地波雷达遥感资料的反演及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高频地波雷达是一种近十几年才发展起来的岸基海洋环境动力遥感仪器。地波雷达利用其垂直极化电磁波能够沿弯曲的地球表面绕射传播的机理,来获取海面流场、海面浪场和海面风场的信息,进行反演海气界面的流场、浪场和风场,也可实现对“超远距”海面舰船和低空飞行目标进行“超视距”监测。
    高频地波雷达按照天线波束的宽度可分为窄波束(相控阵式天线)雷达和宽波束(单元鞭状天线)雷达。窄波束雷达相控阵式天线的特征为多元、阵列长,配置这种天线的地波雷达具有测量海洋要素多、测量精度较高、空间分辨率较高的特点,但要使用庞大的相控阵天线和较高的发射功率,因此具有占地面积较大、移动十分困难的不足。宽波束雷达单元鞭状天线具有较小的发射和接收天线,配置这种天线的地波雷达具有移动性好、管理方便等的特点(如SeaSonde系统),但其角度分辨率和测量精度却差于窄波束雷达。
    因为高频地波雷达是利用发射和接收雷达波频率的变化来遥感波束方向上的海面的流速,因此,高频地波雷达对海洋表层流速的遥感有单站遥感、双站遥感和多站遥感之分。单站高频地波雷达遥感海洋表层流速只能测量遥感波束方向上的海面的流速,一般称之为“径向流”,经过双站或多种高频地波雷达遥感信息的合成,才能获得海洋表层二维流场。
    高频地波雷达相对于传统海洋观测仪器具有观测距离远、覆盖面积大、观测要素多、工作全天候等特点;而相对于海洋卫星遥感具有造价低、测量精度高、空间分辨率高、采样频率高等特点。高频地波雷达是一种非常具有发展前途、使用范围非常广泛的新型岸基超视距遥感仪器。
    虽然经过了20多年的发展,高频地波雷达无论是硬件和软件,还是应用都得到了很大的提高,但无容质疑,其成熟度无论是与传统海洋测量,还是卫星遥感都有较大的差距。因此,世界各国,特别是海洋大国和海洋强国,几乎都把高频地波雷达的(硬件、软件和应用)研究放在了非常重要的位置,从而使高频地波雷达的发展达到了前所未有的程度和水平。
    我国高频地波雷达的(硬件、软件和应用)研究在近十年取得了非常大的成就。在“九五”和“十五”期间,国家海洋863计划都安排了项目进行高频地波雷达的研究,在硬件和软件方面
    本文简要回顾了地波雷达遥感的国内外发展历史及应用研究的现状,简单介绍了高频地波雷达的遥感原理及其反演海面流场、浪场和风场的方法;结合作者承担的3个国家863项
High frequency ground wave radar is a land based remote sensing instrument formeasuring marine environment dynamics, developed in recent 10 years. Working on themechanism that the vertically polarized electromagnetic wave can diffract along thecurving earth surface, the ground wave radar can obtain the information of the seasurface current, wave and wind, so we can deduce current field, wave field and windfield, and the “super vision distance” monitoring on sea surface vessels and flyingobjects in low altitude can also be conducted.
    High frequency ground wave radar can be divided into narrow beam (phase controlledarray antenna) radar and wide beam (unit flagelliform antenna) radar based on thewave width of antenna's wave beam. The former is characterized by multiple entitiesand long array, so it can measure many marine factors in high accuracy and fine spatialresolution. Because of huge phase controlled array and large emission power, itoccupies large area and is uneasy to move. On the other hand, the latter one'semitting and receiving antennas are small, so it can easily be moved and managed (forexample SeaSonde system). However its angle resolution and accuracy are lower thanthe former.
    High frequency ground wave radar remotely measures fluid velocity of sea surfaceon wave beam's direction by the emitted and received radar waves variety, so remotesensing of sea surface fluid velocity can be carried on one, two or more stations.Because high frequency ground wave radar on one station can only measure fluidvelocity on wave beam's direction(radial fluid), in order to obtain sea surface'stwo dimension fluid field, we need synthesize remote sensing information of radarson two and more stations.
    Compared with traditional marine survey instrumentation, high frequency groundwave radar is more advantageous with large measuring distance, large covering area,more observing factors and operating on all weather. Compared to marine satelliteremote sensing, it has lower cost, higher measuring accuracy, higher spatial
    resolution and higher sampling frequency. High frequency ground wave radar is a newland based remote sensing instrument with superior vision and greater appliedpotentials.After twenty years' development, high frequency ground wave radar's software,hardware, and applied level are greatly improved. However no matter compared withtraditional marine survey or satellite remote sensing, there are big gaps. So allworlds, especially great and strong marine countries, attach great importance to theresearch of high frequency ground wave, thereby, its development reachesunprecedented level.Our country acquires great achievement on the research of high frequency groundwave radar (software, hardware and application). During the 9th and 10th 5-year plan,research on high frequency ground wave radar (software and hardware) are implementedin national marine 863 project.This paper briefly looks back inside and outside development history and researchlevel of high frequency ground wave radar, simply introduces its remote sensingprinciple and method to inverse sea surface fluid, wave and wind field. Combined withthree author charged 863 projects, this paper detailedly recounts radar's comparisonand verification on the sea and radar remote sensing data's calibration byphysical oceanography means, presents way and method of remote sensing data's qualitycontrol. This paper also demonstrates inverse precision of sea surface fluid fieldsynthesized by radar remote sensing data, particularly study the application of radardata's assimilation.
引文
1BAUER E et al, VALIDATION AND ASSIMILATION OF SEASAT ALTIMETER WAVE HEIGHTS USING THE WAM WAVE MODEL ,JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS 97 (C8): 12671-12682 AUG 15 1992
    2Bauer E et al ,mAssimilation of wave data into the wave model WAM using an impulse response function method , JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS 101 (C2): 3801-3816 FEB 15 1996
    3Bauer E., Hasselmann S., Hasselmann K., Validation and assimilation of Seasat altimeter wave heights using the WAM wave model. J. Geophys. Res., 1992, 97, 12671–12682.
    4Barzel G., Long R.B., Wave Model Fitting Using the Adjoint Technique. In: Dynamics and Modelling of Ocean Waves. Komen et al., Cambridge University Press, Cambridge, UK, 1994, 447-453.
    5Breivik L.A., Reistad M., Assimilation of ERS-1 altimeter wave heights in an operational numerical wave model. Weather Forecasting, 1994, 93, 440-451.
    6:Barrick ,D.E.Theory of HF and VHF propagation across the rough sea,Radion Science, 1971, 6(5),PP517-533.
    7Barrick, D. E. ,First-order theory and analysis of MF/HF/VHF scatter from the sea, IEEE Trans. Antennas Propag., AP-20,2-10,1972.
    8:Barrick ,D.E.Remote Sensing of sea state by radar,In DERR,V.E.”Remtoe sensing of the troposphere,Chap.12.
    9:Barrick ,D.E.Extraction of Sea state from HF radar sea echo: Mathematical theory and Modeling ,Radio Science,Vol.21,No.1,PP81-100,1986,
    10: Barrick ,D.E.The ocean waveheight non-directional spectrum from inversion of the HF sea-echo Doppler Spectrum,Romete Sens.Environ.,PP6-201,1977
    11:Barrick D.C. Extraction of Wave Parameters from Measured HF Sea-echo Doppler Spectrum[J].Readio Sci, 1977, 12(3);415-424
    12:Crombie, D.D. Doppler spectrum of sea cho at l3.66Mc/s I.Nature,1955,Vol.175,PP681—682.
    13:Crombie, D.D.Resonant backscatter from the sea and its application to physical oceanography,Proceeding of the IEEE ocean/72 conference,IEEEPubl,72 CHO 660-1,1972
    14Eldeberky Y, Battjes JA,Spectral modeling of wave breaking: Application to boussinesq equations, JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS 101 (C1): 1253-1264 JAN 15 1996
    15Esteva D.C., Evaluation of preliminary experiments assimilating Seasat significant wave heights into a spectral wave model. J. Geophys. Res, 1988, 93, 14099-14106.
    16Hasselmann S., Hasselmann K., Bauer E., Janssen P.A.E.M., Komen G. J., Bertotti L., Lionello P., Guillaume A., Cardone V.C., Greenwood J.A., Reistad M., Zambresky L., Ewing J.A., The WAM model-a third generation ocean wave prediction model. Journal of Physical Oceanography, 18 (12), 1988, 1775-1810.
    17Hasselmann S., Lionello P., Hasselmann K., An optimal interpolation scheme for the assimilation of spectral wave data. J. Geophys. Res., 1997, 102, 15823-15836.
    18Holthuijsen L., Booij N., van Endt M., Caires S., Guedes Soares C., Assimilation of buoy and satellite data in wave forecasts with integral control variables. J. Mar. Syst. 1997, 13, 21-31.
    19Hersbach H., Application of the adjoint of the WAM model to inverse wave modelling. J. Geophys. Res., 1998, 103, C5, 10469–10488.
    20Hasselmann S,et al, An optimal interpolation scheme for the assimilation of spectral wave data ,JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS 102 (C7): 15823-15836 JUL 15 1997
    21Hersbach H et al ,Application of the adjoint of the WAM model to inverse wave modeling, JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS 103 (C5): 10469-10487 MAY 15 1998
    22:Ha,D.E.,Remote sensing of ocean surface current and current shear by HF backscatter radar,Tech.Rep. D415-1,Stanford Electron. Lab.,1979
    23:Hall,M.P.M. and Barclay,LW.,1989,Radiowave propagation,Peter Pregerinus for the IEE.
    24Janssen P.A.E.M., Lionello P., Feistad M., Hollingsworth A., Hindcasts and data assimilation studies with the WAM model during the Seasat period. J. Geophys. Res., 1989, 94, 973-993.
    25:J.Walsh,R.Howell and B.Dawe.Model Development for Evalution Studies of Ground Wave Radar.Centre Cold Ocean Resouces,Eng.,Contract Rep.90-c14.1990
    26Komen, GJ;Hasselmann, S;Hasselmann, K;Toba, Y ,The fully developed wind-sea spectrum as a solution of the energy balance equation, Symposium on Wave Breaking, Turbulent Mixing and Radio Probing of the Ocean Surface, Sendai (Japan), 19-25 Jul 1984
    27Komen G.J., Introduction to wave models and assimilation of satellite data in wave models. In: The Use of Satellites in Climate Models. Vol. ESA SP-244, European Space Agency, Paris, France, 1985, 21-25.
    28Lionello P., H. Günther and P.A.E.M. Janssen. Assimilation of altimeter data in a global third-generation wave model. J. Geophys. Res., 1992, 97, 14453 -14474.
    29Lionello P., Günther H., Hansen B., A sequential assimilation scheme applied to global wave analysis and prediction. J. Mar. Syst., 1995, 6, 87-107.
    30LIONELLO P et al, ASSIMILATION OF ALTIMETER DATA IN A GLOBAL 3RD-GENERATION WAVE MODEL ,JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS 97 (C9): 14453-14474 SEP 15 1992
    31LIONELLO P, et al, A SEQUENTIAL ASSIMILATION SCHEME APPLIED TO GLOBAL WAVE ANALYSIS AND PREDICTION , JOURNAL OF MARINE SYSTEMS 6 (1-2): 87-107 JAN 1995
    32:Lipa B.j.,Barrick D.E.,Least-squares methods for the extraction of surface currents from CODAR Crossed-loop Data:Application at ARSLOE.IEEE.J.O.E,OE-8:226-253
    33TOLMAN HL, EFFECTS OF NUMERICS ON THE PHYSICS IN A 3RD-GENERATION WIND-WAVE MODEL ,JOURNAL OF PHYSICAL OCEANOGRAPHY 22 (10): 1095-1111 OCT 1992
    34TOLMAN HL,AN EVALUATION OF EXPRESSIONS FOR WAVE ENERGY-DISSIPATION DUE TO BOTTOM FRICTION IN THE PRESENCE OF CURRENTS , COASTAL ENGINEERING 16 (2): 165-179 JAN 1992
    35Voorrips A.C., Makin V.K., Hasselmann S., Assimilation of wave spectra from pitch-and-roll buoys in a North Sea wave model. J. Geophys. Res., 1997, 10, 5829-5849.
    36Voorrips A.C., A.W. Heemink and G.J. Komen, Wave data assimilation with the Kalman filter. Journal of Marine Systems, 1999, 18, 267-291.
    37Voorrips AC et al, Assimilation of wave spectra from pitch-and-roll buoys in a North Sea wave model,JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS 102 (C3): 5829-5849 MAR 15 1997
    38:Wait, J.R. Theory of HF ground wave backscatter from sea waves.J.Geophys Res,1966,71,PP4839-4842).
    39:Wait,J.F. Power spectra from ocean movements mersured remotely by ionospheric radio bachscatter.Natuer.1969. 223:1325-1330.
    40Yang Yongzeng, Qiao Fangli, Pan Zengdi, Wave assimilation and numerical prediction. Chin. J. Oceanol. Limnol. 2000, 18(4), 301-308.
    41Yang Yongzeng, Ji Yonggang, Yuan Yeli, The Nonlinear Interaction Process in the Wave Assimilation Model and Its Experiments. Chin. J. Oceanol. Limnol., 2003,21(1), 18-26.
    42 张志旭,齐义泉,施平,李志伟,李毓湘,最优化插值同化方法在预报南海台风浪中的应用。热带海洋学报,2003,Vol.22, No.4, 34-41.
    43:周志鑫,王金荣,用于近海监测及海态遥感的高频地波雷达,现代雷达,1977,19(2),1-5.
    44:周志鑫等,由高频地波雷达回波提取海态信息研究,电子器件,1997,Vol.20,No.1,
    45 杜勇,高频地波雷达单站测量表层海流的原理,青岛海洋大学学报, 29, 2,23-29, 1999.
    46:周浩,文必洋,高频地波雷达生成海洋部门矢量流图,海洋渔湖沼,2002,33(1),1~7
    47:哈工大硕
    48:黄为民,武汉大学博士毕业论文
    49:高火涛等,高频地彼雷达探测距离的预估及分析,现代雷达,No.5,1999,
    50:吴世才等,高频地波雷达的东海试验,武汉大学学报(理学版),Vol47,NO1
    51:时玉彬 杨子杰 陈泽宗 万显荣,海洋环境监测高频地波雷达的研究现状与发展趋势,电视技术,2002,3 期
    52:武汉大学,818-01-02 课题技术实施方案
    53:文必洋等,0SMAR2000 探测海面风浪场原理与实现,武汉大学学报,Vol.47,No5
    54 文必洋、黄为民、王小华,武汉大学学报,Vol.47,NO.5,2001,642-644
    55 文必洋等,海态监测分析雷达数据抽样及频谱分析,武汉大学学报(自然科学版),海洋探测专刊,118-122, 1994
    56 文必洋等,从海态监测分析雷达回波生成径向海流图,武汉大学学报(自然科学版),海洋探测专刊,129-133, 1994.
    57 文必洋,高频地波雷达探测海洋表面状态参数研究,武汉大学博士学位论文,1998
    58 吴世才等,国家 863 计划海洋领域 818 主题 818-01-02 课题技术实施方案,武汉大学电波传播研究室,1-2, 1997.
    59 吴世才,刘海文,文必洋,一种海洋表面矢量流图生成算法的研究,电波科学学报,14, 1,61-65, 1999.
    60 吴世才等,高频无线电波与海面风浪场之间的一阶及二阶相互作用, 武汉大学学报(自然科学版),海洋探测专刊,5-10, 1994.
    61 王成武,高频地波舰载超视距雷达研究曲翠萍, 电子工程,2001 年第 3 期,p9-14。
    62,高火涛,高频地彼雷达探测距离的预估及分析,现代雷达,1999 年 10 月,第 5 期,P31-38
    63,Wait J R. Recent analytical investigation of electromagnetic ground wave propagation over inhomgenoua earth models. Proc. lEE.1974,62,1061-1071
    64Wait J R. Electromagnetic surface waves in advance in Radio Research. Vol. 1. edit by j A Saxton.Academic. New York. 1964,157-217
    65,Donald E arrick. First-order theory and analysis of MF/HF/VHF scattering from the sea. IEEIl. Transaction on antennas and propagation. 1972:AP-20(1):2-9
    66,David A Hill. James R Wait. Ground-attenuation function for a spherical earth arbitrary surface impedance. Radio Science. Vol. 15.No-3.1960,637—643
    67, Zhou Zhixin & Lie Yongtan. Radio measurements of surface wind direction and oceanic currents within bohai Sea Gulf area. Proc. of ICRS'95. Chinese Jourrnal of Radio Science
    68,YANG Shao-tin. KE Heng-yu. WU Shi-cai. Signal Preprocessing for Bearing Determination of ocean. Surface Radial Current Mapping Based on of MUSIC【j】Modern Radar 2001.23(4):49-54(Ch).
    69, 饶亲江,龚中鱗,粗糙海面对高频雷达地波空间场分量传播损耗的影响,电子科学学刊,Vol 22 No. 2,Mar. 2000
    70,石新智,文必洋,海态雷达的一种矢量海流合成方法及其计算机模拟,武汉大学学报(理学版),Vol.47 No.5,Oct.2001,538~541.
    71,Wu, X., and Flather R.A. ,1992. Hindcasting waves using a coupled-tide-surge Model. Third international workshop on wave hindcasting and forecasting. 19-22.
    72Tolman, H. L.,1991. Effects of tides and storm surges on north wind waves.J. Phys. Oceanogr., 6,766-781.
    73Tolman, H. L., 1990. The influence of unsteady depth and current of tides on wind-wave propagation in shelf seas. J. Phys. Oceanogr., 20,1166-1174.
    74Tolman, H. L., 1994. Wind waves and movable-bed bottom friction.J. Phys. Oceanogr., 2,991-1009.
    75Signell, R.P., et al., 1990. Effect of wave-current interaction on wind-derived Circulation in narrow ,shallow embayments. J. Geophys. Res., 95,9671-9678.
    76Niane Masson,1996. A case study of wave-current interaction in a strong tidal current, J. Phys. Oceanogr., 26,359-371
    77 赵永良,张廷廷,陈则实,1992,黄海风暴潮和天文潮非线性藕合作用下的数值研究,海洋学报,14(3)37-46。
    78 田纪伟,曹红杰,覃正才等,2001,海浪破碎对海面微波后向散射系数的影响,中国科学(D 辑),31(4),342-352。
    79 吕咸青,张杰,1999,如何利用水位资料反演开边界条件(一、二),水动力学研究与进展(A 辑),14,4(B),92-108.
    80 吕咸青,数据同化反演风应力拖曳系数以及垂向涡动粘性系数的分布,2001 年,海洋 学报,第 23 卷,第 1 期。
    81Sydor, M., R. A. Arnone, R. W. Gould, et al, 1998, Remote-sensing technique for determination of the volume absorption coefficient of turbid water, Applied Optics, 37(21), 4944-4950.
    82Greiner, E. and Perigaud, C.,1996, Assimilation of Geo-sat Altimetric Data in a Nonlinear Reduced-Gravity Model of the Indian Ocean. Part II: Some Validation and Interpretation of the Assimilated Results, Journal of Physical Oceanography, 26, 1735-1746.
    83Vogeler, A. and Schroter, J., 1995, Assimilation of satellite altimeter data into an open ocean model,Journal of Geophysical Research, 100, 15951-15963.
    84Lellouche J.M. ,Ouberdous M. and W. Eifler, 2000,4D-var data assimilation system for a coupled physical –biological model,Proceedings of the Indian Academy of Sciences, Earth and planetary sciences, 109(4),491-502.
    85Zhengyu Liu and Haijun Yang and Qinyu Liu, 2001, Regional Dynamics of Seasonal Variability in the South China Sea, Journal of Physical Oceanography, 272-284.
    86Changsheng Chen, Robert Beardsley, Peter J.S. Franks,2001, A 3-D prognostic numerical model study the Georges Bank ecosystems Part I: physical model,Deep-Sea research II, 48 419-456 .
    87PetersJ.S. Franks ,Changsheng Chen,2001, A 3-D prognostic numerical model study of the Georges bank ecosystems Part II: biological–physical model,Deep-Sea Research II, 48, 457-482.
    88Blumberg, A. F. and G. L. Mellor, A coastal numerical model, Mathematical Modeling of Estuarine Physics, J. Sundermann and K. Holz, eds, Springer-Verlag, New York, 202-128, 1980
    89Blumberg, A. F. and G.L. Mellor, A description of a three-dimensional coastal ocean circulation model, in Three-Dimensional Coastal Ocean Models, Coastal and Estuarine Sciences, edited by N. Heaps, Vol. 4, AGU, Washington, DC, 1-16, 1987.
    90Blumberg, A. F. and B. Galperin, On the summer circulation in New York Bight and contiguous estuarine waters, in Coastal and Estuarine Studies, Vol. 38. R. T. Cheng, ed., Springer-Verlag, New York, 451-468, 1990.
    91Blumberg, A. F., D. M. Di Toro, R. E. Vassilakis, P. R. Paquin, and J. J. Fitzpatrick, A unified hydrodynamic-water quality model, Proceedings ASCE conference, Water Forum '86: World Water Issues In Evolution, Long Beach, CA, 1309 –1316, 1986.
    92Chao, S.-Y., Hyperpycnal and buoyant plumes from a sediment-laden river, J. Geophys. Res., 103(C2), 3067-3081, 1998.
    93Galperin, B., A. F. Blumberg, and R. H. Weisberg, A time-dependent three-dimensional model of circulation in Tampa Bay, in Proc. Tampa Bay Area Scientific Inf. Symp., No. 2, Feb. 27-March 1, Tampa, FL, 77-97, 1991
    94Gelci, R., H. Cazale, and J. Vassal, 1956, Utilization des diagrammes de propagation a la prevision energetique de la houle. Bulletin d'information du commite central d'oceanographie et d'etudes des cotes 8, 169-197;
    95Hess, K. W., MeCCA programs documentation, NoAA technical report, NESDIS 46, 1989.
    96Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P.Kruseman, A. Meerburg, P. Muller, D. J. Olbers, K. Richter, W. sell, and H. Walden, 1973: Measurements of wind-wave growth and swell decay during the Joint North sEa Wave Project(JONSWAP), Erg. Dtsch, Hydrogr. Z., Reihe A(8), No. 12, 95 pp.
    97Oey, L.-Y., and P. Chen, A model simulation of circulation in the northeast Atlantic shelves and seas. J. Geopgys. Res., Vol. 97, 20087-20115, 1992.
    98Oey. L.-Y., G. L. Mellor, and R. I. Hires, A three-dimensional simulation of the Hudson-Raritan estuary. Part I: Description of the model and model simulation. J. Phys. Oceanogr., Vol 15, 1676-1692, 1985a.
    99Oey. L.-Y., G. L. Mellor, and R. I. Hires, A three-dimensional simulation of the Hudson-Raritan estuary. Part II: Comparison with observations. J. Phys. Oceanogr., Vol 15, 1693-1709, 1985b.
    100Oey. L.-Y., G. L. Mellor, and R. I. Hires, A three-dimensional simulation of the Hudson-Raritan estuary. Part III, Salt flux analysis. J. Phys. Oceanogr., Vol 15, 1711-1720, 1985c.
    101Oey. L.-Y., G. L. Mellor, and R. I. Hires, Tidal Modeling of the Hudson-Rartian Estuary, Estuarine Coastal Shield Sc. Vol. 20. 511-527,1985d.
    102Signell, R. P., H. L. Jenter, and A. F. Blumberg, Modeling the seasonal circulation in Massachusetts Bay, Estuarine and Coastal Modeling III: Proc 3d Int. Conf. Waterway, Port. Coastal and Ocean Div., ASCE, 578-590, 1994.
    103SWAMP Group, 1985, Ocean Wave Modelling, Plenum Press, 256 pp.
    104SWIM Group, 1985, A shallow water intercomparison of three numerical wave prediction models (SWIM). Quart. J. Rou. Meteor. Soc. 111, 109\87-1112.
    105WAMDIG, 1988, The WAM model-A third generation ocean wave prediction model. J. Phys. Oceanogr., 18, 1775-1810.
    106Tolman, H. L. 1991, A third-generation model for wind waves on slowly varying unsteady, and inhomogeneous depths and currents, J. Phys. Oceanogr. 22, pp783-797.
     107Tolman, H. L. 1991, Effects of numerics on the physics in a third-generation wind-wave model, J. Phys. Oceanogr. 23, pp1095-1111.
     108Tolman, H. L. D. Chalikow, 1996, Source terms in a third-generation wind wave model, J. Phys. Oceanogr. 26, pp2497-2518.
    [56] 韩树宗,王海龙,郭佩芳,赵可胜. 高频地波雷达反演海浪的海上对比验证方法研究. 青岛海洋大学学报. 2002, 32(5), 687-694.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700