高温高压三相介质煤吸附瓦斯机理与吸附模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个缺油少气富煤的国家,煤炭是主要能源,深部煤炭及煤层气资源储量丰富。瓦斯(煤层气)与煤同生共体,主要以吸附态存在,煤的吸附能力是影响煤层含气量的关键因素之一。煤及煤储层的吸附实质上是一定温压条件下固、气、液三相介质耦合作用的结果,深部煤层三相介质条件的变化,对煤吸附瓦斯的控制机理还不明确。
     针对深部煤层开采所面临的瓦斯灾害防治问题,论文研究在借鉴前人已有成果的基础上,基于煤岩学、瓦斯(煤层气)地质学、力学、物理化学及界面化学、统计热动力学、物理模拟和数值模拟等学科理论,分析了深部煤层温度、压力以及固、液、气三相介质的变化特征,分别选用褐煤、气煤、焦煤和无烟煤作为研究煤样,综合采用常规测试、孔隙结构测试和化学组成分析等测试手段和方法,对不同含水率煤样、不同浓度比例的混合气体进行高温高压吸附实验,深入研究了高温高压三相介质条件下煤吸附瓦斯的控制机理和吸附模型。论文研究取得了以下主要进展:
     (1)基于煤孔隙表面的非均匀特征和非均匀固体的物理吸附理论,引入煤的分形维数,提出了煤的综合分形维数,建立了高温高压三相介质条件下煤吸附瓦斯的Fractal-Langmuir数学模型。与传统的Langmuir模型相比,新模型精度高,具有更普遍的理论意义。
     (2)对深部煤层的含水率进行了物理模拟和数值模拟,结果显示:在煤级相同的前提下,埋藏深度增加,煤层温度升高,煤层含水率减小,但到达一定埋藏深度后,温度因素可能不再对煤层含水率产生影响;建立了平衡水分含量与温度和煤级的综合数值模型。
     (3)高温高压平衡水条件下煤吸附瓦斯的实验结果显示,相同压力条件下,不同煤级,温度与水分对煤的吸附影响存在差异,温度对褐煤的吸附影响大于水分的影响;温度对焦煤的吸附影响小于水分的影响;而气煤和无烟煤表现为:30℃向40℃过渡时,温度的影响小于水分的影响;40℃向50℃过渡时,温度的影响大于水分的影响。
     (4)对深部煤层进行等温吸附实验研究时,应该选用与模拟深度相对应的温度下平衡水含量的煤样;最高实验验压力宜设置为煤层实际压力的1.2倍。
It is short of petroleum and gas but rich in coal in our country, and coal is the mainenergy which is an important strategic position in national economy and socialdevelopment. The prediction results of Coal and CBM resource shows that there areabundant coal and CBM resource in the deep coalbed of our country. Virtually, theadsorption of coal and coal reservoir is solid, gas, liquid three-phase media couplingresult in a certain temperature and pressure. Gas (CBM) and coal are generated at thesame time and methane as the main component and mainly adsorbed into the coalbed,the adsorbability of coal bed is the one of key factor to effect gas content. Thecontrolling mechanism of changes of deep coalbed three-phase medium to coal adsorbgas is unclear.
     Facing the problem of gas disaster prevention and control of deep coalbed mining,in drawing on previous research results and based on coal petrology, gas (CBM)geology, mechanics, physical chemistry and interface chemistry, statisticalthermodynamics, physical modeling and numerical simulation theory and otherdiscipline theory, analyse the variation of deep coalbed temperature, pressure andthree-phase media (solid, liquid and gas), selecting four coal samples that lignite fromBeizao mine, Longkou mining area, Shandong province, gas coal from Caiyuan mine,Weishan, Jining Shandong province, coking coal from Xiqv mine, Gujiao mining areaShanxi province and anthracite from Guhanshan mine Jiaozuo mining area, Henanprovince as the study samples, comprehensive use the methods of routine test, porestructure test, chemical composition analysis and others to do high temperature highpressure adsorption experiment of coal samples at different moisture content anddifferent concentration proportion of the gas mixture, coupling analyse the effect oftemperature, pressure, moisture, coal rank, microstructure and petrological composition,chemical composition and other characteristics for gas adsorption, exploring thedynamic control mechanism of adsorbtion on coal at high temperature and high pressurethree-phase medium. The coal fracture dimension was introduced to characterize itsinhomogeneity of complex structure and to establish the Fractal-Langmuir mathematicalmodel base on the physical adsorption theory of inhomogeneous solid.
     The study shows that the geological features of deep coalbed are high temperature,high pressure and low water content. The coalbed temperature increases with the burialdepth increasing, but it causes low adsorption and low moisture content with thetemperature elevated. While the the adsorption increased because of the elevatedmoisture content.The experiment results show that the VF-Lof wood coal decreases withincreasing temperature, but it is in contrast with the situation about coking coal. In thesame pressure conditions, there are differences in the effects of the different coal rank,temperature and moisture on the adsorption of coal. So, the characteristical results ofthis adsorption experiments are due to the combined effects of temperature and pressureand water content. The coal samples of equilibrium water corresponding to thetemperature shoud be selected and the highest experimental pressure is usually set to1.2times the actual coalbed to carry out adsorption experiments on deep coalbed. There arefeatures of the theoretical significance of widespread and high accuracy on theFractal-Langmuir adsorption model.
引文
[1]国家自然科学基金委员会中国科学院能源科学学科发展战略研究组.2011~2020年我国能源科学学科发展战略报告.2010.
    [2]叶建平,秦勇,林大扬.中国煤层气资源[M].徐州:中国矿业大学出版社,1998.
    [3]车长波,杨虎林,李富兵等.我国煤层气资源勘探开发前景[J].中国矿业.2008,17(5):1~4.
    [4] AMARASEKERA G, SCARLETT M J, MAINWARING D E. Micropore size distributionand specific interactions in coals [J]. Fuel,1995,74(1):115~118.
    [5] LEVY J H, DAY S J, KILLINGLEY J S. Methane capacities of Bowen Basin coals related tocoal properties [J]. Fuel,1997,76(9):813~819.
    [6] LAXMINARA C H, CROSDAE P J. Role of coal type and rank on methane sorptioncharacteristics of Bowen Basin, Australia coals [J]. International Journal of Coal Geology,1999,40(4):309~325.
    [7]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社,2003.
    [8]张小东,王利丽,张子戌.山西古交矿区马兰矿肥煤注水后煤体吸附膨胀行为[J].煤炭学报,2009,34(10):1310~1315.
    [9] YAO Y B, LIU D M, TANG D Z etal. Fractal characterization of adsorption-pores of coalsfrom North China: An investigation on CH4adsorption capacity of coals [J]. InternationalJournal of Coal Geology,2008,73(1):27~42.
    [10]钟玲文,郑玉柱,员争荣等.煤在温度和压力综合影响吸附性能及气含量预测[J].煤炭学报,2002,27(6):581~585.
    [11]彭苏萍.深部煤炭资源赋存规律与开发地质评价研究现状及今后发展趋势[J].煤,2008,17(2):1~12.
    [12]张泓,夏宇靖,张群,晋香兰等.深层煤矿床开采地质条件及其综合探测——现状与问题[J].煤田地质与勘探,2009,37(1):1~12.
    [13] Gregg S J,Sing K S.Adpsorption,surface area and Porosity,2nd ed.,.London: Academic press,1982.242-257.
    [14]余申翰.煤层内瓦斯的赋存状态.煤炭学报,1981(2):1~4.
    [15] Brenner D. Microscopic in-situ studies of the solvent-included swelling of their section ofcole. Fuel.1984,63:1324~1328.
    [16] Brunauer S. Emment P H. Teller,E.J Amer. Chem. Soc.1938,60:309.
    [17] Brunauer S.Deming L.S. Deming S.W,et al,J Amer. Chem. Soc.1940,62:1723.
    [18]严继民,张启元,高敬琮.吸附与凝聚:固体的表面与孔(第二版).北京:科学出版社,1986.
    [19] Moffat.D H,Weale K E.Sorption by coal methane at high pressure.Fuel,1995,34:417~428.
    [20] Yang R T, Saunders J T.. Adsorption of gases on coal and heat-treated coals at elevatedtemperature and pressure. Fuel.1985,64:314~327.
    [21]陈昌国,鲜晓红,张代均.无烟煤及其炭化样吸附甲烷的动力学研究.重庆大学学报,1995,18(3):76~79.
    [22]陈昌国.煤的物理化学结构和吸附(解吸)甲烷机理的研究[博士学位论文].重庆:重庆大学,1995.
    [23]何学秋.交变电磁场对煤吸附瓦斯特性的影响.煤炭学报,1996,21:63~67.
    [24] Langmuir I. The constitution and fundamental properties of solids and liquids. Journal ofAmerican Chemical society,1916,38:2221~2295.
    [25] Ettinger I, Zimakov B, Yanovskaya. Natural factors influencing coal sorption propertiesPetro-graphy and the sorption properties of coals[J]. Fuel,1966,45:243~259.
    [26]张力,何学秋,聂百胜等.煤吸附瓦斯过程的研究[J].矿业安全与环保,2000,27(6):1~4.
    [27]张力,何学秋,王恩元等.煤吸附特性的研究.太原理工大学学报,2001,32.4:450~452.
    [28] Ruppel T C. Adsorption of methane on dry coal at elecated pressure[J]. Fuel,1974,53:152~162.
    [29] Rvthven D M. Principles of Adsorption and Adsorption Processes. New York: John Wiley andSons,1984:115~118.
    [30] Dubinbin M M, Stoecki H F. Homogeneous and Heterogeneous Micropore Structure inCarbonaceous Adsorbents.. Journal of Colloid&InterfaceSci,1980,75(1):34~42.
    [31] Dubinbin M M. The potential theory of adsorption of gases and vapors for adsorbents withenergetically nonunform surface[J]. Chem Rev,1960,60:235~241.
    [32] Dubinin M M. Chemistry and Physics of Carbon. Carbon,1966,2:51~100
    [33] Stoeck H F. Microporous Carbons and Their Characterization-the Present State of the Art.Carbon,1990,28:1
    [34]王曾辉,高晋生.炭素材料[M].上海:华东化工学院出版社,1991,10:453.
    [35]陈昌国,张代钧等.微孔填充理论研究无烟煤和炭对甲烷的吸附特性[J].重庆大学学报,1998,21(2):75~79.
    [36] Ruppel T C, Grein C T, Bienstock D. Adsorption of methane/ethane mixture on dry coal atelevate pressure[J]. Fuel,1972,51~297.
    [37] Ruppel T C, Grein C T, Bienstock D. Adsorption of methane on dry coal at elevate pressure[J].Fuel,1974,53:152.
    [38] Joubert J I, Grein C T, Bienstock D. Sorption of methane in moist coal[J]. Fuel,1973,52(3):181.
    [39] Joubert J I, Grein C T, Bienstock D. Effect of moisture on the methane capacity of Americancoals[J]. Fuel,
    [40] Lee Y H. Methane recovery from coalbeds: Effects of monolayer capacity and pore structureon gas content[D]. NM: Univ of NM, Albuquerque, May1982.
    [41] Gregory J Bell, Karen C Rakop. Hysteredis of methane/coal sorption istherms[C]. SPE15454,1986.
    [42] Beamish B B, O’Donnell G. Microbalance applications to sorption testing of coal[C].Proceedings of Symposium on Coalbed Methane Research and Development in Australia,Townsville, Queenslang,1992.
    [43] Stevenson M D. Adsorption/desorption of multi-component gas mixtures at in seamconditions[C]. SPE23026,1991.
    [44] Greaves K H, Owen L B. Multi-component gas adsorption/desorptionbehavior of coal[C].No9353, the International Coalbed Methane Symposium, The University of Alabama/Tuscloosa,1993.
    [45] Hawkins J M, Schraufnagel R A, Olszewski A J. Estimating coalbed gas content and sorptionisotherm using well log data[C]. SPE24909,1992.
    [46] Hall F E, Chun-he Zhou, Gasem K A M, et al. Adsorption of pure methane, nitrogen, andcarbon dioxide and their binary mixtures on wet fruitland coal[C]. SPE29194,1994.
    [47]周胜国,郭淑敏.煤储层吸附/解吸等温线测试技术[J].石油实验地质,1999,21(1):76~80.
    [48]蔺金太,郭勇义,吴世跃.煤层气注气开采中煤对不同气体的吸附作用[J].太原理工大学学报,2001,32(1):18~20.
    [49]张晓东,秦勇,桑树勋.煤储层吸附气体研究现状及展望[J].中国煤田地质.2005,17(1):16~22.
    [50] SANG Shuxun, ZHU Yanming, ZHANG Jing, ZHANG Xiaodong&ZHANG Shiyin.Influence of liquid water on coalbed methane adsorption: An experimental research on coalreservoirs in the south of Qingshui basin. Chinese Science Bulletin.2005Vol.50Supp.1~7.
    [51]张群,杨锡禄.平衡水分条件下煤对甲烷的等温吸附特性研究[J].煤炭学报.1999.24(6):566~570.
    [52] Ettinger I, Zimakov B, Yanovskaya. Natural factors influencing coal sorptionproperties-petrography and the sorption properties of coals[J]. Fuel.1966,45:243~259.
    [53]吴俊.中国煤成烃基本理论与实践.煤炭工业出版社[M].1994.121~128.
    [54]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.
    [55]陈昌国,魏锡文,鲜学福等.用从头计算研究煤表面与甲烷分子相互作用[J].重庆大学学报.2000,23(3):77~83.
    [56]艾鲁尼A T.(唐修义等译).1992煤矿瓦斯动力现象的预测和预防[M].北京:煤炭工业出版社.67~69.
    [57] Alexeev A D, Ulyanova E V, Starikov G P et al. Latent methane in fossil coals [J]. Fuel,2004,83(10):1407~1411.
    [58] Alexeev A D, Vasylenko T A, Ulyanova E V. Phase states of methane in fossil coals [J]. SolidState Communications,2004,130(10):669~673.
    [59]关虹,同小妹.用色谱法研究煤有机显微组分的孔结构特性.煤炭转化.1993,16(3):49~55
    [60] Busch A,Gensterblum Y,et al. Methane and CO2sorption and desorption measurements ondry argonne premium coals: pure components and mixtures, International Journal of CoalGeology.submitted,2002.
    [61] Bustin R M, Clarkson C R. Geological controls on coalbed methane reservoir capacity andgas content [J]. International Journal of Coal Geology,1998,38(1-2):3~26.
    [62] Clarkson C R, Bustin R M. Effect of pore structure and gas pressure upon the transportproperties of coal: a laboratory and modeling study.1. Isotherms and pore volumedistributions [J]. Fuel,1999,78(11):1333~1344.
    [63]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报2001,26(5):552~556.
    [64]钟玲文,张慧,员争荣等.煤的比表面积、孔体积及其对煤吸附能力的影响[J].煤田地质与勘探,2002,30(3):26~29.
    [65] Krooss B M, Bergen F, Gensterblum Y, et al. High-pressure methane and carbon dioxideadsorption on dry and moisture-equilibrated Pennsylvanian coals. International Journal ofCoal Geology.2002,51(2):69~92
    [66]桑树勋,秦勇,郭晓波.准噶尔和吐哈盆地侏罗系煤层气储气特征[J].高校地质学报,2003,9(3):365~373.
    [67] Ruppel T C. Adsorption of methane on dry coal at elecated pressure[J]. Fuel,1974,53:152~162.
    [68]张群,杨锡禄.平衡水分条件下煤对甲烷的等温吸附特性研究[J].煤炭学报.1999.24(6):566-570.
    [69]傅雪海,秦勇.多项介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社,2003.
    [70]秦勇,傅雪海,叶建平等.中国煤储层岩石物理学因素控气特征及机理[J].中国矿业大学学报,1999,28(1):14~19.
    [71]周荣福,傅雪海,秦勇.我国煤储层等温吸附常数分布规律及其意义[J].煤田地质与勘探.2000,28(5):23~26.
    [72]秦勇.中国煤层气地质研究进展与述评[J].高等地质学报,2003,9(3):320~338.
    [73] Л.巴卡耶娜.煤炭成分对煤吸附甲烷容量及其天然气含甲烷量的影响.煤层气译文专辑),1980,73~88.
    [74]吴俊.中国煤成烃基本理论与实践[M].北京:煤炭工业出版社,1994,121~128.
    [75]钟玲文,张新民.煤的吸附能力与其煤化程度和煤岩组成间的关系[J].煤田地质与勘探,1990,18(4):29~35.
    [76] Laxminarayana C, Crosdale, P J. Role of coal type and rank on methane sorptioncharacteristics of Bowen Basin, Australia coals [J]. International Journal of Coal Geology,1999,40(4):309~325.
    [77] Laxminarayana, C, Crosdale, P J. Controls on methane sorption capacity of Indian coals [J].AAPG Bulletin,2002,86(2):201-212.
    [78]刘常洪.煤的孔隙结构及其对甲烷的吸附特征[硕士学位论文].淮南:淮南矿业学院,1991.
    [79]孙培德.煤层气越流的固气偶合理论及其计算机模拟研究[博士学位论文].重庆:重庆大学,1998.
    [80] Seewald, H.,Klein,J.. Methansorption an Steinkohle und Kennzeichnung der Porenstruktur.Glückauf-Forschungshefte,1986,47(3):149~156.
    [81] Yee, D., Seidle, J.P., Hanson, W.B. Gas sorption on coal and measurement of gas content. In:Law, B.E., Rice, D.D.(Eds.), Hydro-carbons from Coal. AAPG Studies in Geology,1993:38.
    [82]张庆玲.煤储层条件下水分——平衡水分测定方法研究[J].煤田地质与勘探,1999,26(4):25~27.
    [83] Kim, A.. Estimating methane content of bituminous coalbeds from adsorption data. UnitedStates Department of the Interior, Bureau of Mines, Report of Investigations8245.1977.
    [84] Fails, T.G., Coalbed methane potential of some Variscan foredeep basins. In: Gayer, R.,Harris, I.(Eds.), Coalbed Methane and Coal Geology. Geological Society Special Publication,1996.109:13~26.
    [85] Levy, J., Day, S.J., Killingley, J.S. Methane capacity of BowenBasin coals related to coalproperties. Fuel,1997,74:1~7.
    [86] Krooss B M,Bergen F Van,Gensterblum Y,et al. High-pressure methane and carbon dioxideadsorption on dry and moisture-equilibrated Pennsylvanian caols. Internation Journal of coalGeology,2002,51(2):69~92.
    [87]钱凯,赵庆波,汪泽成.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油工业出版社,1996,119~142.
    [88]钟玲文,郑玉柱,员争荣等.煤在温度和压力综合影响下的吸附性能及气含量预测[J].煤炭学报,2002,27(6):581~585.
    [89]钟玲文.煤的吸附常数与最高试验压力关系的研究[J].煤田地质与勘探,2001,29(4):25~28.
    [90]崔永君,杨锡禄,张庆铃.煤对超临界甲烷的吸附特征[J].天然气工业,2003,23(3):131~133.
    [91]崔永君,张庆玲,杨锡禄.不同煤的吸附性能及等量吸附热的变化规律[J].天然气工业,2003,23(4):130~131.
    [92]张晓东,桑树勋,秦勇等.不同粒度的煤样等温吸附研究[J].中国矿业大学学报,2005,34(4):427~432.
    [93]唐书恒.晋城地区煤储层特征及多元气体的吸附-解吸特征.中国矿业大学博士论文,2001.
    [94] Harpalani S and Pariti U M. Study of coal sorption isotherm using a multicomponent gasmixture. International Coalbed Methane Symposium,1993.
    [95] Paekyn N D,Quinm D F. Porosity in Carbon(Ed by Patrick J W). Londen: Edward Arnold,1995,292~325.
    [96] Greaves K H,Owen L B,et al. Multi-component gas adsorption-desorption behavior ofcoal.Proceedings pof the1993International Coalbed Methane Symposium.
    [97]胡涛,马正飞,姚虎卿.甲烷超临界高压下吸附等温线研究[J].天然气化工,2002,27:36~27.
    [98]周理,吕昌忠,王怡林等.述评超临界温度气体在多孔固体上的物理吸附[J].化学进展1999,11(3):221~226.
    [99]胡涛,马正飞,姚虎卿.吸附热预测吸附等温线.南京工业大学学报[J].2002,24(22):34~39.
    [100]胡涛,马正飞,姚虎卿.用高性能制氧分子筛变压吸附[J].南京化工大学学报,2000,22(5):21~24.
    [101] Rvthven D M. Principles of Adsorption and Adsorption Processes. New York: John Wiley andSons,1984:115-118:44.
    [102]欧成华,李士伦,杜建芬,邓奎.煤层气吸附机理研究的发展与展望[J].西南石油学院学报,2003(25)5:34~38.
    [103]代世峰,张贝贝,朱长生等.河北开滦矿区晚古生代煤对CH4/CO2二元气体等温吸附特性[J].煤炭学报,2009,34(5):577~582.
    [104]孙占学,张文,胡宝群等.沁水盆地大地热流与地温场特征[J].地球物理学报,2006,49(1):130~134.
    [105]史政.松辽盆地北部石炭二叠系构造热演化史与生烃史的关系研究[硕士论文].西安,西北大学,2010.
    [106]王永新等.辽河盆地东部凹陷现今地温场及热历史的研究[J].地球物理学报,2003,46(2):177~202.
    [107]刘瑞安,权继民.地温测井资料在勘探中的应用[J].陕西煤炭,2007,5:53~54.
    [108]解有波.地形复杂地区煤层地温等值线绘制方法初探[J].科学技术与工程,2009,9:2432~2436.
    [109]王炬.丁集井田地温变化规律及防治的探讨[J].能源管理,2010,6:65~66.
    [110]谭静强,琚宜文,侯泉林等.淮北煤田宿临矿区现今地温场分布特征及其影响因素[J].地球物理学报,2009,52(3):732~739.
    [111]王士涛.浅谈白集煤矿深部地温的防治措施[J].煤矿安全,2000,31(1):7~8.
    [112]樊九林,钱泽兵.深部开采煤层自燃危险性规律及防治技术[J].煤矿安全,2009,9:28~30.
    [113]张恒年等.义安煤矿深部开采几项重大问题的思考[J].江苏煤炭,2002,3:7~8.
    [114]付彩丽.楚雄盆地现今地温场特征分析与烃源岩热演化史恢复[硕士论文].西安:西北大学,2005.
    [115]刘爱华,傅雪海.峰峰、大城、开平矿区深部煤层含气量预测[J].黑龙江科技学院学报,2009,3:165~168.
    [116]李红阳.淮南矿区地温变化规律及其异常因素分析[J].煤矿安全,2007,38(11):68~71.
    [117]崔军平.海拉尔盆地热演化史与油气成藏史研究[硕士论文].西安,西北大学,2004.
    [118]王社教等.准噶尔盆地热流及地温场特征[J].地球物理学报,2000,43(6):771~779.
    [119]吴吉南,曹大成.姚桥煤矿东部地温预测研究[J].陕西煤炭技术,1999,3:11~12.
    [120]石中勇.陶二煤矿扩大区地温分带及变化规律研究[J].中国煤炭地质,2010,22(8):63~66.
    [121]王良书等.塔里木盆地北缘库车前陆盆地地温梯度分布特征[J].地球物理学报,2003,46(3):403~407.
    [122]韩德昌.孙村煤矿深部地温预测[J].中国煤炭地质,1989,1:44~46.
    [123]张鹏,王良书等.南华北盆地群地温场研究[J].地球物理学进展.2007,22(2):604~608.
    [124]龚育龄等.渤海湾盆地新生界生油岩系底界面温度分布[J].地质科学,2008,43(1):1~11.
    [125]龚育龄等.济阳坳陷地温场分布特征[J].地球物理学报,2003,46(5):652~658.
    [126]刘文宝等.千米深井热害研究与治理技术[J].煤矿开采,2008,13(5):97~99.
    [127]肖永洲,刘殿元等.龙凤井田9煤地温特征及影响因素分析[J].中国煤炭地质,2009,1:56~58.
    [128]袁玉松等.中国南方现今地热特征[J].地球物理学报,2006,4:194~202.
    [129]刘丽民,苏现波,李金海.河南省煤层气储层压力特征及其形成机制[J].煤田地质与勘探,2009,21(1):45~47.
    [130]张国良,贾高龙.鄂尔多斯盆地东缘煤层气地质及勘探开发方向[J].中国煤层气,2004,1(1):17~20.
    [131]张延庆,唐书恒.华北部分矿区煤储层压力研究[J].地球学报,2001,22(2):165~168.
    [132]张培河.沁水煤田煤储层压力分布特征及影响因素分析[J].煤田地质与勘探,2002,6:32~33.
    [133]李国富,雷崇利.潞安矿区煤储层压力低的原因分析[J].煤田地质与勘探,2002,30(4):30~32.
    [134]傅雪海,秦勇.我国煤储盖层的成因类型、时空展布及控气特征[J].2001,13(1):26~28.
    [135]孙文卿,张萼分,吴桁等.淮南矿区剩余煤层气资源可采潜力分析[J].中国煤炭地质,2010,22(12):24~28.
    [136]张培河.影响我国煤层气可采性主要储层参数特征[J].天然气地球科学,2007,18(6):880~884.
    [137]苏现波,张丽萍.煤层气储层压力预测方法[J].天然气工业,2004.24(5):88~90.
    [138]史继祥,马立军.双鸭山煤田煤含气性及生烃能力探讨[J].煤炭技术,2009,28(2):185~186.
    [139]钟玲文.中国煤储层压力特征[J].天然气工业,2003,23(5):132~134.
    [140]张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学出版社,2002.
    [141]焦作矿业学院瓦斯地质研究室.瓦斯地质概论[M].北京:煤炭工业出版社,1990.
    [142]苏现波,陈江峰,孙俊民等.煤层气地质学与勘探开发[M].科学出版社,2001.
    [143] M.Jaroniec,R Madey.非均匀固体上的物理吸附[M](加璐等译).北京:化学工业出版社,2001.
    [144]孙波,王魁军,张兴华.煤的分形孔隙结构特征的研究[J].煤矿安全,1999,1:38~40.
    [145]亓中立.煤的孔隙系统分形规律的研究[J].煤矿安全,1994,6:2~5.
    [146]徐龙君,张代钧,鲜学福.煤微孔的分形结构特征及其研究方法[J].煤炭转化,1995,18(1):31~38.
    [147] Close J C. Natural fracture in coal. In: Hydrocarbons from coal, Law B E and Rice D D, eds.AAPG, Studies in Geology#38,1993:119~132.
    [148] Close J C. Natural fractures in bituminous coal gas reservoir. Gas Research Institute TopicalReport No.GRI91/0337,1991.
    [149] Gamson P, Beamish B, Johnson David. Effect of coal microstructure and secondarymineralization on methane recovery. Geological Special Publication.1998(199):165~179.
    [150]霍永忠,张爱云等.煤层气储层的显微孔隙成因分类及其应用[J].煤田地质与勘探,1998,26(6):28~32.
    [151]王生维,陈钟惠.煤储层孔隙、裂隙系统研究进展[J].地质科技情报,1995,14(1):53~58.
    [152]傅雪海,秦勇.现代构造应力场中煤储层孔隙应力分析与渗透率研究[J].地球学报,1999,20(增刊):623~627.
    [153] Gan H, Nandi S P, Walker P L. Nature of porosity in American coals[J]. Fuel,1972,51:272~277.
    [154]张慧,王晓刚.煤的显微构造及其储集性能[J].煤田地质与勘探,1998,26(6):33~36.
    [155] ΧoдoтB B.;宋世钊,王佑安译.煤与瓦斯突出[M].北京:中国工业出版社,1966.
    [156]秦勇,徐志伟,张井.高煤级煤孔径结构的自然分类及其应用[J].煤炭学报,1995,20(3):266~251.
    [157]吴俊.中国煤成烃基本理论与实践[M].北京:煤炭工业出版社,1994.
    [158]秦勇.中国高煤级煤的显微岩石学特征及结构演化[M].徐州:中国矿业大学出版社,1994.
    [159]严继民,张启元.吸附与凝聚——固体的表面与孔隙[M].北京:科学出版社,1979.
    [160]傅雪海,秦勇,张万红等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005(增):51~55.
    [161]傅雪海,焦宗福,秦勇等.低煤级煤平衡水条件下吸附实验[J].辽宁工程技术大学学报,2005,24(2):161~164.
    [162]徐龙君,张代钧,鲜学福.煤微孔表面的分形维数及其变化规律的研究[J].燃料化学学报,1996,24(1):81~86.
    [163]王荣杰,陈义胜,李保卫,徐龙君.用气体吸附法研究煤的分形维数[J].包头钢铁学院学报,1997,16(3):188~192.
    [164]赵爱红,廖毅,唐修义.煤的孔隙结构分形定量研究[J].煤炭学报,1998,23(4):339~442.
    [165]李洪,李嘉,李克锋,周鲁.泥沙的分形表面和分形吸附模型[J].水利学报,2003,3:14~18.
    [166]赵选民,徐伟,师义民,秦超英.数理统计[M].北京:科学出版社,2002.
    [167]唐启义,冯明光. DPS数据处理系统—实验设计、统计分析及模型优化[M].北京:科学出版社,2006.
    [168]张遂安,叶建平,唐书恒,马东民,霍永忠.煤对甲烷气体吸附-解吸机理的可逆性实验研究[J].天然气工业,2005,25(1):44~46.
    [169]肯尼思法尔科内著;曾文曲,刘世耀译.分形几何学-数学基础及其应用[M].辽宁:东北大学出版社,1991.
    [170]吴俊.煤微孔隙特征及其与油气运移储集关系的研究[M].中国科学(B辑),1993,23(1):77~84.
    [171]陈颙,陈凌.分形几何学[M].北京:地震出版社,2005.
    [172]郝吉明,马广大.大气污染控制工程[M].北京:高等教育出版社,2002,265~266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700