratory, 2002.
    [53] Lescher F, ZHAO Jingyun, Borne P. Robust gain scheduling controller for pitch regulatedvariable speed wind turbine [J].Studies in Informatics and Control, 2005,14(4): 299-315.
    [54]赵永祥,夏长亮,宋战锋,等.变速恒频风力发电系统风机转速非线性PID控制[J].中国电机工程学报.2008,28(11):133-138.
    [55] Slootweg J G, Kling W L, Polinder H. Dynamic modeling of a wind turbine with doubly fed induction generator [C]. IEEE Power Engineering Society Summer Meeting, Vancouver, 2001: 644– 649.
    [56] Senjyu T, Sakamoto R, Urasaki N, et al. Output power leveling of wind turbine Generator for all operating regions by pitch angle control [J]. IEEE Trans. on Energy Conversion, 2006, 21(2):467-475.
    [57] Marcelo Godoy Simoes, Bimal K Bose, Ronald J Spiegel. Design and performance evaluation of a fuzzy-logic-base variable-speed wind generation system[J]. IEEE Transactions on Industry Applications, 1997,33(4):56-65.
    [58] MillerA. A variable speed wind turbine power control[J]. IEEE Trans. On Energy conversion, 1997, 12(2:181-186.
    [59] M. Perales, J. Perez, F. Barrero, et al. Fuzzy logic control of a variable speed variable pitch wind turbine[C]. The 25th Annual Conference of the IEEE,1999,2:614-618.
    [60]姚骏,廖勇.基于全模糊控制器的交流励磁发电机励磁控制系统研究[J].中国电机工程学报, 2007, 27(33): 36-41.
    [61]张玉华,李振凯.基于模糊控制的风力发电系统变桨距控制器的设计[J].现代电力, 2007,24(6): 58-61.
    [62]王东风,贾增周,孙剑,等. MW级变速恒频风力发电机组的一种复合控制方法[J].华北电力大学学报, 2008,35(2):83-87.
    [63]姚兴佳,温和煦,邓英.变速恒频风力发电系统变桨距智能控制[J].沈阳工业大学学报, 2008,30(2): 159-162,172.
    [64]宋新甫,梁波.基于模糊自适应PID的风力发电系统变桨距控制[J].电力系统保护与控制, 2009, 37(16):50-53,58.
    [65]姚兴佳,张雅楠,郭庆鼎.风力发电机组的多模变桨距控制[J].沈阳工业大学学报, 2009, 31(2):149-153.
    [66] Kanellos F D, Hatziargyriou N D. A new control scheme for variable speed wind turbines using neural networks[C]. IEEE Power Engineering Society Winter Meeting, 2002: 360-365.
    [67]许凌峰,徐大平,高峰,吕跃刚.基于神经网络的风力发电机组变桨距复合控制[J].华北电力大学学报, 2009, 36(1):28-34.
    [68]耿华,杨耕.基于逆系统方法的变速变桨距风机的桨距角控制.清华大学学报, 2008, 48(7):1221-1224.
    [69] HUI Li, Shi K L, McLaren P G.. Neural-network-based Sensorless Maximum Wind Energy Capture with Compensated Power Coefficient Industry Applications[J]. IEEE Trans, 2005, 41(6): 1548-1556.
    [70]夏长亮,宋战锋.变速恒频风力发电系统变桨距自抗扰控制[J].中国电机工程学报, 2007, 27(14):91-95.
    [71] SUN Yao-jie, KONG Long-yun, SHI Wei-xiang. Robust Sliding Mode Control of Variable-speed Wind Power System[C]. Power Electronics and Motion Control Conference, 2004, 3: 1712-1716.
    [72]张新房,徐大平,吕跃刚,等.大型变速风力发电机组的自适应模糊控制[J].系统仿真学报, 2004,16(3):573-577.
    [73] Bati A F, Leabi S K. NN Self-tuning Pitch Angle Controller of Wind Power Generation Unit[J]. Power Systems Conference and Exposition, 2006, 29: 2019-2029.
    [74]孔屹刚,王志新.大型风电机组模糊滑模鲁棒控制器设计与仿真[J].中国电机工程学报.2008,28(14):136-141.
    [75]潘俊强,王维庆,张尧,李峰.神经网络模型参考控制在风力发电机组变桨距系统的应用[J].电气技术与自动化, 2009, 38(5):144-146.
    [76]张雷.滑模变结构控制在风力发电机组变桨控制中的应用[J].电气应用, 2009, 28(4):78-81.
    [77]刘其辉,贺益康,赵仁德.基于直流电动机的风力机特性模拟[J].中国电机工程学报, 2006, 26, (7):134-139.
    [78]王星华.基于SIMULINK的同步直驱风力发电机并网控制系统[J].微计算机信息, 2007, 23(10-1):15-17.
    [79]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社, 2006.
    [80]刘细平,林鹤云.风力发电机及风力发电控制技术综述[J].大电机技术, 2007,(3):17-20.
    [81]瞿兴鸿.直驱永磁同步风力发电控制系统的研究与设计[D].重庆,重庆大学, 2008.
    [82] Chinchilla M, Arnaltes S, Burgos J C. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid[J]. IEEE Transactions on energy conversion, 2006.21(1): 130-135.
    [83]于文杰.永磁直驱风力发电系统最大风能追踪策略研究[D].吉林,东北电力大学, 2008.
    [84]杨俊华,吴捷.风力发电机组的非线性控制—变结构控制与鲁棒控制[J].动力工程, 2003,23(6):2803-2809.
    [85] De Battisa H, Mantz R J, Christiansen C F. Dynamical sliding mode power control of wind driven induction generators[J]. IEEE Trans on Energy Conversion,2000,5(4):451-457.
    [86] H.de Battista and R.J.Mantz. Dynamical variable structure controller for power regulation ofwind energy conversion systems[J]. IEEE Transaction on Energy Conversion. 2004,19(4):756-763.
    [87] P Ruben, D S Daniel. Interger variable structure controllers for small wind energy systems[C]. Proceedings of the 1999 IEE Canadian conference on Electrical and Computer Engineering,1999,1067-1072.
    [88]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社, 1996.
    [89] Kachroo P, Tomizuka M. Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems[J]. IEEE Transaetions on Automatic Control, 1996, 41(7):277-286.
    [90] Chung S C Y, Lin C L. A transformed Lure problem for silding mode control and chattering reduetion[J]. IEEE Transactions on Automatic Control, 1999, 44(3):563-492.
    [91] Q P Ha, Q H Nguyen, D C Rye. Fuzzy sliding-mode controllers with applications[J]. IEEE Transactions on Industrial Electronics, 2001, 48(1):38-41.
    [92] Jiang K, Zhang J G, Chen Z M. A new approach for the sliding mode control based on fuzzy reaching law[C]. Intelligent Control and Automation, Proeeedings of the 4th Worid Congress, 2002, l:656-660.
    [93]胡家兵,贺益康,刘其辉.基于最佳功率给定的最大风能追踪控制策略[J].电力系统自动化, 2005, 29(24): 32-38.
    [94]姚骏,廖勇,瞿兴鸿,等.直驱永磁同步风力发电机的最佳风能跟踪控制[J].电网技术, 2008,32(10):11-15.
    [95] T Thiringer, J Linders. Control by variable rotor speed of a fixed-pitch wind turbine operating in a wide speed range[J]. IEEE Trans. on Energy Conversion, 1993, 8(3): 520-526.
    [96] R.J.Wai,C.Y.Lin,Y.R.Chang.Novel maximum-power-extraction algorithm for PMSG wind generation system[J]. IET Electric Power Applications, 2007,1(2) :275– 283.
    [97] T.Senjyu, S.Tamaki, N. Urasaki.Wind velocity and rotor position sensorless maximum power point tracking control for wind generation system[C]. Power Electronics Specialists Conference, 2004:2023 - 2028 .
    [98] Shigeo Morimoto, Hideaki Nakayama, Masayuki Sanada,Yoji Takeda.Sensorless Output Maximization Control for Variable-Speed Wind Generation System Using IPMSG[J]. IEEE Transaction on Industry Applications, 2005,40(1):60-67.
    [99]赵仁德,王永军,张加胜.直驱式永磁同步风力发电系统最大功率追踪控制[J].中国电机工程学报, 2009, 29(27):106-111.
    [100]段玉波,邵海龙,徐建军,等.变速恒频风力发电最大功率捕获控制策略研究[J].科学技术与工程, 2009, 9(23):7007-7011.
    [101]张震,吴根忠.永磁同步风力发电机最大功率控制的研究[J].微计算机信息, 2009, 25(1)36-37,114.
    [102]邓秋玲,黄守道.永磁同步风力发电系统输出功率最佳控制[J].微特电机, 2009, (7):49-51,55.
    [103]邓秋玲,石安乐,谢卫才,许志伟.直驱永磁风力发电系统无位置传感器最大功率点跟踪控制[J].湖南工程学院学报, 2009, 19(4):5-8.
    [104]谢丽蓉,南新元,高瑜.基于PMSG风力发电系统的最大功率追踪控制[J].水力发电, 2008, 34(5):100-103.
    [105]王伟胜,陈默子.浅论我国风电接入系统的有关问题[J].中国电力,2004,4:49-53.
    [106]孙涛,王伟胜,戴慧珠,等.风力发电引起的电压波动和闪变[J].电网技术, 2003, 27(12):62-66.
    [107]赵书强,范伟.由风力发电引起的电力系统强迫功率振荡[J].华东电力, 2009, 37(1):98-102.
    [108]迟永宁,王伟胜,刘燕华,等.大型风电场对电力系统暂态稳定性的影响[J].电力系统自动化. 2006, 30(15): 10-10.
    [109] Luo Changling, Banakar H, Shen Baike, et al. Strategies to smooth wind power fluctuations of wind turbine generator[J]. IEEE Trans. on Energy Conversion, 2007, 22(2):341-349.
    [110] Boukhezzar B, Siguerdidjane H. Nonlinear control of variable speed wind turbines for power regulation[C]. 2005 IEEE conference on control applications, Toronto,Canada, 2005.
    [111] Ushiwata K, Shishido S, Takahashi R, et al. Smoothing control of wind generator output fluctuation by using electric double layer capacitor[C]. International Conference on Electrical Machines and Systems, Seoul, Korea, 2007.
    [112]黄亚峰.风电机输出功率波动平抑控制的可行性研究[D].吉林,东北电力大学, 2007.
    [113] Changling Luo, Hadi Banakar, Baike Shen,et al. Strategies to smooth wind power fluctuations of wind turbine generator[J]. IEEE Transaction on Energy Conversion. 2007,22(2):341-349.
    [114] Lucian Mihet-Popa, Frede Blaabjerg, and Ion Boldea. Wind Turbine Generator Modeling and Simulation Where Rotational Speed is the Controlled Variable[J]. IEEE Trans. on Industry Applications, 2004,40(1):3-10.
    [115]唐建平.一种新型交流励磁风力发电机系统励磁控制策略的研究[D].重庆,重庆大学, 2007.
    [116]吴学光,张学成,印永华,戴慧珠.异步风力发电系统动态稳定性分析的数学模型及其应用[J].电网技术, 1998, 22(6):68-72.
    [117]贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社, 2006.
    [118]杨顺昌.电机的矩阵分析[M].重庆大学出版社,1988.
    [119]王成元,夏加宽,杨俊友,等.电机现代控制[M].北京:机械工业出版社, 2006.
    [120]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社, 1997.
    [121]章卫国,杨向忠.模糊控制理论与应用[M].西北工业大学出版社, 1999.
    [122]汤兵勇,路林吉,王文杰.模糊控制理论与应用技术[M].清华大学出版社, 2002.
    [123]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社, 2002.
    [124]黄宇淇,姜新建,邱阿瑞.飞轮储能能量回馈控制方法[J].清华大学学报(自然科学版). 2008, 48(7):1085-1088.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700