复合材料风力发电叶片的流固耦合模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济的快速发展,能源和环境问题成了当今世界共同面临的两个重大问题,人类在大力发展可再生能源方面已经达成共识。风能作为一种绿色无污染的新能源已引起了世界各国的注意并日益受到重视,而风力发电是目前风能利用的主要形式。
     在整个风力发电系统中,叶片是最为关键的部件之一,同时也是受力最为复杂的部件。叶片的可靠性直接关系到整个系统的安全运行,叶片的转速、尖速比等直接影响风力发电机的性能。本课题以某一水平轴的复合材料风力发电叶片为研究对象,运用Ansys Workbench软件平台中的流体计算软件CFX对其在不同工况下进行流固耦合数值模拟,并分析不同的因素对叶片流固耦合结果的影响。
     本文首先对叶片进行了振动模态分析,并通过与现有文献的结果对比验证了叶片模型的正确性。通过对在一定风速和尖速比范围内的叶片的流固耦合计算结果进行对比,结果显示在不同的风速情况下叶片有唯一的最佳尖速比:在最佳尖速比情况下,计算分析叶片的应力和变形随叶片厚度的变化情况;最后在原有叶片的基础上改变叶片的翼型相对厚度和叶片长度,并对其进行流固耦合模拟。
     对比不同叶片的流固耦合模拟计算结果发现:不同叶片的应力和变形云图变化不大。叶片的应力集中发生在叶片压力面上距离叶尖约三分之一叶长部位,该部位是叶片的危险截面,易发生疲劳断裂;叶片的变形是从叶根到叶尖呈梯度分布。叶片长度的增加会加剧叶片的应力集中和变形情况,而叶片翼型相对厚度和弦长的增大会在一定程度上改善叶片的应力集中和变形情况。
With the rapid development of global economy, energy and environment have become the major problems confronted by the world nowadays. It has reached a consensus for developing renewable energy vigorously. As a green, non-polluting energy, wind energy has attracted the attention of the world and has been received increasing attention. And wind power is the main form of wind energy utilization.
     The blade is one of the most critical components in the wind power generation system, whose stress state is complex. The reliability of blade is directly related to the safe operation of the entire system, the rotational speed and tip speed ratio is a directly affects the performance of the wind turbine. A certain horizontal axis composite wind turbine blade was used as the main research model, and the paper simulated its fluid solid interaction by CFX on SNSYS Workbench software, and analyzed the changes of the results under different conditions.
     Firstly, this paper analyzed the modal of the blade, and verified exactness of the modal by comparing with the results of existing paper. The results showed that it had a unique optimal tip speed ratio by contrasting the results under different wind speed. Blades under different thickness were analyzed by fluid structure interaction simulation in condition of the optimal tip speed ratio. At the end, the paper analyzed the blades with different aerofoil parameter and length.
     The result showed there was little change in the stress and deformation contours of different blades. The stress concentrations of blades appeared at about one-third of the blade length from the blade tip under compressive stress, which can easily lead to fatigue failure. And the deformation of the blade from root to tip emerges in gradient distribution. The increase of the blade length exacerbated the stress concentration and deformation of the blade, and the increase of the aerofoil parameter improved the stress concentration and deformation of the blade to some extent.
引文
[1]周鹤良.我国风力发电产业发展前景与策略[J].变流技术与电力牵引,2006,(2):4-8
    [2]王志新.现代风力发电技术及工程应用[明.北京:电子工业出版社,2010
    [3]李军向.大型风机叶片气动性能计算与结构设计研究[D].武汉:武汉理工大学,2008
    [4]杨校生.风力发电技术与风电场工程[M].北京:化学工业出版社,2011
    [5]陈海平,孙文磊.风力发电机叶片的动力特性分析[J].机床与液压,2010,38(23):101-104
    [6]危危,曹登庆,初世明.风力机叶片动力学建模研究[J].动力学与控制学报,2011,9(4):342-347
    [7]潘艺,周鹏展,王进.风力发电机叶片技术发展概述[J].湖南工业大学学报,2007,21(3):48-51
    [8]王飞.小型风力发电机叶片设计与制造工艺研究[D].南宁:广西大学,2007
    [9]叶正寅,蒋跃文,武洁.大厚度翼型弹性振动中的分叉现象分析[J].振动工程学报,2010,23(5):487-493
    [10]傅程,王延荣.风力机叶片动力学响应分析[J].太阳能学报,2010,(7):917-922
    [11]薛正福.风力机适应性叶片的参数化建模与有限元分析[D].呼和浩特:内蒙古工业大学,2009
    [12]魏义利.大型风力机叶片的外形设计与数值模拟分析[D].大连:大连理工大学,2010
    [13]王军,周丙超.基于MATLAB的小型风力机叶片设计[J].水电能源科学,2007,25(5):142-144
    [14]赵伟国,李仁年,李德顺等.风力机专用翼型数值模拟中湍流模型的选择[J].西华大学学报(自然科学版),2007,26(6):61-62,65
    [15]李仁年,张士昂,杨瑞等.风力机的翼型弯度对风力机翼型气动性能的影响[J].流体机械,2009,37(5):17-21
    [16]JT Xing, WG Price, QH Du. Mixed finite element substructure-subdomain methods for the dynamical analysis of coupled fluid-solid interaction problems[J]. Trans. R. Soc. Lond,1996,354:259~295
    [17]Benra F-K, Dohmen H J. Comparison of pump impeller orbit curves obtained by measurement and FSI simulation[C].//2007 ASME Pressure Vessels and Piping Division Conference,2007
    [18]Morand H J-P, Ohayon R. Fluid-structures interaction[M]. Chichester:John Wiley and Sons, 1995
    [19]王营,陶智,杜发荣,郝勇.宽弦空心风扇叶片流固耦合作用下的叶片响应分析[J].航空动力学报,2008,23(12):2177-2183
    [20]周忠宁.对旋轴流风机流固耦合特性研究及其基于非线性动力学的应用[D].徐州:中国矿业大学,2009
    [21]李兵,陈雪峰.ANSYS Workbench设计、仿真与优化[M].北京:清华大学出版社,2008.
    [22]Marshall JC, Imregun M. A review of aeroelasticity methods with emphasis on turbomachinery applications[J]. Journal of Fluid and Structures,1996,10 (3):237~267
    [23]齐学义.流体机械设计理论与方法[M].北京:中国水利水电出版社,2008
    [24]VYakhot, S.AOrszag. Renormalization Group Analysis of Turbulence:Basic Theory [J]. Journal of Scientific Computing,1986,1(1):3~51
    [25]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27:19-38
    [26]浦广益ANSYS Workbench 12基础教程与实例详解[M].北京:中国水利水电出版社,2010
    [27]张维智,李方洲.采用修改的Wilson方法对风力机叶片进行优化设计[C].全国第一届风能技术应用年会,2004,20-27
    [28]勒古里雷斯.风力机理论与设计[M].北京:机械工业出版社,1987
    [29]王学永.风力发电机叶片设计及三维建模[D].保定:华北电力大学2008
    [30]S. M. Habalia, I. A. Saleh. Local design, testing and manufacturing of small mixed airfoil wind turbine blades of glass fiber reinforced plastics Part I:Design of the blade and root[J]. Energy Conversion & Management.2000 (41):249~280
    [31]徐华舫.空气动力学基础.北京:北京航空学院出版社.1987:33-57
    [32]叶枝全,马昊,丁康等.水平轴风力机桨叶的实验模态分析[J].太阳能学报2001,22(4):473-476
    [33]刘翠.风力机叶片的优化设计及其动力学特性分析[D].吉林:吉林大学,2005
    [34]Epaarachchi, Jayantha, Clausen. The Development of a Fatigue Loading Spectrum for Small Wind Turbine Blades. Journal of Wind Engineering & Industrial Aerodynamics. 2006,94 (4):203-207
    [35]朱蕾.复合材料风力发电机叶片结构优化设计[D].哈尔滨:哈尔滨工业大学,2007
    [36]费金凡.复合材料风力叶片结构的有限元分析[D].武汉武汉理工大学,2009
    [37]梁明轩.风力机叶片流固耦合机理研究[D].沈阳:沈阳工业大学,2011
    [38]潘旭.MW级风力发电机风轮叶片流固耦合场强度分析[D].郑州:郑州大学,2011
    [39]刘克刚.风力机叶片设计与流场仿真[D].武汉:武汉理工大学,2011
    [40]Guanpeng Xu, Lakshmi N. Sankar. Computational Study of Horizontal Axis Wind Turbines. J. Soul. Energy. February 2000,Volume 122, Issue 1:35~40
    [41]韩古忠,王敬,兰小平FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004
    [42]谢龙汉,赵新宇,张炯明.ANSYS CFX流体分析及仿真[M].北京:电子工业出版社,2012
    [43]韩金龙.小型风力机叶片断裂原因及解决方案[J].农村牧区机械化,2006(1):31-32
    [44]乔印虎.风力发电机叶片振动研究与保护[D].乌鲁木齐:新疆大学,2006
    [45]刘虎平.风力机叶片设计和颤振分析[D].西安:西北工业大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700