壳聚糖及其衍生物脱除牡蛎中麻痹性贝类毒素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近江牡蛎(Ostrea Rivularis Could)是我国沿海主要的贝类养殖品种。麻痹性贝类毒素(Paralytic Shellfish Poisoning, PSP)广泛影响公共健康和安全,在世界范围内引起了严重的经济损失,它的主要来源是能够产生毒素的亚历山大藻类,然后通过食物链的关系传递给贝类和人类,从而影响人类健康,在很多地区,包括中国都有发现。壳聚糖(Chitosan)及其衍生物(derivatives)是一些高分子化合物,高分子链中含有-NH2和-OH活性基团,能与重金属离子等形成配位化合物,可做为吸附剂,用来脱除重金属等,而且无毒、不产生二次污染,并能被微生物作用分解。本文通过从微小亚历山大藻中提取出PSP,并用壳聚糖及其衍生物(CTSD)对其进行吸附研究;通过对毒素在牡蛎体内蓄积模型的建立,将CTSD应用到牡蛎体内PSP的脱除研究中。具体可以得到以下结论:
     (1)在实验室对微小亚历山大藻(Alexandrium minutum)和链状亚历山大藻(Alexandrium catenella)进行了培养,并对它们的生长条件进行了优化,筛选出了微小亚历山大藻作为产麻痹性贝类毒素的最终来源藻。首先通过接种对数生长期藻细胞,培养8天内就能达到最高细胞密度(2.0×10~4 cells/mL)左右,再以0.05mol/L的乙酸超声波破碎藻细胞提取粗毒素,结合小白鼠生物检测法,经高效液相色谱分析,本株藻主要含有GTX1、GTX2、GTX3和GTX4,浓度分别为GTX4 (5.04)>GTX3(4.97)>GTX1(2.14)>GTX2(2.08)(单位:fmol/cell),毒素粗提液经过Sephadex-G15凝胶层析柱处理,用小白鼠生物法和荧光分光光度法联合检测定位,收集到纯度较高的PSP,本章工作为将来贝类毒素的研究提供原料。
     (2)用CTSD吸附PSP,在单因素如pH值、反应时间、温度和CTSD添加量的基础上,研究了吸附动力学,通过将动力学数据用动力学一级反应方程和动力学二级反应方程模型来拟合,结果证明更符合动力学二级反应方程模型,说明化学吸附过程是受速度限制的过程。将热力学数据用热力学模型拟合后,发现与Freundlich热力学模型能够很好的符合,并且通过Van’t Hoff方程,得到了吉布斯自由能(△Go)、焓变(△H~o)和熵变(△S~o)。它们的值△G~o<0、△H~o>0、△S~o>0说明反应过程是自发的和吸热的过程。
     (3)采用实验室培养的方法,研究了在投喂有毒微小亚历山大藻的情况下,微小亚历山大藻所产PSP在近江牡蛎体内蓄积、排出的规律。实验分为蓄积和排出两个部分,蓄积实验设计了三个投喂浓度:A组为4.0×10~3 cell/mL、B组为8.0×10~3cell/mL、C组为1.2×10~4cell/mL,实验结果表明,随着微小亚历山大藻密度的提高,PSP在近江牡蛎体内的蓄积速度会越来越快。A组、B组、C组的最高蓄积量依次为5692 MU、6503 MU和8193 MU,最终蓄积量分别超过了国家限量标准的14.23、16.26、20.48倍。
     (4)在以上研究的基础上,对B组的牡蛎采用活体排毒素研究,研究发现在养殖过程中投放0.05 g/L的壳聚糖或衍生物和无毒的小球藻,对促进牡蛎体内毒素的排出有较大作用,初始PSP含量为6503 MU的牡蛎,经过15天的脱除后,PSP含量下降到93.33 MU。通过采用死体脱毒的方法,使用本研究制备的壳聚糖微球(用乙酸溶解后,再用戊二醛和甲醛交联)对其进行脱除,研究发现壳聚糖微球对毒素有很好的脱除效果。而且采用壳聚糖微球对牡蛎肉浆中的毒素进行脱除时,牡蛎肉浆不需调pH值即可达到很好的脱除效果,对牡蛎肉浆中毒素的脱除率可达90%以上。
     (5)对脱毒后的牡蛎肉进行了深加工,为了得到风味良好的牡蛎酶解液,将新鲜的近江牡蛎肉经木瓜蛋白酶和中性蛋白酶水解,采用固相微萃取-气相色谱-质谱(SPME-GC-MS)联用法分析、鉴定了牡蛎肉原料和酶解液的挥发性风味成分,探讨了酶解对牡蛎风味的影响。经NIST质谱数据库检索和文献对照,三个样品分别检出57、60和62种成分,主要有烃类、醇类、醛类、酮类和含硫化合物等,它们的协同作用构成了牡蛎及其酶解液的特征气味。其中牡蛎肉含有较多的酮类化合物,而酶解后则含有较多的醛类和脂类化合物,三个样品中均检出了较多的醇类化合物,归一化含量分别高达40.24%、41.20%和43.28%,中性蛋白酶制备的酶解液比木瓜蛋白酶制备的酶解液风味更加柔和。结果表明,酶解反应能够保持并改善牡蛎的风味,所制备的酶解液具有较好的应用前景。
Ostrea Rivularis Could is the major coastal aquaculture molluscs in the northern China. Paralytic shellfish poisoning (PSP) is a public health and safety hazard concern worldwide and causes severe economic losses globally. It is mainly originated in toxic marine dino?agellates of the genus Alexandrium, and accumulated in shellfish via the food chain and causes sporadic food poisoning in human in many parts of the world including China. Chitosan (CTS) is a crude macromolecular compound, the aetive funetional goups (-NH2 and-OH) of chitosan can chelate heavy metal ions and other groups.Chitosan can be used as a macromolecular adsorbent to rernove heavy metal ions. Further more,chitosan is avirulent and it would not bring secondary pollution, and can be disassemble by biologic catabolism. PSP were obtained by sonicating Alexandrium minutum, and used to adsorpted by CTSD. Through establish oyster contamination model, CTSD were used as an adsorbent to remove the PSP which was consisted in the oyster. The conclusions of this paper just as follows:
     (1) The methods for culturing of Alexandrium minutum and Alexandrium catenella were established and improved in the lab. Through concentrating and harvesting the cells of algae, Alexandrium minutum was chose as the production of the PSP. Firstly, the logarithmic phase of the algae cell was inoculated, the cell growth rate kept higher in initial 8 days. After it attained the highest density of cell (2.0×10~4cells/mL), the algae was collected by filtration, the crude toxin was extracted by 0.05 mol/L acetic acid. Combined with the mice bioassay, the crude toxin was identified, the result showed the major toxic component from A.catenella were GTX1,GTX2,GTX3 and GTX4 by high performance liquid chromatography (HPLC) and the concentrations of them were about GTX4 (5.04)>GTX3 (4.97)>GTX1 (2.14)>GTX2 (2.08) (fmol/cell), respectively. The crude toxin was purified via Sephadex-G15 column chromatography and detected by fluorescence spectroscopy and the mice bioassay, the result showed that the impurities can be effectively excluded by Sephadex-G15 column chromatography.
     (2) In this work, adsorption of PSP onto Chitosan and its derivatives (CTSD) were investigated with respect to pH value, contact time, temperature and the volume of CTSD. Then, the kinetic data was tested using pseudo-first-order and pseudo-second-order kinetic models. It is proved that the data correlated well with the pseudo-second-order kinetic model, indicating that the chemical sorption was the rate-limiting step. The best interpretation for the thermodynamics experimental data was explained by the Freundlich isotherm model. Thermo-dynamic parameters like Gibbs free energy (△G~o), enthalpy (△H~o) and entropy (△S~o) were evaluated by applying the Van’t Hoff equation. Values of them△G~o<0,△H~o>0,△S~o>0, indicating that the adsorption was feasible, spontaneous and endothermic adsorption processes in nature.
     (3) In this paper, we focused on the accumulative rate, discharge rate of paralytic shellfish poisoning produced by Alexandrium minutum in Ostrea Rivularis Could.The experiment consists of two steps, the accumulation step and the elimination step. Furthermore three grades of the algal feeding amount are designed in the accumulation step, grades A is 4.0×10~3 cell/mL, grades B is 8.0×10~3 cell/mL and grades C is 1.2×10~4 cell/mL. The PSP accumulative rate in the Ostrea Rivularis Could increases rapidly till the upper limit with the increase of Alexandrium minutum cell abundance in all cases. In our study, the maximum cumulative amounts respectively for grades A, B, and C are 5692 MU, 6503 MU and 8193 MU, the final amount of PSP was 14.23, 16.26 and 20.48 times over the national standard.
     (4) Establish oyster contamination model. Put 0.05 g/L of chitosan derivatives in the breeding process have a great role on the promotion of oyster cadmium discharges for the grades B pollution oyster. Through 15 days desorption experiment, the amount of PSP from the initial 6503 MU to the final 93.33 MU.The chitosan micrballon prepared in this study was used by removing PSP from the Ostrea Rivularis Could. The study found that chitosan micrballon is the best adsorbent of PSP. There would be good removal effect of PSP on oyster meat using chitosan micrballon without adjustting pH value, it can be achieved removal rate reached 90%.
     (5) Besides, we have a further research about the oyster, enzymatic hydrolysis technology by papain protease and Neutral protease of Ostrea Rivularis Could was investigated. Solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) were used to analysis the effects of curing to volatile compounds in Ostrea Rivularis Could with and without enzymatic hydrolysis, and the different affection of the processing were discussed. 57, 60, and 62 kinds of volatile compounds were identified by comparing their mass spectra with those contained in the NIST mass spectral database. Among these compounds, most of them were hydrocarbons, alcohols, aldehydes, kotones, and sulfuric compounds. They cooperate with each other to make up of the specific aroma of oyster and hydrolysates’flavor. The results also indicated kotones contents were more than the hydrolysates, aldehydes and esters were more in oyster hydrolysates flavorings. Compare the determination results of oyster before and after enzymatic hydrolysis reaction, all of them have 19 kinds of alcohols in the three samples, and the contents were 40.24%, 41.20%, and 43.28%, respectively. Therefore, the product manufactured by enzymatic hydrolysis reaction can improve the flavor of the seafoods, and have good application foreground.
引文
[1] Donald M Anderson, David M Kulis, Yuzao Qi, etal. Paralytic shellfish poisoning in southern China[J]. Toxicon, 1996, 34(5):579-590.
    [2]江天久,陈菊芳,邹迎麟,等.中国东海和南海有害赤潮高发区麻痹性贝毒素研究[J].应用生态学报, 2003, 14 (7): 1156-1160.
    [3]刘智勇,李燕俊,江涛,等.麻痹性贝类毒素污染状况及检测方法的比对研究[J].中国热带医学,2010, 10(11):1426-1428.
    [4]张清春.氮、磷营养物质与微生物对微小亚历山大藻生长和毒素产生的影响[D].山东青岛:中国科学院海洋所, 2004.
    [5]王丽.近海食源微生物产毒特性的基因分析及其快速检测研究[D].广东广州:华南理工大学, 2008.
    [6] Docucette G J, Kdoama M, Gallacher S, etal. Baeterial intearetion with harmful algal bloom speeies: Bloom ecology,toxigenesis and cytology[J].Physiolog of Harmful Algal Bloom, 1998, l(41): 619-647.
    [7] Ohta S, Chang T, Ikegami N, etal. Antibiotc substance produced by a newly isolated marine mieroalga, Choloreoeeum HSl0l[J].Bull Enviorn Conetnt Toxciol, l993,50:171-178.
    [8] Baden DG, etal. Marine toxins[J].Handbook of Clinieal Neurology, 1995, 21(65):141.
    [9] Oshima Y. Posteolumn derivatization liquid chromatographic method for paralytie shellfish toxins[J].J. AOAC Int, 1995, 72(2):528-532.
    [10]刘永健,刘娜,刘仁沿,等.赤潮毒素研究进展[J].海洋环境科学, 2008, 27(增刊2).
    [11]周名江,李钧,于仁诚.赤潮藻毒素研究进展[J].中国海洋药物, 1999,71(3): 48-54.
    [12] Jiang T J, Huang W J, Wang Z H, et al. Effects of water temperature, salinity and pH on growth and toxicity of Alexandrium tamarense (Lebour) (Dapeng Bay strain) [J].Chin.J.Appl. Environ. Biol, 2000, 6(2):151-154.
    [13] Chou H N, Chenb Y M, Chen C Y. Variety of PSP toxins in four culture strains of Alexandrium minutum collected from the southern Taiwan [J]. Toxcon, 2004, 43: 337-340.
    [14]郝林华.麻痹贝类毒素的研究概况[J].海洋水产研究, 1998, 19(1), 97-103.
    [15] Schant EJ. Seafood toxicants, Toxicants occurring naturally in foods[M], 2nd ed1Committee on Food Protection National Academy of Sciences, Washington, DC 1973, (11): 424-4471.
    [16]刘智勇,计融.麻痹性贝类毒素研究进展(综述) [J].中国热带医学, 2006, 6 (2): 340-344.
    [17] Zhou MJ, Li J, Luekas B, etal. A recent shellfish toxin investigation in China Marine Pollution Bulletin[J].1999, 39(l-12):331-334.
    [18]林燕棠,杨美兰,陈瑞雯,等.广东沿海麻痹性贝类毒素的研究.海洋与湖沼[J].1994, 21(2): 220-225.
    [19]江天久,尹伊伟,骆育敏,等.大亚湾麻痹性贝类毒素HPLC分析[J].海洋环境科学, 2000, 19(3): 16-19.
    [20]曾呈奎,相建海.海洋生物技术[M].济南:山东科学技术出版社,1998,416- 427.
    [21] Negri Andrew, Stirling David, Quilliam Miehae, etal. Three novel hydroxybenzoate saxitoxin analogues isolated from the dinoflagellate Gymnodinium catenatum[J]. ChemRes Toxicol, 2003, 16(8):1029-1033.
    [22]张纯超.大亚湾贝类毒素特征研究[D].山东青岛:中国海洋大学, 2008.
    [23]王云峰.麻痹性贝类毒素的制备和活性研究[D].山东青岛:中国科学院海洋所, 2001.
    [24] Indrasena W M, Gill T A. Anal. Bioehem,1998, 264:230-236.
    [25]周宏晨.有害微细藻类与贝毒检验法[J]. COA Fisheries Series, 1982,4(43).
    [26] AOAC Official Method 959.08, Paralytic Shellfish Poison Biological Method [S].2000.
    [27]华泽爱.赤潮毒素的成分及其危害[J].海洋与海岸带开发, 1992, 9(2):52-59.
    [28]曹际娟,卫锋,马惠蕊,等.贝类毒素检测技术及研究进展[J].检验检疫科学, 2004, 14(l):53-56.
    [29]胡颗淡,唐静亮,王益鸣,等.浙江近岸海域有害赤潮发生区麻痹性贝毒素研究[J].环境污染与防治, 2005, 27(6): 470-472.
    [30]朱小兵,向军俭.赤潮藻毒素检测研究进展[J].暨南大学学报(自然科学版),2002, 23(5):110-115.
    [31] JF Lawrenee, C Menard. Liquid chromatographic determination of paralytic shellfish poisons in shellfish after prechromatographic oxidation[J].Assoc off Anal Chem, 1991, 74:1006-1013.
    [32] Lawrenee JF, B Wong, C Menard. Determination of decarbamoyl saxitoxin and its analogne in shellfish by Prechromatographic oxidation and liquid chromatographywith fluorescence detection[J].Assoe off Anal Chem Intern, 1995, 79:1111-1115.
    [33] Lwrence F, Niedzwiadek B. Quantitative determination of paralytic shellfish poisoning toxins in shellfish by using prechromatographic oxidation and liquid chromatography with fluorescence deteetion[J].AOAC Intern, 2004, 84(4):1099-1108.
    [34] Morton S L, Tindall D R, Determinations of okadaic acid content of dinoflagellate cells: A comparison of the HPLC Fluorescent methods and two monoclonal antibody ELISA test kits[J].Toxicon, 1996, 34:947-954.
    [35]郭皓.免疫方法在藻毒素及贝毒素检测中的应用[J].卫生研究, 1999,28(2): 122-122.
    [36]于兵,曹际娟,尤永莉,等.ELISA与小白鼠生物法检测贝类中麻痹性贝毒的比较[J].检验检疫科学, 2005, 15(1):32 35.
    [37]罗辉武,向军俭,唐勇,等.麻痹性贝类毒素GTX2,3间接与直接竞争酶免疫学检测方法的比较研究[J].中国卫生检验杂志, 2006, 16(6):663-664.
    [38] Valep, Dem, Sampayo ma. Comparison between HPLC and a commercial immunoassay kit for detection of okadaic acid and esters in Portuguese bivalves [J]. Toxicon, 1999, 37:1565-1577.
    [39] JELLETT J F, MARKS L J, STEWART J E, et al. Paralytic shellfish poison (saxitoxin family) biassays: automated endpoint determination and standardization of the in vitro tissue eculture bioassay, and comprison with the standard mouse bioassay[J]. Toxion, 1992, 30(10):1143.
    [40]陈杰,曹雅明,刘军,等.细胞毒性试验测定麻痹性贝毒的检测方法[J].中国公共卫生, 2001,17(11):1994.
    [41]杜伟,陆斗定.有毒赤潮藻及其毒素的危害与检测[J].海洋学研究, 2008, 6:90-97.
    [42] M Barber, R Bordoli, etal. Fast atom bombardment mass spectrometry[J]. Analytieal Chemistry, 1982, 54:645-657.
    [43] M A Quilliam, B A Thomson, G. J scott, etal. Ionspray mass spectrometry of marine neurotoxins[J].Rapid Comunicaton of Mass Speetrom,1989,3:145-150.
    [44] Buckl eyl j. Construetion of a paralytic shellfish toxin analyzer and its application [J].Anal Biochem, 1978, 85:157-157.
    [45] Buckl eylj. Isolation of Gonyaulax tamarensis toxins from soft clams (M.yaarenaria) and a thin-layer chromatographic-fluorometric method for their detection[J]. Aqrie Food Chem, 1976, 24:1076-1076.
    [46]董晓伟,姜国良,等.牡蛎综合利用的研究进展[J.海洋科学, 2004, 28(4):62-65.
    [47]吴园涛,孙恢礼.牡蛎营养功能制品研究进展[J].河北渔业, 2007, 8: 6-9.
    [48] Wang Heya, Yang Ruijin, Wang Zhan.Nutritional components and proteolysis of oyster meat[J].Journal of fisheries of China, 2003,27 (2):163-168.
    [49]汪秋宽,刘红丹,徐坚,等.牡蛎酶解液的抗氧化活性[J].中国水产科学, 2007, 14(2): 295-300.
    [50] Wang Jiapei, Hu Jianen, Cui Jinzhe. Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats [J]. Food Chemistry, 2008, 111(2): 302-308.
    [51]迟玉森,胡德亮,等.扇贝毒素及扇贝食用的安全性[J].食品科学,1997, 18(12):45-46.
    [52]邱德全,熊仕林,等.利玛原甲藻腹泻性毒素的生物学测定[J].热带海洋, 1996, 15(4): 46- 48.
    [53]周名江,颜天,傅萌,等.塔玛亚历山大藻对海产双壳类生命活动的影响[J].海洋学报. 2004, 26(2):81- 86.
    [54]傅萌,颜天,李钧,等.塔玛亚历山大藻对墨西哥湾扇贝幼体发育的影响[J].海洋科学, 2000, 24(3):8-11.
    [55] Yan T, Zhou M J, Fu M, et al. Inhibition of egg hatching success and larvae survival of the scallop,Chlamys farreri,associated with exposure to cells and cell fragments of the dinoflagellate Aelxnadrium tamarense[J].Toxicon,2000, 39:1239-1244.
    [56] Shumway S E. A review of the effects of algal blooms on shellfish and aquaculture[J]. World Aquaeult, 1990, 21, 65-104.
    [57] Shumway S.E, Cueei T R. The effects of the toxic dinoflagellate protogonyaulax tamarensis on the feeding and behavior of bivalve mollusks[J].Aquat Toxicol, 1987, 10:9-27.
    [58] Lassus p, M Bardouil, M ledoux, et al. Paralytivphyeotoxin uptake by seallops (Peeten maximus) [J].Aquat.Liv.Res.1992, 5:319-324.
    [59]颜天,傅萌,李钧,等.麻痹性贝毒PSP在紫贻贝体内的累积、转化与排出[J].海洋与湖沼, 2001, 32(4), 420-427.
    [60]邹迎麟.麻痹性贝毒的产生及其在栉孔扇贝体内的累积、转化与排除过程研究[D].山东青岛.国家海洋局第一海洋研究所.2000.
    [61]江大久,尹伊伟,骆育敏,等.广东大亚湾和人鹏湾麻痹性贝类毒素研究[J].中国环境科学, 2000, 20(4): 341?344.
    [62]李伟才,栾刚,李立,等.中国沿海部分海区贝毒毒素调查[J].海洋科学, 2000, 24(9): 19?22.
    [63] Zhou M J, Li J, Luckas B, et al. A Recent Shellfish Toxin Investigation In China [J]. Mari pollution Bulletin, 1999, 39(1?12):331?334.
    [64]颜天,付萌,李钧,等.麻痹性贝毒PSP在紫贻贝体内的累积、转化与排出[J].海洋与湖沼, 2001, 32(4): 420?427.
    [65]朱明远,邹迎麟,吴荣军,等.栉孔扇贝体内麻痹性贝毒的累积与排出过程研究[J].海洋学报, 2003, 25(2): 75?83.
    [66]于仁成,周名江,李爱峰,等.中国沿海两例食用织纹螺中毒事件中织纹螺体内毒素分析[J].中国水产科学,2007,14(5):801-806.
    [67] RCY, C Hummert, J Li, et al. Anaysis of PSP toxins in algae and shellfish samples from China using a modified HPLC method [J]. Chromatographia, 1998, 48: 671-676.
    [68]林燕棠.麻痹性贝类毒素降毒途径的探讨[J].广州环境科学, 1994, 9(3): 13-17.
    [69] L.A.Stobo, J.P.C.L.Lacaze, A.C.Scott, et al. Turrell. Surveillance of algal toxins in shellfish from Scottish waters [J]. Toxicon, 2008, (51): 635–648.
    [70] Allison L. Guy, Gilly Griffin. Adopting alternatives for the regulatory monitoring of shellfish for paralytic shellfish poisoning in Canada: Interface between federal regulators,science and ethics [J]. Regulatory Toxicology and Pharmacology, 2009,(54): 256–263.
    [71] Ivan Chang Yen, Luisa Rojas deAstudillo, JoseFranco Soler, et al. Paralytic shellfish poisoning toxin profiles in green mussels from Trinidad and Venezuela [J]. Journal of Food Composition and Analysis, 2006, (19): 88–94.
    [72] Rozalind Jester, Lesley Rhodes, Veronica Beuzenberg. Uptake of paralytic shellfish poisoning and spirolide toxins by paddle crabs (Ovalipes catharus) via a bivalve vector [J]. Harmful Algae, 2009, (8): 369–376.
    [73] Juan Blanco, Carmen Marino, Helena Mart?′n, et al. Anatomical distribution of diarrhetic shellfish poisoning (DSP) toxins in the mussel Mytilus galloprovincialis [J].Toxicon, 2007, (50): 1011–1018.
    [74] Paulo Vale, Vera Veloso, Ana Amorim. Toxin composition of a Prorocentrum lima strain isolated from the Portuguese coast [J].Toxicon, 2009, (54): 145–152.
    [75] S.J. Sayfritz, J.A.B. Aasen, T. Aune. Determination of paralytic shellfishpoisoning toxins in Norwegian shellfish by liquid chromatography with fluorescence and tandem mass spectrometry detection [J]. Toxicon, 2 008, (52): 330–340.
    [76] E.A. Turrell, J.P. Lacaze, L. Stobo. Determination of paralytic shellfish poisoning (PSP) toxins in UK shellfish [J]. Harmful Algae, 2007, (6): 438–448.
    [77] G.C.Pitcher, A.D.Cembella, L.B.Joyce, et al. The dino?agellate Alexandrium minutum in Cape Town harbour (SouthAfrica): Bloom characteristics, phylogenetic analysis and toxin composition [J]. Harmful Algae, 2007, (6): 823–836.
    [78] Blogoslawski W J, Stewart M E. Ozone detoxification of paralytic shellfish pois on in the softshell clam ( Mya arenaria ) [J]. Toxicon, 1979, 17: 650- 654.
    [79] Blogoslawski W J, Stewart M E. Paralytic shellfish poison in Spisula solidissima : anatomical location and ozone detoxification[J]. Mar Biol , 1978, 45: 261- 264.
    [80]傅萌,颜天,周名江.麻痹性贝毒对海洋贝类的影响及加速贝毒净化的研究进展[J]. 2000, 24(4), 382-287.
    [81] White A W, Martin J L, Legresley M, et al. Inability of ozonat ion to detoxify paralytic shellfish toxins in softshell clams[J]. Toxic Dinof lagellates, 1985, 473- 478.
    [82]Kumar MNVR, Muzzarelli RAA, Muzzarelli C. Chitosan Chemistry and Pharmaceutical perspectives[J], Chem Rev,2004, 104:6017-6084.
    [83]郑化,杜予民,周金平,等.纤维素/甲壳素共混膜的结构表征与抗凝血性能[J].高分子学报, 2002, (4):525-529.
    [84] Singh D K, Ray A R. Biomedical applications of chitin, chitosan, and their derivatives [J]. Macromol Chem Phys, 2000, 40(1): 71-77.
    [85]何华玲,于志财.甲壳素和壳聚糖的应用进展与存在问题[J].河北纺织, 2008, 4:14-19.
    [86] Guillard R R L, Ryther J H. Studies on marine planktonic diatoms I Cyclotella nana Hustedt and Detonula confervacea Cleve [J].Canadian Journal of Microbiology, 1962, 18: 229-239.
    [87]张清春,于仁诚,周名江,等.不同类型含磷营养物质对微小亚历山大藻(Alexandrium minutum)生长和毒素产生的影响[J].海洋与湖沼, 2005, 36(5): 465-474.
    [88] Oshima Y, Machida M, Sasaki K.Liquid chromatographic fluorometric analysis of paralytic shellfish toxins [J].Agric Biol Chem,1984,48(7):1707-1711.
    [89]柳俊秀,陈桃英,梁灵之,等.微小亚历山大藻麻痹性贝类毒素小鼠生物检测[J].生物技术通报, 2008, 5: 181-188.
    [90]缪宇平,袁骐,周宏农,等.环境因子对微小亚历山大藻Amtk-9生长与产毒的综合影响[J].海洋渔业, 2009, 31(3): 279-287.
    [91]贺华,王学魁,等.渤海裸甲藻和链状亚历山大藻的麻痹性贝毒毒素分析[J].海洋通报, 2007, 26(5): 67-73.
    [92]吴振兴,邹迎麟,朱明远.中国海域四株亚历山大藻的毒素分析[J].海洋科学进展, 2005, 23(2): 205-210.
    [93] Jiang T J, Huang W J, Wang Z H, et al. Effects of water temperature, salinity and pH on growth and toxicity of Alexandrium tamarense (Lebour) (Dapeng Bay strain) [J].Chin.J.Appl. Environ. Biol, 2000,6(2):151-154.
    [94] Anderson DM, Kulis DM, Qi YZ. Paralytic shellfish poisoning in southern China[J].Toxicon, 1996, 34 (5):579-590.
    [95]郑淑贞,林晓,林慧贞,等.塔玛亚历山大藻的麻痹性贝毒研究[J].海洋与湖沼,1998, 29(5): 477-480.
    [96]孙兰萍,张胜义,许晖,等.壳聚糖吸附亚硒酸的动力学研究[J].食品科学, 2006, 27(4): 92-95.
    [97]胡绳,刘云,董元华,等.改性长石对磷的吸附热力学和动力学研究[J].环境工程学报, 2009, 3(11): 2100-2104.
    [98] Yas?ar Andelib Ayd?n, Nuran Deveci Aksoy.Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics, Chemical Engineering Journal[J].2009, 188-194.
    [99] C. Septhum., S. Rattanaphani., J.B. Bremner., et al. An adsorption tudy of Al(III) ions onto chitosan[J].Journal of Hazardous Materials, 2007.148:85-191.
    [100] Ping Ding, Ke-Long Huang, Gui-Yin Li, et al. Kinetics of adsorption of Zn(II) ion on chitosan derivatives[J].International Journal of Biological Macromolecules, 2006, 39: 222-227.
    [101]高礼,壳聚糖应用于水处理的化学基础[J],水科学与工程技术,2008增刊,9-13.
    [102]H.Y. Zhu, R. Jiang , L. Xiao, et al. Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosizedγ-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange[J].Bioresource Technology, 2010, 101: 5063-5069.
    [103] M. Chairat, S. Rattanaphani, J.B. Bremner, et al. An adsorption and kinetic study of lac dyeing on silk[J].Dyes Pigments, 2005, 64: 231-241.
    [104] Salerm I A,EI-Maazawi M S Kineties and Mechanism of Color Rremoval ofMethylene Blue with Hydrogen Peroxide Catalyzed by Some Supported Alumina Surfaces[J].Chemosphere,2000,41(8):1173-1180.
    [105] Carmo A M,Hundal L S,Thompson M L. Sorption of Hydrophobic Qrganic Compounds by Soil Materials: Application of Unit Equivalent Freundllch Coefficients[J].Environ. Sei. Teclinol, 2000, 34(20): 4363-369.
    [106] W.S. Wan Ngah.,S. Fatinathan. Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chemical [J].Engineering Journal, 2008, 143 : 62-72.
    [107] Ting Fan., Yunguo Liu., Baoying Feng., et al. Biosorption of cadmium (II), zinc (II) and lead (II) by Penicillium simplicissi-mum: isotherms, kinetics and thermodynamics[J].Journal of Hazardous Materials, 2008, 160: 655-661.
    [108] Tony Sarvinder Singh., K.K. Pant. Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina[J].Separation and Purification Technology, 2004, 36: 139-147.
    [109]T ony Sarvinder Singh., K.K. Pant., Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina[J]. Separation and Purification Technology. 2004, 36: 139-147.
    [110]王重,史作清.酚醛型吸附树脂吸附VB-(12)的热力学研究[J].功能高分子学报, 2003, 16(1):1-5.
    [111]夏彩芬.静态吸附法研究交联壳聚糖树脂对有机酸的吸附热力学行为[D].广州,华南师范大学.2005.
    [112]秦丽红,张凤宝,张国亮. NTS在大孔吸附树脂上的吸附动力学及机理[J].化学工业与工程, 2007, 24(3): 245-248.
    [113]苏会东,黄维华. D113大孔树脂吸附Ni2+的动力学与热力学研究[J].环境科学与技术, 2009, 32(10): 49-52.
    [114]丁萍,黄可龙,李桂银,等.壳聚糖衍生物对Zn(II)的吸附行为[J].化工学报, 2006, 57(11): 2652-2656.
    [115]何柄林,黄文强.离子交换与吸附树脂[M].上海科教出版社,1995:406.
    [116] 1lauro S. Lima,Claudio Airoldi. A thermodynamic investigation on chitosan-divalentcation interactions[J]. Thermochimica Aeta, 2004, 421:133-139.
    [117] S.T. Lee,F. L. Mi,Y. J. Shen,et al. Equilibrium and kinetic studies of copper (Ⅱ) ion uptake by chitosan-tripolyphosphate chelating resin[J]. Polymer, 2001, 42:1879-1892.
    [118] Rongjun Qu., Changmei Sun., Minghua Wang., et al. Adsorption of Au(III) fromaqueous solution using cotton fiber/chitosan composite adsorbents [J]. Hydrometallurgy, 2009, 100:65-71.
    [119] Limin Zhou, Zhirong Liu., Jinhui Liu. et al. Adsorption of Hg(II) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres[J]. Desalination, 2010, 258:41-47.
    [120] Kensuke Fujiwara, Attinti Ramesh, Teruya Maki, et al. Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin[J]. Journal of Hazardous Materials, 2007, 146: 39-50.
    [121] Kyoko Kofuji,Chun-Jun Qian,Yoshifumi Murata. The controlled release of insulin-mimetic metal ions by the multifunction of chitosan[J]. Journal of Inorganic Bioehemistry, 2005, (99): 1329-1334.
    [122] Jiang Tao, Jiang Tian Jiu. Investigation of Extraction Method for Paralytic Shellfish Poisoning Toxins in Shellfish [J]. Chin J Anal Chem, 2008, 36(11): 1460–1464.
    [123] Hong Nong Chou, Chen Ping Huang, Chi Yu Chen. Accumulation and depuration of paralytic shellfish poisoning toxins by laboratory cultured purple clam Hiatuladiphos Linnaeus [J].Toxicon, 2005, (46): 587–590.
    [124] Chen Di, Fang Xiaoming, Fan Xiang, et al. Determination of Paralytic Shellfish Poisoning Toxins by Liquid Chromatography with Fluorescence Detection Using Pre-column Derivatization with Hydrogen Peroxide Oxidation [J]. Chin J Anal Chem, 2006, 34(7): 933?936.
    [125] Chen c y, Chou h n. Accumulation and depuration of paralytic shellfish poisoning toxins by purple clam Hiatula rostrata Lighttoot [J]. Toxicon, 2001, 39: 1029-1043.
    [126] Oshimat. Chemical and Enzymatic Transformation of Paralytic Shellfish Toxins in Marine Organisms.[C]∥LASSNS P, ARZUL G, ERARDLE D E, et al. Harmful Marine Algal Blooms. Paris: Lavoisier, 1995:475-480.
    [127]焦玥,田华,王宗灵,等.微小亚历山大藻投喂量与菲律宾蛤仔对麻痹性贝毒累积、转化和排出的动态关系[J].海洋科学进展, 2010, 28(2): 216-223.
    [128]汪文陆,王庆华,李道明,等.牡蛎营养口服液的研制[J].食品工业, 1994, 4: 39-41.
    [129]宁杰,朴美子,张璐,等.牡蛎酶解液营养粥的研制[J].食品研究与开发, 2010, 31(5): 93-96.
    [130]周新月.蚝油酶法生产工艺的研究[J],食品工业科技, 1994, (4): 20-22.
    [131]杨锡洪,解万翠,章超桦,等. SPME-GC-MS在虾调味料风味检测中的应用[J].水产学报, 2010, 34(7): 1143-1147.
    [132] Rosa j , Guoruno, Erik C, et al. Volatile compounds suitable for rapid detection as quality indicatorsvof cold smoked salmon(Salmo salar) [J]. Food Chemistry, 2008, 109: 184-195.
    [133]钱敏,刘坚真,白卫东,等.食品风味成分仪器分析技术研究进展[J].食品与机械, 2009, 25(4): 177-181.
    [134]杨远帆,陈申如,吴光斌.鱼露风味成分的萃取及气相色谱分离条件的优化[J].食品科学, 2008, 29(6): 346-349.
    [135]Masayukia, Kazuyam, Noboruo. Analysis of volatile compounds released during the grinding of roasted coffee using solid-phase microextration [J]. Journal of Agricultural and Food Chemistry, 2003, 51: l96l-l969.
    [136]张连富,隋伟.固相微萃取虾味香精中风味化合物的研究[J].食品科学, 2007, 28(5): 264-267.
    [137]章超桦,平野敏行.鲫的挥发性成分[J],水产学报, 2000, 24(4): 354-358.
    [138] Hanneh, Refscaard f. Isolation and quantification of volatiles in fish by dynamic headspace sampling and mass spectrometry[J]. J Agric Food Chemistry, 1997, 47(3): 1114-1118.
    [139] Fernandez-Segoaiai, Escriche i, Gomez-Sintes m. et al. Influence of different preservation treatments on the volatile fraction of desalted cod[J]. Food Chemistry, 2006, 98(3): 473-482.
    [140] Shahide f.肉制品与水产品的风味[M]. 2版.北京:中国轻工业出版社, 2001: 117-164.
    [141] Kolanowskl w, Jaworkad, Weibbrodt j. Importance of instrumental and sensory analysis in the assessment of oxidative deterioration of omega-3 long-chain polyunsaturated fatty acid-rich foods[J]. J Sci Food Agric, 2007, 87(2): 181-191.
    [142] Chung h y, yungiks, mawc . Analysis of volatile components in frozen and dried scallops (Platinopecten yessoensis) by gas chromatography/mass spectrometry[J]. Food Res Int, 2002, 35(1): 43-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700