D型涡扇发动机风扇改型设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的准三维设计方法曾经设计出大量性能优良的叶轮机械,并且一维和准三维设计方法由于其丰富的设计经验,至今仍然在叶轮机械的设计中发挥重要的作用。但在现代风扇/压气机向高通流、高负荷、高效率的方向发展时基于传统准三维设计体系的设计方法就暴露出它的局限性和不足。基于上述原因本文系统地总结了风扇/压气机设计技术体系的发展概况,改进了传统的准三维设计体系,建立了一个适用于现代风扇/压气机的设计体系。该设计技术体系既继承了传统的设计经验,又有新的设计技术的加入,它适合于我国当前风扇/压气机设计计算能力。本文还对该设计体系的基本原理和工作流程作了简明扼要的总结。
     为了解决风扇/压气机设计中经常遇到的叶片表面流场分离问题,本文以轴对称流动作为主流,对叶轮机械的二次流动问题进行了深入地研究。根据轴对称流的主控制方程中各项的含义,研究了影响主方程平衡关系的三个因素,即流线曲率、气体绕压气机轴线旋转产生的惯性离心力和叶片力。根据这三个因素提出了弯曲静子叶片设计的气动正交准则,该方法对提高喘振裕度和非设计点性能有较好效果。采用气动正交的设计方法是本设计体系的一个重要特色。
     本文采用该设计体系对D型发动机的风扇转子叶片进行了改型设计,全三维流场计算结果表明风扇性能达到了设计指标。为了解决第一排静子叶片叶尖和轮毂部分的分离,采用了气动正交的方法对该静子叶片进行了重新设计,基本消除了叶尖和轮毂部分的分离,风扇级的非设计点性能和喘振裕度有较大提高。
     本文还介绍了基于伴随方法的全三维流场优化方法,采用Rotor 67转子验证了该方法的有效性,然后利用该方法对改型风扇转子叶片进行了全三维流场优化,优化后的风扇转子比优化前效率提高了2%。优化结果表明基于伴随方法的全三维流场优化是高性能风扇/压气机设计体系的一个重要组成部分。
     本文最后对设计点转速为25850rpm的改型风扇转子进行了部件试验和整机验证试验,试验结果表明本文采用的压气机气动设计方法是可行的,该改型风扇转子可以用于D型发动机的改型。
Many turbomachineries with super performance has been designed with the aid of traditional quasi-three-dimensional design method, which still play a important role in modern turbomachinery design process, and a lot of design experience has been established. However, for the tendency of High throughflow, High load and High efficiency (3H) turbomachinery, traditional design system starts to show its deficiency. In this dissertation, first, a review on development of fan/compressor design technique has been made; then, based on the traditional design system, a elementary modern fan/compressor design system, which is well suited to the domestic computational capacity now, has been constructed, by including some new design concept. Also, the basic principle and flowchart of aerodynamic process is reviewed briefly.
     Considering the flow separation, which is frequently met in fan/compressor design process, a deep analysis to the secondary flow in turbomachines is present based on the axis-symmetric inviscid governing equation, the analysis shows that there are three primary factors, which influence the force balance in flow passage. Based on this recognition, an new rule for bowed stator design --- Aero-Orthogonality (AO) rule is proposed here. Experience shows that the rule is very effective in improving surge margin and off-design performance.
     With the help of the improved design system, a fan stage redesign is conducted, and 3-D flow field calculation verifies that the design object is satisfied. To eliminate flow separation at the tip and hub section, AO rule is applied and the result is satisfactory.
     Also, A new optimization technique is adopted in the new design system --- Adjoint method, NASA rotor 67 is first redesigned by this method to show its potential of performance improvement, then this method is applied to the rotor of fan stage. The result is fairly encouraging. The rotor efficient get a 2% gain, which means that the adjoint method do improve the three dimensional flow fields, and is indispensable to the new design system.
     Finally, experiment of the redesigned fan stage at the revolution 25850rpm is conducted, which vertifies that the design system used in this paper is feasible and the redesign work of the fan stage is successful.
引文
[1].蒋洪德,美国高性能涡轮发动机技术(HPTET)计划介绍,压气机文集,第一分册.航空航天工业部航空科技情报研究所,1989:252~260;
    [2].方昌德.航空发动机的发展前景.航空发动机.30(1): 1~5,2004;
    [3].IHPTET: Air Dominance through Propulsion Superiority -Ten years of Progress, Oct.1997;
    [4].彭泽琰,刘刚,航空燃气轮机原理(上册),北京:国防工业出版社,2000;
    [5].陈懋章,风扇/压气机技术进展和对今后工作的建议,21世纪航空动力发展研讨会,北京:中国航空学会动力专业分会,2000,74~87。
    [6].W John Calvert, Paul R Emmerson and Jon M Moore, Design/Test and Analysis of A High-Pressure-Ratio Transonic Fan, ASME Paper GT2003-38302, 2003;
    [7].Toyotaka Sono, Advanced High Turning Compressor Airfoils for Low Reynolds Number Condition, Part1: Design and Optimization, ASME Paper GT2003-38458, 2003;
    [8].Mark g, Turner Ian k, Jennions, An Investigation of Turbulence Modeling in Transonic Fans Including a Novel Implementation of an Implicit k ?εTurbulence Model, ASME Paper 92-GT-308, 1992;
    [9].L. S. Langston. Cross Flow in a Turbine Cascade Passage, ASME Journal of Engineering for Power. 1980, 102:PP. 866~874;
    [10]. P.Marchal, C. H. Sieverding, Secondary Flow within Turbomachinery Bladings, Secondary Flow in Turbomachinery, 1977, AGARD CP351;
    [11]. H. P. Wang, et al.Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blade. ASME Paper 95-GT-7,1995;
    [12].周逊,韩万金,涡轮矩形叶栅中的旋涡模型的进展回顾,航空动力学报,16(3),2001;
    [13]. J. D. Denton. Loss mechanisms in turbomachines, part错误!未找到引用源。: loss generation in turbomachines”, Von Karman Institute for fluid dynamics lecture series, 1999;
    [14].肖敏,轴流压气机超音叶片新技术设计研究,航空动力学报,17(1),2002;
    [15].王会社,钟兢军,王仲奇,多级压气机中可控扩散叶型研究的进展与展望,第二部分可控扩散叶型的实验与数值模拟,航空动力学报,17(1),2002;
    [16]. Y. S. Li, R. G. Wells, The Three-Dimensional Aerodynamic Design And Test of A Three-Stage Transonic Compressor, ASME Paper 99-GT-68, 1999;
    [17]. Frank Sieverding, Beat Ribi, Design of Industrial Axial Compressor Blade Sections for Optimal Range and Performance, ASME Paper GT2003-38036, 2003;
    [18]. Alain Demeulenaere, Three-Dimensional Inverse Method For Turbomachinery Blading Design, ASME Paper 96- GT-39, 1996;
    [19]. J. Chung, J. Shim, K. D. Lee, 3D Transonic Compressor Design Optimization with Quasi-3d Flow Physics, ASME Paper fedsm00-11075, 2000;
    [20]. C. Xu, R. S. Amano, A Turbomachinery Blade Design and Optimization Procedure, ASME Paper GT-2002-30541, 2002;
    [21]. A. J. Medd, T. Q. Dang, L. M.Larosiliere, 3D inverse design loading strategy for transonic axial compressor blading, ASME Paper GT2003-38501, 2003;
    [22].陈乃兴,单转子风扇的三维反问题气动设计,航空动力学报,17(1),2002;
    [23]. Sang-Yun Lee, Kwang-Yong Kim, Design Optimization of Axial Flow Compressor Blades with Three-Dimensional Navier-Stokes Solver, ASME Paper 2000- GT–0488;
    [24].梁春华,国外风扇/压气机掠形叶片技术的发展,航空发动机,(4),2000;
    [25].邢秀卿,周盛,赵晓路,掠弯叶片前缘曲线同流场结构的关联,航空动力学报,15(4),2000;
    [26].胡国荣,弯掠形叶片高速气动力学分析初探,航空发动机,(4),2000;
    [27]. V. Gümmer, U. Wenger, H.-P. Kau, Using Sweep and Dihedral to Control Three-Dimensional Flow in Transonic Stator of Axial compressors, ASME Paper 2000- GT–0491;
    [28]. H Watanabe, M Zangeneh, Design of the Blade Geometry of Swept Transonic Fans by 3D Inverse Design, ASME Paper GT2003–38770;
    [29]. Simon J Gallimore, John J Bolger, Nicholas A Cumpsty, The Use of Sweep and Dehedral in Multistage Axial Flow Compressor Blading, Part I: University Research and Methods Development, ASME Paper GT-2002–30328;
    [30]. J. D. Denton, L. Xu, The Effects of Lean and Sweep on Transonic Fan Performance, ASME Paper GT-2002–30327;
    [31]. A. R. Wadia, P. N. Szucs, D. W. Crall, Forward Swept Rotor Studies in Multistage Fans with Inlet Distortion, ASME Paper GT-2002–30326;
    [32]. Christoph, et al. Numerical Investigation of the Flow in an Aft-Sweep Transonic Compressor Rotor, ASME Paper 2000- GT–0490;
    [33]. Axel Fischer, et al, Performance of Strongly Bowed Stators in A 4-Stage High Speed Compressor, ASME Paper GT2003-38392, 2003;
    [34].钟兢军,稠度对弯叶片压气机叶栅特性的影响,航空动力学报,12(2),1997;
    [35].钟兢军,弯曲叶片控制扩压叶栅二次流的实验研究,博士学位论文,中国哈尔滨,哈尔滨工业大学,1995;
    [36]. Bammert K, Staude R, Optimization for Rotor Blades of Tandem Design for Axial Flow Compressors, Journal of Engineering for Power Transactions of the ASME, April, 1979;
    [37]. Qiu. X, Dang. T, Three-Dimensional Inverse Method for Turbomachine Blading with Splitter Blades, ASME 2000-GT-137;
    [38].陈葆实,陈懋章等,高马赫数、高负荷单级风扇设计和试验研究,航空发动机,(3),2000;
    [39].魏玉冰,陈葆实,带有后掠转子的跨音速单级风扇设计与试验,中国工程热物理学会热机气动热力学学术会议,992002;
    [40].杨金广,压气机设计流程,北京动力机械研究所,技术报告,2007;
    [41].杨金广,涡轮发动机压缩系统气动设计和数值仿真技术研究,硕士学位论文,中国西安,西北工业大学,2007;
    [42]. Wu. C. H., A General Theory of Three Dimensional Flow in Subsonic and Supersonic Turbomachine in Radial and Mixed Flow Types, 1952, NASA TN-2604;
    [43]. R. A. Novak,: Streamline Curvature Computing Procedures for Fluid-Flow Problems, Journal of Engineering for Power, Trans. of the ASME, October 1967, pp. 478~490;
    [44]. H. Marsh, A Digital Computer Program for the Through-Flow Fluid Mechanics in an Arbitrary Turbomachines, Using a Matrix Method, ARC RM. No. 3509, 1968;
    [45]. S. V. Damle, Throughflow Method for Turbomachines Using Euler Solvers, AIAA 96-0010, January 1996;
    [46]. CH. Hirsch, and G. Warzee, A Finite Element Method or Through-Flow Calculation in Turbomachines, Journal of Fluids Engineering, Trans. Of the ASME, Sept. 1976;
    [47].邵伏永,杨金广,刘振德,胡骏,改进的流线曲率通流计算方法及在双涵道压缩系统设计中的应用,航空动力学报,23(6),2008;
    [48]. J. D. Denton, Throughflow Calculation for Transonic Axial Flow Turbines, Trans. of the ASME, Journal of Engineering for Power, April 1978, pp. 212~218
    [49].高压轴流、离心或斜流压气机叶片空间造型,北京动力机械研究所,技术报告;
    [50]. MaDonald, P. W. The Computation of Transonic Flow Through Two Dimensional Gas Turbine Cascade, ASME Paper 71-GT-89,1971
    [51].刘前智,周新海,单级跨音速压气机三维非定常粘性流动计算,航空动力学报,15(1):13~17,2000;
    [52]. J. D. Denton, A Time Marching Method for Two-and-Three-dimensional Blade to Blade Row, 1974, ARC R&M 3775;
    [53]. Daws W. N., A Numerical Analysis of 3-D Viscous flow in a Transonic Compressor Rotor and Comparison with Experiment, ASME journal of Turbomachinery 120(1): 83~90, 1987;
    [54].周新海,朱方元,应用Navier-Stokes方程的叶栅粘性流动数值分析,工程热物理学报,9(2):230~235,1988;
    [55].宁卫,周新海,吕勇,跨音速压气机回转叶片排中三维流场的数值分析,工程热物理学报,12(1):42~45,1991;
    [56].陈乃兴,黄伟光,周倩,跨声速单转子压气机三维湍流流场的数值计算,航空动力学报,10(2):109-112,1995;
    [57].袁新,可压缩粘性流动中双方程湍流模型的选择,工程热物理学报,19(4):427~432,1998;
    [58].王松涛等,具有TVD性质的三阶精度GODUNOV格式在粘性流场计算中的应用,工程热物理学报,20(3):299~303,1999;
    [59].宁卫,刘前智,姚吉先等,跨音速压气机动静叶相干的三维非定常流动数值分析,航空动力学报,11(2):161~164,1996;
    [60].季路成,孟庆国,周盛,一类轴流叶轮机转/静干扰问题的3D Euler数值研究方法,航空动力学报,13(3):230~231,1998;
    [61].刘前智,周新海,单级跨音速压气机三维非定常粘性流动计算,航空动力学报,15(1):13~17,2000
    [62]. L. He and J.D. Denton, Three-dimensional time-marching inviscid and viscous solutions for unsteady flows around vibrating blades. Journal of Turbomachinery, 116:469~476,1994;
    [63]. L. He and W. Ning, An efficient approach for analysis of unsteady viscous flows in turbomachines. AIAA Journal, 36(11):2005~2012, 1998;
    [64]. T. Chen, P. Vasanthakumar, and L. He, Analysis of unsteady blade row interaction using nonlinear harmonic approach. Journal of Propulsion and Power, 17(3):651~658, 2001;
    [65]. L. He, T. Chen, R. G. Wells, Y.S. Li, and W. Ning, Analysis of rotor-rotor and stator-stator interferences in multi-stage turbomachines, Journal of Turbomachinery, 124:564~571, 2002;
    [66]. H.D. Li and L. He, Blade count and clocking effects on three-blade row interaction in a transonic turbine, Journal of Turbomachinery, 125(4):632~640, 2003;
    [67]. S. Moffatt, W. Ning, Y.S. Li, R.G. Wells, and L. He, Blade forced response prediction for industrial gas turbines, Journal of propulsion and power, 21(4):707~714, 2005;
    [68]. H.D. Li and L. He, Blade aerodynamic damping variation with rotor-stator gap: a computational study using single passage approach, Journal of Turbomachinery, 127:573~579, 2005;
    [69]. Baldwin, B. and Lomax, H. (1978). Thin layer approximation and algebraic model for separated turbulent flows. AIAA Paper78-257. 3.2
    [70]. Spalart, P. and Allmaras, S. (1992). A one-equation turbulence model for aerodynamic flows. AIAA Paper92-0439. 3.2
    [71]. Denton, J. (1992). The calculation of three-dimensional viscous flow through multistage turbomachines. Journal of Turbomachinery, 114:18~26. 2.2.2, 3.4, 4.3
    [72]. Giles, M. (1991). Unsflo: A numerical method for the calculation of unsteady flow in turbomachinery. Technical report, Gas turbine laboratory, Massachusetts institute of technology. 3.4, 4.3
    [73]. Jameson, A., Schmidt, W., and Turkel, E. (1981). Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes.AIAA Paper,81-1259. 3.5.1
    [74]. XX-X、XX-X风扇压气机性能试验报告,哈尔滨工业大学,试验报告,2007;
    [75]. XX-X风扇压气机气动计算报告,北京动力机械研究所,技术报告,1992;
    [76].邵伏永,D型涡扇发动机风扇╱压气机全三维流场计算结果与试验结果对比研究,硕士学位论文,中国北京,北京航空航天大学,2001;
    [77].王春雪,压气机单列与串列静叶栅采用弯叶片的数值分析,硕士学位论文,中国哈尔滨,哈尔滨工业大学,2004;
    [78]. L.H. Smith, and H. Yeh, Sweep and dihedral effect in axial flow Turbomachinery, ASME J. of Basic Engineering, 1963, 85:401~406;
    [79]. Ainley, Performance of Axial Flow Turbomachinery, Institution of Mech. Eng, 159:230~237
    [80].奥茨,燃气涡轮发动机的热力学理论及应用,国防工业出版社,1992年1月;
    [81]. Hawthorne, Som Formula for the Calculation of Secondary flow in Cascade, ARC Report. 17519, 1955;
    [82]. L. H. Smith, Secondary Flow in Axial Flow Turbomachines, Trans. of the ASME, Oct. 1955:1065~1076;
    [83]. M.E. Deich, A. B. Gubalev, G. A. Filippov, and Z. Q. Wang, A New Method of Profiling the Guide Vane Cascade of Stage with Small Ratios Diameter to Length, Teplienergetika, 1962, 8: 42~46;
    [84]. Wang Zhongqi, Lai Shengkai and Xu Wenyuan, Aerodynamic Calculation of Turbine Stator Cascades with Curvilinear Leaned Blades and Some Experimental Results, Symposium Paper of 5th ISABE, India, 1981;
    [85].王仲奇,一代新型轴流式透平机械叶片——叶片的弯扭联合气动成型理论及其实验结果,工程热物理能源利用学科气动热力学发展战略研讨会专题报告汇编,1989: 55~65;
    [86].苏杰先,冯国泰,闻洁等,弯曲叶片在压气机中的应用,工程热物理学报,1990,11(4):404~407;
    [87].钟兢军,弯曲叶片控制扩压叶栅二次流动的实验研究,博士学位论文,中国哈尔滨,哈尔滨工业大学,1995:74~78;
    [88].苏莫明,弯掠组合正交型三维扭叶片轴流压气机的设计理论与应用,博士学位论文,中国西安,西安交通大学,1996:69~71;
    [89]. D.E. Goldberg, Genetic algorithms in search, optimization and machine learning, Addison-Wesley, 1988;
    [90]. D. J.Doorly, Chapter 13 of Genetic algorithms in engineering and computer science, ed. GWinter et al,Wiley, 1995;
    [91]. Shigeru Obayashi, Genetic optimization of target pressure distributions for inverse design methods, AIAA 95-1649;
    [92]. K. Yamamoto, O. Inoue, Application of genetic algorithm to aerodynamic shape optimization, AIAA 95-1650
    [93]. D. J. Doorly, J. Peiro, Supervised parallel genetic algorithms in aerodynamic optimization, AIAA 97-1852;
    [94]. D. Quagliarella and A. DellaCloppa, Genetic algorithms applied to the aerodynamic design of transonic airfoil, J. of Aircraft, 32:889~891,1995;
    [95].赵风治,尉继英著,约束最优化计算方法,科学出版社,1991;
    [96].朱自强,Zubair Islam,朱一锟,李海明,翼型外形高气动效率/低可探测性的优化,航空学报,19(6):641~646,1999;
    [97].朱一锟,H.Sobieczky,跨音速机翼数值最优化设计方法,航空学报,16(4):402~407,1995;
    [98]. Himmelblau D. M., Applied nonlinear programming, McGraw-Hill Book Company, New York, 1972;
    [99]. O. Baysal, M. E. Eleshaky, Aerodynamic sensitivity analysis methods for the compressible Euler equations, J. of Fluid Engineering, 113:681~668,1991
    [100]. H. M. Elbanna and L. A. Carison, Determination of aerodynamic sensitivity coefficients based on the transonic small perturbation formulation, J. of Airfoil, 27(6):507-515,1990;
    [101]. M. E. Eleshaky, O. Baysal, Airfoil shape optimization using sensitivity analysis on viscous flow equations, J. of FLUID Engineering, 115(1),1993;
    [102]. M. E. Eleshaky, O. Baysal, Airfoil shape optimization using sensitivity analysis on decomposed computational domains, J. of Comp. and Fluids, 23(4):595-611, 1994
    [103]. G W. Burgreen, O. Baysal, Three-dimensional aerodynamic shape optimization using discrete sensitivity analysis, AIAA Journal, 34(9), 1996;
    [104]. A. Jameson, Aerodynamic Design via Control Theory, Journal of Scientific Computing, 3(3), 1988;
    [105]. A. Jameson, Computational Aerodynamic for Aircraft Design.Science, Volume 245,1989;
    [106]. A. Jameson. Control Theory Based Airfoil Design using the Euler Equations, AIAA-94-4272-cp;
    [107]. A. Jameson, N. A. Pierce and L. Martinelli, Optimum Aerodynamic Design Using the Navier-Stokes Equations, AIAA 97-0101;
    [108]. A. Jameson, J. J. Alonso and L. Martinelli, Aerodynamic Shape Optimization Techniques Based on Control Theory, AIAA 98-2538;
    [109]. Sangho Kim, Design Optimization of High Lift Configuration Using a Viscous Adjoint-Based Method,Ph. D. Dissertation, Dept. of aeronautics and astronautics of Stanford university, Dec. 2001;
    [110]. Giles, M. and Pierce, N. (1997). Adjoint equations in CFD: duality, boundary conditions and solution behaviour. AIAA Paper, 97-1850. 4.2, 4.4
    [111]. Jameson, A. (2003). Aerodynamic shape optimization using the adjoint method. Lectures at the Von Karman Institute, Brussels. 2.2.2, 4, 4.5, 9.2.4
    [112]. Soto, O. and L¨ohner, R. (2004). On the computation of flow sensitivities from boundary integrals. AIAA Paper,04-0112. 4.5
    [113]. Vatsa, V. (1999). Computation of sensitivity derivatives of Navier-Stokes equations using complex variables. NASA Langley Research Center, Hampton, VA 23681. 2.1,2.2.1, 4.2, 4.5,
    [114]. H. Wu, F. Liu, and H. Tsai, Aerodynamic design of turbine blades using an adjoint equation method, AIAA Paper 05-1006, 2005;
    [115]. H. Wu, S. Yang, and F. Liu, Comparison of three geometric representation of airfoils for aerodynamic optimization. AIAA Paper 2003-4095, 2003;
    [116]. P.L. Miller IV, J.H. Oliver, D.P. Miller, and D.L. Tweedt, Blade CAD: An interactive geometric design tool for turbomachinery blades, Technical report, NASA Technical Memorandum 107262, 1996;
    [117]. J.A. Samareh, A novel shape parameterization approach, Technical report, NASA TM-1999-209116, 1999;
    [118]. K. Arens, P. Rentrop, S.O. Stoll, and U. Wever, An adjoint approach to optimal design of turbine blades, Applied Numerical Mathematics, 53:93~105, 2005;
    [119]. D. Buche, G. Guidati, and P. Stoll, Automated design optimization of compressor blades for stationary, large scale turbomachinery, ASME Paper GT2003-38421, June 2003;
    [120]. E. Benini, Three-dimensional multi-objective design optimization of a transonic compressor rotor, Journal of Propulsion and Power, 20:559–565, 2004;
    [121]. F. Sieverding, B. Ribi, M. Casey, and M. Meyer, Design of industrial axial compressor blade sections for optimal range and performance, Journal of Turbomachinery, 126:323- 331, 2004;
    [122]. O. Lot., J.A. Teixeira, P.C. Ivey, I.R. Kinghorn, and A.G., Sheard, Shape optimization of axial fan turbines using genetic algorithm and a 3D Navier-Stokes solver. ASME Paper GT2006-90659, 2006;
    [123]. W.K. Anderson and V. Venkatakrishnan, Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation. AIAA Paper, 97-0643, 1997;
    [124]. A. Oyama and M.S. Liou, Transonic axial-.flow blade optimization: Evolutionary algorithms/three-dimensional Navier-Stokes solver. Journal of Propulsion and Power, 20(4):612~619, 2004;
    [125]. S. Yang, H. Wu, F. Liu, and H. Tsai, Aerodynamic design of cascades by using an adjoint equation method, AIAA Paper, 03-1068, 2003;
    [126].周正贵,高亚声速压气机叶片优化设计,推进技术,25(1):58~61,2004;
    [127]. A.J. Strazisar, J.R. Wood, M.D. Hathaway, and K.L.Suder, Laser anemometer measurements in a transonic axial-flow fan rotor. Technical report, NASA Technical Paper 2879, 1989;
    [128]. Li, H., He, L., Li, Y., and Wells, R. (2006a). Blading aerodynamics design optimization with mechanical and aeromechanical constraints. ASME Paper,GT2006-90503. 5.5
    [129]. Y. Lian and M.S. Liou, Multi-objective optimization of transonic compressor blade using evolutionary algorithm, Journal of Propulsion and Power 21(6):979~987, 2005;
    [130]. Oyama, A. and Liou, M. (2004). Transonic axial-flow blade optimization: Evolutionary algorithms/three-dimensional Navier-Stokes solver. Journal of Propulsion and Power, 20(4):612~619. 2.1, 5.1, 5.2, 5.5
    [131]. S. Pierret, Multi-objective and multi-disciplinary optimization of three dimensional turbomachinery blades, In 6th world congress of structural and multidisciplinary optimization, Rio de Janeiro, Brazil, 30 May - 03 June 2005;
    [132]. A. Arnone, Viscous analysis of three-dimensional rotor flow using a multigrid method. Technical report, NASA TM106266, 1993;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700