近距离煤层群采动煤岩渗透特性演化规律与实测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国大部分矿区煤层具有渗透性低、透气性差,实际生产过程中具有进行地面钻井直接抽采和预抽采煤层气效果不佳的困难,利用在煤炭开采过程中,采动影响范围大、压力释放充分、采动裂隙发育,有利于煤层气解吸等特点,通过理论分析、计算推导、实验室相似模拟和数值模拟等方法,在前人研究单一煤层开采煤岩体裂隙发育规律的基础上,针对近距离煤层群煤岩整体结构,研究其受采动影响下各个煤层的渗透特性变化情况与规律,通过多种监测手段并行结果互衍的方式,弄清近距离煤层群保护层开采后瓦斯的真正来源及通道,并在此基础上定量化地研究煤岩整体结构中的瓦斯储运规律。本文通过大量的现场实测数据和示踪气体分析的方法,在井下工程现场测试煤层群开采过程中,卸压煤层不同卸压区域随保护层开采工作面推进的渗透率变化情况以及瓦斯分源瓦斯涌出分析。探索形成新型的渗透率和采动裂隙时空演化规律监测手段,能够预测检验并修正瓦斯储运规律,为选择更合理的瓦斯防治技术,也为煤与瓦斯协调共采特供了理论与实践依据。
For most of the coal mines in China with a low permeability and poor ventilation, the actualproduction process has difficulty in extraction and pre-drainage CBM through ground drilling.In the process of coal mining, mining sphere of influence, pressure release full and miningfractured are conducive to CBM desorption. Through theoretical analysis, calculate-deduction,laboratory modeling and numerical simulation method, and on the basis of previous studies aboutthe law on single coal seam mining fissures, studying the fissures’ temporal evolution law on theclose distance coal seams which are under the influence of coal-mining. Multidimensionalpiecewise equation are been constructed to describe the the time and space concepts of the crackfield. Through many ways of monitoring, the real resource and passage of gas after the protectivelayers of close distance coal seams is been mined. And on the basis of this, the law on the gas’storage and transportation in the whole coal-rock structure has been studied. In this paper, throughthe ways of analysis of field data and tracer gas, we tested the changes of permeability and therelease of gas during the coal seam group mining process while pressure-relief coal seam beingmined in different pressure-relief protective area. We have explored a new tool to monitor themining fractured space-time evolution, which is able to predict the test and revise the laws of gasstorage and transportation. It has provided both theoretical and practical basis in choosing a morereasonable gas prevention and control technology and coordinated extraction of coal and gas.
引文
[1]周世宁,鲜学福,朱旺喜.煤矿瓦斯灾害防治理论战略研讨[M].徐州:中国矿业大学出版社,2001.
    [2]周世宁,林柏泉.煤层瓦斯赋存及流动规律[M].北京:煤炭工业出版社,1998.
    [3]钱鸣高.绿色开采的概念与技术体系[J].煤炭科技,2003,(4):1-3.
    [4]钱鸣高,缪协兴,许家林.资源与环境协调(绿色)开采及其技术体系[J].采矿与安全工程学报,2006,23(1):1-5.
    [5]钱鸣高,缪协兴,许家林.资源与环境协调(绿色)开采[J].煤炭学报,2007,32(1):1-7.
    [6]国家安全生产监督管理局(国家煤矿安全监察局)调度中心2002-2006年全国伤亡事故情况分析
    [7]陈炎光,钱呜高.中国煤矿采场围岩控制[M].徐州:中国矿业大学出版社,1994.
    [8]宋振骐.实用矿山压力控制[M].徐州:中国矿业大学出版社。1988.
    [9]姜福兴.煤矿采场顶板控制设计咨询系统研制[D].泰安:山东矿业学院,1988.
    [10]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995,14(2):97-106.
    [11]钱鸣高,许家林.覆岩采动裂隙分布的“O”形圈特征研究[J].煤炭学报,1998.23(5):466-469.
    [12]涂敏,刘泽功.综放开采顶板离层裂隙变化研究[J].煤炭科学技术,2004,32(4):44-47.
    [13]李树刚,石平武,钱呜高.覆岩采动裂隙椭抛带动态分布特征研究[J].矿山压力与顶板管理,1999,3(4):44-46.
    [14]苏现波.煤层气储集层的孔隙特征[J].焦作工学院学报,1998,17(1):6-11.
    [15]黄志安.FLAC在确定沙曲矿裂隙带上下界中的应用[J].矿业研究与开发,2006,26(1):20-22.
    [16] Charlez P.A.Rock Mechanics(II:Petroleum applications)[M],Paris:Technical Publisher,1991.
    [17]孙秀堂,常成,王成勇.岩石临界CTOD的确定及失稳断裂过程区的研究[J].岩石力学与工程学报,1995,14(4):312-315.
    [18] Keivan Noghabai.Discrete versus Smeared versus Element-Embedded Crack Models onRing Problem[J].Journal of Engineering Mechanics,2010,125(6):307-314.
    [19] Valko P,Economides M J.Propagation of hydraulically induced fractures-a continuumdamage mechanics approach[J].International Journal of Rock Mechanics and MiningSciences,2009,31(3):221-229.
    [20]王家臣,范志忠.厚煤层煤与瓦斯共采的关键问题[J].煤炭科学技术,2008,36(2):1-5.
    [21]王家臣.岩石开挖工程随机分析原理与应用[J].岩石力学与工程学报,2002,21(增2):2474-2479
    [22]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24-36.
    [23]郭勇义.煤层瓦斯一维流场流动规律的完全解[J].中国矿业学院学报.1984,2(2):19-28.
    [24]谭学术.矿井煤层真实瓦斯渗流方程的研究[J].重庆建筑工程学院学报,1986,(1):106-112.
    [25]孙培德.煤层气越流的固气耦合理论及其计算机模拟研究[D].重庆:重庆大学,1998.
    [26]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986,11(3):62-70.
    [27]孙培德.煤层瓦斯动力学及其应用的研究[J].山西矿业学院学报.1989,7(2):126—135.
    [28] Paterson S.Experimental deformation of rocks:the brittle field [M]. Berlin: Springer,1978.
    [29] Li S P,Wu D X. Effect of Confining Pressure,Pore Pressure and Specimen Dimensionon Permeability of Yin zhuang sandstone [J].Int.J.Rock Mech Min Sci.1997,34(3/4):435-441.
    [30] Li S P,Li Y S,Wu Z Y.Permeability-strain equations corresponding to the completestress-strain path of Yinzhuang sandstone [J] Int J. Rock Mech Min Sci Geomech Abstr,1994,31(4):383-391.
    [31] Zoback M D,Byerlee J D.The effect of microcracks dilatancy on the permeability ofWesterly granite[J].Journal of Geophysical Research,1975(80):752-755.
    [32] Schulze,O.,Popp,T.,and Kern,H.Development of damage and permeability indeforming rock salt[J].Engineering Geology,2001(61):163-180.
    [33] Oda M T,Takemura A,Aoki T.Damage growth and permeability change in triaxialcompression tests of Inada granite[J].Mechanics of Materials,2002(34):313-331.
    [34] Otto Schulze,Till Popp,Hartmut Kern.Development of damage and permeability indeforming rock salt.Engineering Geology,2001(61):163-180.
    [35] Rutqvist,J.,Tsang,C.F..Analysis of thermal-hydrologic-mechanical behavior near anemplacement drift at Yucca Mountain [J] Journal of Contaminant Hydrology,2003(62–63):637–652.
    [36] Mahnken,R.,Kohlmeier,M.Finite element simulation for rock salt with dilatancyboundary coupled to fluid permeation [J] Computer methods Appl Eng,2001(190):4259-4278.
    [37]韩宝平,冯启言等.全应力应变过程中碳酸盐岩渗透性研究[J].工程地质学报,2000,8(2):127-128.
    [38]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J].岩土工程学报,2001,23(1):68-70.
    [39]姜振泉,季梁军.岩石全应力应变过程渗透性试验研究[J].岩土工程学报,2001,23(2):153-156.
    [40] Zhu W,Wong T F.The transition from brittle faulting to cataclastic flow: permeabilityevolution[J].J.Geophysics.Res.,1997,102(B2):3027–3041.
    [41] Cristescu N,Hunsche U.Time effects in rock mechanics [J]. Seriea,Materials,Modelling and Computation,Wiley,Chichester,1998:342-438.
    [42]孙培德.瓦斯动力学模型的研究[J].煤田地质与勘探,1993,21(1):32-40.
    [43]姚宇平.煤层瓦斯流动的达西定律与幂定律[J].山西矿业学院学报,1992,10(1):32-37.
    [44]罗新荣.煤层瓦斯运移物理模型与理论分析[J].中国矿业大学学报,1991.20(3):36-42.
    [45]陈代询,王章瑞.致密戒指中低速渗流气体的非Darcy现象[J].重庆大学学报,2000,23(S1):25-27.
    [46]陈永敏,周娟,刘文香,刘学伟.低速非Darcy渗流现象的实验论证[J].重庆大学学报,2000,23(S1):59-61.
    [47] Brace W F,A note on permeability change in geologic materials due to stress[J].PureAppl.Geophys.1978(116):627-633.
    [48] Wang J A,Park H D.Fluid permeability of sedimentary rocks in a complete stress-strainprocess[J].Engineering Geology,2002(63):291-300.
    [49] Biot M A.General theory of three-dimensional consolidation[J].J Appl Phys.,1941(12):155–164.
    [50] Mao Bai,Derek Elsworth.Coupled processes in subsurface deformation, flow,andtransport [R].American Society of Civil Engineers,ASCE press,2009.
    [51] Bruno M S,Nakagawa F M.Pore pressure influence on tensile fracture propagation insedimentary rock [J].In.J.Rock Mech.Min.Sci.,1991,28(4):261-273.
    [52] Bridgeman P W.Breaking tests under hydrostatic pressure and conditions ofrupture[J].Phil.Mag.,1912(24):63-80.
    [53] Rice J R,Cleary M P.Some basic stress diffusion solutions for fluid-saturated elasticporous media with compressible constituents[J].Rev.Geophys.Space Phys.1976(14):227-241.
    [54]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学工业出版社,1995.
    [55]孙培德.Sun模型及其应用-煤层气越流气固耦合模型及可视化模拟[M].杭州:浙江大学出版社,2002.
    [56] Bernabe Y.The effective pressure law for permeability in Chelmsford granite and barregranite[J].Int.J.Rock Mech. Min.Sci.&Geomech.Abstr.1986,23(3):267-275.
    [57]赵阳升.煤岩流体力学[M].北京:煤炭出版社,1993.
    [58]刘卫群.破碎岩体渗流理论及其应用研究[D].中国矿业大学博士论文,徐州:2002.
    [59]周世宁.瓦斯在煤层流动的机理[J].煤炭学报,1990,15(1):61-67.
    [60]杨延毅,周维垣.裂隙岩体的渗流-损伤耦合分析模型及其工程应用[J].水力学报,1991(5):19-27.
    [61]杨太华,曾德顺.三峡船闸高边坡裂隙岩体的渗流损伤特征[J].中国地质灾害预防治学报,1997,8(2):13-18.
    [62]朱珍德,孙钧.裂隙岩体非稳定渗流场与损伤场耦合分析模型[J].水文地质工程地质,1999,26(2):35-42.
    [63]郑少河,朱维申.裂隙岩体渗流损伤耦合模型的理论分析[J].岩石力学与工程学报,2001,20(2):156-159.
    [64] Tang CA,Tham L G,Lee P K K,Yang T H,Li L C.Coupled analysis of flow,stressand damage in rock failure[J].Int. J. Rock Mech. Min. Sci.2002(39):477-489.
    [65] Yang T H,Tham L G,Tang C A,Liang Z Z.Influence of heterogeneity of mechanicalproperties on hydraulic fracturing in permeable rocks[J].Rock Mech.Rock Eng.,2004,37(4):251-275.
    [66] Li L,Holt R M. Simulation of flow in sandstone with fluid coupled particle model.RockMechanics in the National Interest[J]. Elsworth,Tinucci,Heasley (eds), SwetsZeitinger Lisse,2001:165-172
    [67] Bruno M S,Dorfmann A,Lao K.Coupled particle and fluid flow modeling of fractureand slurry injection in weakly consolidated granular media[J]. Rock Mechanics in theNational Interest[J].Elsworth,Tinucci,Heasley(eds),Swets Zeitinger Lisse,2001:173-180.
    [68] Somerton W.H. Effect of stress on permeability of coal[J].Int.J. Rock.Mech. MirL Sci.&Geomech. Abstr.,1975,12(2):151-158.
    [69] Harpalani S. and Mopherson,M.J. The wffect of gas evacationon coal permeability testspecimens [J].Int.J.RockMech.MirL Sci.&Geomech.Abstr.1984,21(3):361-364.
    [70] Haxpalain S.,Gas flow through8tresfed coal[D].Univ. of California Berkeley,PH.D.thesis,1985.
    [71] Gawuga J.Flow of gas through stressed carboniferous strata[D].Univ. of Nottingham,PH.D.thesis,1979.
    [72] Khodot.V.V. Role of Methane in The Stress State of a Coal Seam[J].Soviet MiningScince,1981,17(5):460-466.
    [73] Esaki J.Shear-flow coupling test on rock joints.In:Proc.7th Int. Confer. ISRM,1992.
    [74]耿克勤等.岩体裂隙渗流水力特征的实验研究[J].清华大学学报(自然科学版),1996,36:102-106.
    [75]段小宁,李鉴初.应力场与渗流场相互作用下裂隙岩体水流运动的数值模拟[J].大连理工大学学报,1992,32:712-717.
    [76]杨天鸿.岩石破裂过程渗透性质及其应力耦合作用研究[D].东北大学博士学位论文,沈阳,2001.
    [77] Leo CJ and Booker JR.Time stepping FEM for analysis of contaminant transport infractured porous media.Int.Num.Anal.Methods Geomech,1996,20:847-864.
    [78]高海鹰.三维裂隙岩体渗流场与应力场耦合模型研究[J].岩土工程学报,1997,19:102-105.
    [79]王嫒,徐志英.裂隙岩体渗流与应力耦合分析的四自由度耦合法[J].水利学报,1998:55-59.
    [80]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13:299-308.
    [81]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [82]唐春安,徐曾和,徐小荷.岩石破裂过程分析RFPA2D系统在采场上覆岩层移动规律研究中的应用[J].辽宁工程技术大学学报,1999,18(5):456-458.
    [83]唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].北京:科学出版社,2003.
    [84]刘红元,刘建新,唐春安.采动影响下覆岩垮落过程的数值模拟[J].岩土工程学报,2001,23(2):201-204.
    [85]唐春安,赵文.岩石破裂全过程分析软件系统RFPA2D[J].岩石力学与工程学报,1997,16(5):507-508.
    [86]唐春安,芮勇勤,刘红元等.含瓦斯“煤样”突出现象的RFPA2D数值模拟[J].煤炭学报,2000,25(5):501-504.
    [87]杨天鸿,唐春安,朱万成等.岩石破裂过程渗流与应力耦合分析[J].岩土工程学报,2001,23(4):489-493.
    [88]许江,鲜学福.含瓦斯煤的力学特性的实验分析[J].重庆大学学报.1993,16(5):26-32.
    [89]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业学院学报,1986,15(3):67-72.
    [90]姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业学院学报,1988,17(2):87-93.
    [91]何学秋,周世宁.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报。1990,19(2):1.
    [92]鲜学福.地电场对煤层中瓦斯渗流影响的研究[R].国家自然科学基金资助项目研究总结报告,1993.
    [93]余楚新.煤层中瓦斯富集、运移的基础与应用研究[D].重庆:重庆大学。1993.
    [94]张代钧.煤结构与煤孔隙性、弹性、强度和吸附特征关系的研究[D].重庆:重庆大学,1990.
    [95]张广洋.煤结构与煤的瓦斯吸附、渗流特性研究[D].重庆:重庆大学,1995.
    [96]杜云贵.地物场中煤层瓦斯渗流特性及瓦斯涌出的研究[D].重庆:重庆大学,1993.
    [97]梁冰,章梦涛.可压缩瓦斯气体在煤层中渗流规律的数值模拟[A].中国北方岩石力学与工程应用学术会议论文集[C].北京:科学出版社,1991.
    [98]赵阳升.煤体瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报,1994,13(3):229-239.
    [99]陈占清,缪协兴,刘卫群.采动围岩中参变渗流系统的稳定性分析[J].中南大学学报(自然科学版),2004,35(1):129-132.
    [100]王媛,徐志英等.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程学报,2000(3):177-181.
    [101]盛金昌,速宝玉,王媛.裂隙岩体渗流-弹塑性应力耦合分析[J].岩石力学与工程学报,1999,19(3):177-181.
    [102]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13(4):299-308.
    [103]周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J].岩石力学与工程学报,1996,(12):338-344.
    [104]王恩志,王洪涛,孙役.双重裂隙系统渗流模型研究[J].岩石力学与工程学报,1998,17(4):400-406.
    [105]周德昶.地面钻井抽采瓦斯技术的发展方向[J].中国煤层气,2007,1:18-23.
    [106]张正林,李树刚.卸压瓦斯抽采技术研究及其效果[J].煤炭科学技术,2005,4:10-12.
    [107]邓志刚,齐庆新,李宏艳,彭永伟.采动煤体渗透率示踪监测及演化规律[J].煤炭学报,2008,33(3):273-276
    [108]梁冰,章梦涛.考虑时间效应煤和瓦斯突出的失稳破坏机理研究[J].阜新矿业学报,1997,16(2):129-133.
    [109]井多胜,徐传田.地面钻孔抽放瓦斯技术的试验[J].煤炭技术,2006,6:84-86.
    [110]胡千庭,梁运培,林府进.采空区瓦斯地面钻孔抽采技术试验研究[J].中国煤层气,2006,2:3-6.
    [111]袁亮.淮南矿区煤矿煤层气抽采技术[J].中国煤层气,2006,1:7-10.
    [112]李树刚.综放开采围岩活动及瓦斯运移[M].徐州:中国矿业大学出版社,2000.
    [113]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700