用户名: 密码: 验证码:
水平轴风力机叶片优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对迫在眉睫的能源和环境危机,以及风能开发成本的不断降低,各国都在进一步加大对风力发电的开发力度。风力机是风能利用的核心,而水平轴风力机是风力机主要形式。叶片作为水平轴风力机的关键部位,其外形决定了风力机风能的转换效率,因而叶片优化设计技术在风力机设计制造中占有相当重要的地位。另外,风力机运行过程中,叶片受到交变性和随机性载荷,必然会发生振动。叶片的振动特性对叶片的变形和寿命有重要影响,因此对其进行研究也是十分必要。
     本文对水平轴风力叶片优化设计及振动特性开展了相关研究,论文的主要工作和结论如下:
     ①回顾了国内外水平轴风力机发展现状,考察了风力机叶片设计的研究现状,并对水平轴风力机叶片的优化设计研究现状进行了综述。
     ②详细介绍了水平轴风力机空气动力学理论及Wilson叶片设计方法。
     ③在片条理论基础上,考虑叶尖和轮毂损失、叶栅、失速及叶片三维效应等各种修正因素,建立了水平轴风力机气动性能计算模型。采用此模型对NREL 20kW风力机进行了气动性能计算,并对比NREL的计算结果,分析和检验了模型的正确性及实用性。
     ④对定桨距风力机和变桨距风力机采用了两种不同的设计方法。对于定桨距风力机的叶片优化设计,本文将叶片设计攻角当着变量来处理,在不超过额定功率和基本运行风速的范围内,综合考虑叶片截面翼型气动特性,叶片截面之间的约束和风场风速的概率分布情况,以全年发电量最大为优化设计目标,建立了定桨距风力机关于叶片弦长和扭角的气动优化模型并利用遗传算法对20kW定桨距风力机叶片进行优化设计。通过对20kW定桨距3叶片风力机的气动性能评价以及与NREL的同功率风力机的对比表明,本文优化设计的风力机具有更好的气动性能。对于变桨距风力机的叶片优化设计,利用Wilson方法对叶片进行初步外形设计,然后以设计攻角为变量建立了以额定风速下功率系数最大为优化目标的1 MW变桨距风力机叶片优化模型并利用遗传算法进行了优化计算,对比Wilson方法设计的结果,本文优化的风力机具有更好的气动性能,表明本文设计方法的优越性。
     ⑤基于叶片外形数据和翼型二维离散数据,经过复杂的矩阵坐标变换得到叶片各点的三维数据,利用三维建模软件UG进行了实体建模,为扭曲实体建模和其他复杂实体建模提供了新思路。
     ⑥根据三维模型建立了叶片的有限元模型,利用ANSYS Workbench对叶片进行了模态分析并计算得到Campbell图。计算结果表明,叶片的主要振动形式是挥舞振动和摆振振动,叶片以额定转速运行时,不会发生共振现象。
Facing imminent energy and environmental crisis, and wind development costs continue to reduce,countries were to further increase efforts to develop wind power .Wind turbine is the core of wind energy,and horizontal-axis wind turbine is the most common form of wind turbines. The blade is a key component of horizontal axis wind turbine, the shape of it decided the wind energy conversion efficiency, thus the optimal design of blade is the primary task of the wind machine design. In addition, the dynamic characteristics of the blades had an important effect on their deformation and life. Therefore, to study it is also very necessary.
     In this paper, the horizontal axis wind blade aerodynamic shape optimization and dynamic characteristics were researched. The main work and conclusions of the paper were as follows:
     ①The domestic and international development status of horizontal axis wind turbine and the blade design wind turbines were stated. The blade aerodynamic optimization of horizontal axis wind turbine was reviewed.
     ②The horizontal-axis wind turbine aerodynamic theory and Wilson method were introduced in detail.
     ③Considering the cascade theory, tip losses, root losses, blades 3-d rotating effect, stall correction of momentum theory and other modifying factors, the aerodynamic performance calculation model was established on the basis of strip theory. NREL 20kW wind turbine aerodynamic performance was calculated according to this model, contrasting the results of NREL, which showed the model was correct and practicality.
     ④Fixed-pitch and pitch-variable wind turbines were designed using two different methods in this paper. For fixed-pitch wind turbines blade optimization,the design attack angles was treated as a variable, considering the blade airfoil section aerodynamic characteristics, the constraints between the blade section and the wind speed probability distribution of wind farm, an optimization model with the objective of maximum annual energy production is established in the range of rated power and basic operating wind speed. The blade geometry of a 20kW fixed-pitch wind turbine was optimized using genetic algorithm according to the model. Through the evaluation of the aerodynamic performance of 20kW fixed-pitch wind turbine and the comparison with the same type wind turbine of NREL, the results showed that optimized wind turbine has a better aerodynamic performance. For pitch-variable wind turbines blade optimization, using first Wilson theory to design of blades preliminary, and then treating the design attack angles as a variable, using genetic algorithm to design again. Through the blade optimization and the aerodynamic performance evaluation of a 1.0MW pitch-variable wind turbine, the results showed that optimized wind turbine had a better aerodynamic performance, which illustrated the superiority of this design method.
     ⑤The two-dimensional airfoil profile data points were converted into three-dimensional data points of blades through a complex matrix of coordinate transformation. And a solid modeling of blades was established by three-dimensional modeling software UG, which provided some new ideas for establishing distortion modeling and other complex solid modeling.
     ⑥The finite element model of the blade was established through three-dimensional model, and the blade vibration modal and the Campbell diagram were analyzed by ANSYS Workbench. The results showed that the main vibration form of blade were waved and shimmy vibration, the resonance phenomenon did not occur when blades running at rated speed.
引文
[1]何祚庥,王亦楠.风力发电是我国能源和电力可持续发展战略的最现实选择[J].上海电力,2005(1):8-18.
    [2] Thomas Ackermann, Lennart soder.Wind energy technology and current status: a review.Renewable and Sustainable Energy Reviews,2000,(4):315-374.
    [3]李俊峰,施鹏飞,高虎.中国风电发展报告2010[M].海南:海南出版社,2010.
    [4]刘雄,陈严,叶枝全.水平轴风力机气动性能计算模型[J].太阳能学报,2005,26(6):792~800.
    [5]吴望一.流体力学[M].北京大学出版社,2004.
    [6] Miller R H.The aerodynamic and dynamic analysis of horizontal axis wind turbine [J]. Wind Engineering and Industrial aerodynamics,1985,(15):329-340.
    [7] Tony Barton,David Sharpe,Nick Jenkins,Ervin Bossanyi. Wind energy handbook[M]. John Wiley&Sons,New York,2001.
    [8]陈旭,郝辉,田杰.水平轴风力机翼型动态失速特性的数值研究[J] .太阳能学报,2003,24(6):735-740.
    [9] N.S.Cetin,etal.Assessment of optimum tip speed ratio of wind turbines [J].Mathematical and Computational applications,2005,10(1):147~154.
    [10] M.Jureczko,M.Pawlak,A.Mezyk.Optimisation of wind turbine blades[J].Journal of materials processing technology,2005,167:463~471.
    [11] Bernardo Fortunato,Giovanni Mummolo.Technical-economic optimization of a wind power plant by means of a stochastic analytical model[J].Energy Convers,1997,38(8):813~827.
    [12]杜朝辉,M S Selig.一种水平轴风轮叶片的气动设计方法[J].太阳能学报2000,10(4):364-369.
    [13]刘雄,陈严,叶枝全.风力机桨叶总体优化设计的复合形法[J].太阳能学报.2001,4(2):157-161.
    [14]刘雄,陈严,叶枝全.遗传算法在风力机风轮叶片优化设计中的应用[J].太阳能学报.2006,27(2):180-185.
    [15]杨从新,巫发明,张玉良.风力机风轮叶片气动设计程序开发[J].西华大学学报.2008,7(4):39-41.
    [16]杨瑞,李仁年,韩伟等.一种风力机风轮设计和优化方法研究[J].西华大学学报.2008,7(4):46-49.
    [17]韩中合,吴铁军.基于遗传算法的风力机叶片优化设计[J].动力工程. 2008,28(6):955-958.
    [18]张湘东,聂国华.大型水平轴风力机叶片气动性能优化[J].计算机辅助工程.2009,18(1):48-52.
    [19]张维智,张甜.水平轴风力机优化设计与最大性能估算[J].东方电气评论.2009(23):64-69.
    [20]陈进,王旭东,沈文忠等.风力机叶片的形状优化设计[J].机械工程学报.2010,2(46):131-134.
    [21]陈家权,杨新彦.风力机叶片立体图的计算机绘制[J].CAD/CAM与制造业信息化.2005(12):30-33.
    [22]杨涛,李伟,张丹丹等.风力机叶片气动外形设计和三维实体建模研究[J].机械设计与制造.2010(7):190-191.
    [23]孙永泰.风力机叶片外形参数建模[J].玻璃钢.2007(2):2-9.
    [24]任腊春,张礼达.基于UG的风力机叶片参数化建模方法研究[J].机械设计与制造.2008(5):58-59.
    [25]费金凡,张小玉,李卓球等.风力机叶片CAD与CAE结合建模计算[J].固体力学学报.2008,12(29):38-40.
    [26]贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社,2006.
    [27] Glauert H.Windmill and fans.Aerodynamics Theory[M],eidt by Durand W F.Julius Springer,Berlin,Germany,1935.
    [28]陈云程,陈孝耀,朱成名.风力机设计与应用[M].科学技术出版社,1990:20-35.
    [29] Wilson R E,Lissaman P B S,Walker S N.Aerodynamic performance of wind tubine[M].Oregon State Unvinersity,1976.
    [30]杜朝辉.水平轴风力涡轮设计与性能预估方法的三维失速延迟模型——模型建立及应用[J].太阳能学报,2000,21(1):1~6.
    [31] Selig M S, Tangler J L.Development and application of a multipoint inverse design method for horizontal axis wind turbines[J].Wind Engineering,1995,19(2):91~105.
    [32] Giguere P, Selig M S.Aerodynamic blade design methods for horizontal axis wind turbines[C].13th Canadian Wind Energy Association Conference and Exhibition,Quebec,Canada,October,19-22,1997.
    [33] Glauert H.Airplane propellers.Aerodynamic theory[M].eidt by Durand W F.Julius Springer,Berlin,Germany,1935.
    [34] Snel H. Review of the present status of rotor aerodynamics[J]. Wind Energy, 1998,1(S1):46–69.
    [35] P.Fuglsang, H.A. Madsen.Optimization method for wind turbine rotors[J]. Wind Energy,1999,80:191-206.
    [36] Karam Y Maalawia,Hani M Negm.Optimal frequency design of wind turbine blades[J]. Wind Energy.2002,90:961-986.
    [37]刘小卡.水平轴风力机气动设计与实体建模[D].上海交通大学, 2010,1:50.
    [38] Leishman JG.Challenges in modelling the unsteady aerodynamics of wind turbines[J].Wind Energy, 2002,5(2–3):85-132.
    [39] Conlisk AT.Modern helicopter rotor aerodynamics[J].Progr Aerospace Sci ,2001,37(5):419-76.
    [40] Emesto Benini,Andrea Toffolo.Optimal design of horizontal axis wind turbines using blade-element theory and evolutionary computation [J]. ASME Journal of Solar Energy Engineering,2002,124 (4) : 357~363.
    [41] Sung Nam Jung, Tae-Soo No, Ki-Wahn Ryu.Aerodynamic performance prediction of a 30 kW counter-rotating wind turbine system[J]. Renewable Energy,2005,30:144-631.
    [42] Giguere P,Selig M S.Design of a tapered and twisted blade for the NREL combined experiment rotor [R].USA:NREL/TP-442-7109, 1994.
    [43] Miller M S ,Shipley D E,Young T S,Robinson M C.Combined Experiment,Phase II Data Characterization[R].USA: NREL/TP-442-6916,1995.
    [44]李敏强,寇纪淞,林丹,李书全.遗传算法的基本理论及应用[M].北京:科技出版社,2002.
    [45] Tangler J L, Somers D M. NREL airfoil families for HAWTs[R].USA:NREL/TP-442-7109, 1995.
    [46] Coton FN, Wang T, Galbraith RAM. An examination of key aerodynamic modelling issues raised by the NREL blind comparison[J]. Wind Energy, 2002,5:199–212.
    [47] Hand M,Simms D,Fingersh L. Unsteady aerodynamics experiment phase vi:Wind tunnel test configurations and available data campaigns[M].Technical report ,NREL/TP-500-29955,NREL,December 2001.
    [48] SchreckS.The NREL full-scale wind tunnel experiment introduction to the special issue[J]. Wind Energy 2002,5(2-3):77–84.
    [49] Ye zhiquan,Ma Haomin,BaoNengsheng,et al.Structure dynamic analysis of a horizontal axis wind turbine system using a modal analysis method [J].Wind Engineering,2001,25(4):237-248.
    [50]李德源,叶枝全,包能胜,陈严.风力机旋转风轮振动模态分析[J].太阳能学报,2004,25(1):72-77.
    [51]韩新月.水平轴风力机叶片多目标优化设计及结构动力学分析[D].汕头大学.2008,1:70.
    [52]包飞.风力机叶片几何设计与空气动力学仿真[D].大连理工大学.2008,1:60.
    [53]小飒工作室.最新经典ANSYS及Workbench敎程[M].北京:北京电子工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700