两种反馈机制作用下风沙跃移运动的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于沙粒跃移过程的复杂性和随机性以及实验条件的限制,现有的模型很少计及沙粒空中碰撞对风沙流的影响,本论文针对此现状建立了同时考虑沙粒空中碰撞机制和风沙流自平衡机制的风沙跃移云模型,定量分析了沙粒空中碰撞机制对风沙流结构的影响。主要工作如下:
     1.在风场-沙粒相互耦合的风沙运动数值模型的基础上,结合已有空中碰撞概率模型建立了同时考虑沙粒空中碰撞机制和风沙流自平衡机制的风沙跃移云模型,模拟了考虑跃移沙粒空中发生碰撞时输沙率沿高程的分布,及沙粒空中碰撞机制对沙粒跃移轨迹的影响。
     2.基于上述的风沙跃移云模型,结合起跳沙粒合初速度分布函数,模拟了垂向初速度,沙粒起跳合初速度,以及同时考虑合初速度和沙粒空中碰撞机制时的输沙率和单宽输沙率。结果表明粒径大于0.5mm时,同时考虑合初速度和空中碰撞的单宽输沙率更接近实验值,而粒径较小(<0.5mm)时,模拟过程中应考虑沙粒形状的影响。
     3.结合上述风沙跃移云模型,分析比较了非球形沙粒和球形沙粒形成的风沙流中输沙率和单宽输沙率,发现沙粒形状对输沙率影响显著。相同条件下,不同形状沙粒产生的输沙率不同,甚至会相差几倍;对于同一形状的非球形沙粒,其纵横比越小输沙率越小;与球形沙粒相比,对于椭球和圆柱形的沙粒,当纵横比大于1时,其输沙率增大,而纵横比小于1时,其输沙率减小。因此沙粒形状也是一个较重要的影响因素。
     4.考虑了沙粒一地表碰撞、沙粒的空中碰撞及风场-沙粒间的相互耦合作用,建立了同时考虑现有风沙流自平衡机制和沙粒空中碰撞机制的风沙跃移运动发展过程数值模型,模拟了考虑沙粒空中碰撞机制时风沙跃移运动从起始阶段至风沙流达到平衡状态的发展过程及在发展过程中单宽输沙率以及沙粒空中碰撞整体概率随时间的变化。
For the sand saltation is a stochastic and complex process, the exiting model rarely consider the effects of mid-air collision between sand particles on wind-sand flow. In this dissertation, a theoretical model is suggested to mathematically describe the wind-sand flow by considering the mid-air collision mechanism as well as the existing wind-particle feedback mechanism, and quantitatively simulate the influence of mid-air collision mechanism on structure of the wind-sand flow. The main works are concluded as follows:
     1. Based on the exiting mid-air collision probability model and the theoretical modeling of the wind blown sand movement at the steady state with concerning the coupled interaction between saltation particles and wind, a model is established with consideration of the mid-air collision mechanism and the wind-particle feedback mechanism to simulate the sand mass flux at heights and sand particle' trajectory.
     2. On the base of the theoretical model above and the probability distribution function which considers both horizontal and vertical velocity, the mass flux against heights and sand transport rate against wind friction velocity are discussed under three conditions which are only considering the probability distribution function of vertical velocity, considering the probability distribution function of horizontal and vertical velocity, and both considering the probability distribution function of horizontal and vertical velocity and the mid-air collision mechanism. It suggests that the results, with consideration of the probability distribution function of horizontal and vertical velocity and the mid-air collision mechanism, are less and much closer to the corresponding values of experiments when the sand diameter is large than 0.5mm. While for the sand diameter less than 0.5mm, it might consider other factor, such as irregular shape of sand particle.
     3. Then the shape of sand particle is taken into account in the theoretical model. Choose six non-spherical sand particles to analysis the influence of different particle shape on the structure of wind-sand flow. The simulation results show that the shape of particles has great influence on the mass flux; at the same situation, the difference of mass flux of different shape particle may be up to several times; for same shape, the mass flux is increasing with the aspect ratio; for the elliptical particle and cylindrical particle,, when the aspect ratio is larger than one, their mass flux is larger then the spherical particle's, while the aspect ratio is less than one, their mass flux is less then the spherical particle's. So the shape of sand particles is also an important factor of mass flux.
     4. A theoretical model is developed to mathematically describe the evolution of wind-sand flow by considering both the exiting wind-sand feedback mechanism and the particle mid-air collision mechanism, based on the theoretical model of wind-sand flow evolution which only considers the interaction between wind and sand, the sand-bed collision. Then the entire process of sand saltation is simulated quantitatively. The simulated results show that the particle mid-air collision mechanism makes a great contribution to the whole evolution process and the sand transport.
引文
1 Almeida M P, Andrade jr J S, Herrmann H J,2006, Aeolian transport layer, Phys. Rev. Lett.96, 018001.
    2 Anderson R S and Haff P K,1988, Simulation of eolian saltation, Science,241(4867): 820-823.
    3 Anderson R S and Haff P K,1991, Wind modification and bed response during saltation of sand in air, Acta. Mech., [Suppl] 1:21-25.
    4 Anderson R S, and Hallet B,1986, Sediment transport by wind:toward a general model, Bulletin of Geological Society of America,97:523-535.
    5 Anderson R S, Sorensen M and Willetts B B,1991, A review of recent progress in our understanding of Aeolian sediment transport, Acta. Mech., [suppl] 1:1-19.
    6 Bagnold R A,1941, The physics of blown sand and desert dune, Methuen, London.
    7 Beard K V, Pruppacher H R,1969, A determination of the terminal velocity and drag of small water drops by means of a wind tunnel, Journal of Atmospheric Sciences,26 (5):1066-1072.
    8 Blott S J, Pye K,2006, Particle size distribution analysis of sand-sized particles by laserdiffraction:an experimental investigation of instrument sensitivity and the effects of particle shape, Sedimentologym,53 (3):671-685.
    9 Chepil W S,1945, Dynamic of wind erosion Ⅲ. The transport capacity of the wind, Soil Sci.,6:397-411.
    10 Chepil W S,1951, An air elutriator for determining the dry aggregate soil struvture in relation to erodibility by wind, Soil Sci.,71:197-207.
    11 Chepil W S, Woodruff N P,1963, The physics of wind erosion and its control, Advance in Agronomy,15:211-302.
    12 Christiansen E B, Barker D H,1965, The effect of shape and density on the free settling of particles at high Reynolds number [J], AIChE J,11:145-151.
    13 Clift R, Grace J R, Weber M E,1978, Bubbles, Drops and Particles, Academic, New York.
    14 Cornelis W M, Gabriels D, Hartmann R,2004, A parameterizat ion for thethreshold shear velocity to initiat e deflat ion of dry and wet sediment.Geomorphology,9:43-51
    15 Cornish V,1899, On kumatology, Geographical J.,13:618.
    16 Cornish V,1990, On Desert sand-dunes bordering the Nile Delta, Geographical J.,13:618.
    17 Creyssels M, Dupont P, El MOctar A, Valance A, Cantat I, Jenkins J, Pasini J, Rasmussen K, 2009, Saltating particles in a turbulent boundary layer:experiment and theory, Journal of Fluid Mechanics,625:47-74.
    18 Dallavalle J M,1948, Micrometrics, Pitman Publishing, New York.
    19 Dong Z B, Liu X P,2004, Experimental investigation of the concentration profile of a blowing sand cloud, Geomorphology 60,371-381.
    20 Dong Z, Liu X, Li F, Wang H, and Zhao A,2002, Impact/entrainment relationship in a saltating cloud, Earth Surface Process and landforms.,27:641-658.
    21 Dong Z B, Qian G Q, Luo W Y and Wang HT,2006, Analysis of the mass flux profiles of an Aeolian saltating cloud, Journal of Geophysical Research,111:D16111.
    22 Duran O, Hermann H,2006, Modeling of saturated sand flux, Journal of Statistical Mechanics: Theory and Experiment, P0711, doi:10.1088/1742-5468/2006/07/P07011.
    23 Ganser G H,1993, A rational approach to drag prediction of spherical and nonspherical particles [J], Power Technol,77:143-152.
    24 Goudie A S,1978 Dust storms and their geomorphological implication, J. Arid Environments, 1:291-311.
    25 Greeley R, and Iversen J D,1985, Wind as a Geological Proceeding on Earth, Mars, Venus and Titan. Cambridge University Press, London.
    26 Greeley R, Blumberg R G, Williams S H,1996, Field measure-ments of the flux and speed of wind-blown sand, Sedimentology 43,41-52
    27 Greeley R, Iverson J D,1985, Wind as a geological proceeding on earth, Venus and Titan[M], London:Cambridge University Press.
    28 Huang N, Shi F, R. Scott Van Pelt,2008, The effects of slope and slope position on local and upstream fluid threshold friction velocities, Earth Surface Processes and Landforms, 33:1814-1823.
    29 Huang N, Wang C, Pan X Y,2010, Simulation of aeolian sand saltation with rotational motion, Journal of Geophysical Research.,115, D22211, doi:10.1029/2006JD013593.
    30 Huang N, Zheng X J,2003, Theoretical simulation of developing process of wind- blown sand movement, Key Engineering Materials,243:589-594.
    31 Huang N, Zheng X J, Zhou Y H, et al.,2006, Simulation of wind-blown sand movement and probability density function of lift-off velicities of sand particles, Journal of Geophysical Research,111:D16111.
    32 Huang, N, Zhang Y L and Adamo R D,2007, A model of the trajectories and mid-air collision probabilities of sand particles in a steady-state saltation cloud, Journal of Geophysical Research.,112:D08206.
    33 James D, Iversen and Keld R Rasmussen,1999, The effect of wind speed and bed slope on sand transport, Sedimentology,46:723-731.
    34 Jayaweera K O L F and Mason B J,1965, The behaviour of freely falling cylinders and cones in a viscous fluid [J], J. Fluid Mech,22:709-720.
    35 Jensen J L, and Sorenson M,1986, Estimation of some Aeolian saltation transport parameters:are-analysis of Williams'data. Sedimentology,33:547-558.
    36 Jimenez J A, Madsen O S,2003, A simple formula to estimate settling velocity of natural sediments [J], J. Waterw. Port Coast Ocean Eng.,70-78.
    37 Kawamura R,1951, Study on sand movement by wind, Report, Insititute Sci.& Tech., Univ. Tokyo,5:95-112.
    38 Kok, J F, Renno N O,2009, A comprehensive numerical model of steady-state saltation, J. Geophys. Res.114, D17204, doi:10.1029/2009JD011702.
    39 Leith D,1987, Drag on non-spherical objects, Aerosol. Sci. Tech.,6:153-161.
    40 Lettau K and Lettau H H,1978, Experimental and micro-meteorological field studies of dune migration, In:Lettau, K. and Lettau, H.H., Editors,1978. Exploring the World's Driest Climate. IES Report 101, Institute of Environmental Studies, Univ. of Wisconsin, Madison, pp.110-147.
    41 List R, Schemenauer R S,1971, Free-fall behavior of planar snow crystals, conical graupel and small hail, Journal of Atmospheric Sciences,28 (1):110-115
    42 Liu P, Dong Z B,2008, The dependency of sand transport rate by wind on the atmospheric stability:A numetical simulation, Geomrophology,99:296-301.
    43 Liu X P and Dong Z B,2004, Experimental investigation of the concentration profile of a blowing sand cloud, Geomorphology,60:371-381.
    44 Loth E,2008, Drag of non-spherical solid particles of regular and irregular shape, Power Technology,182:342-353.
    45 McEwan I K, Willetts B B,1991, Numerical model of the saltation cloud, Acta Mech.(Supp.), 1:53-66.
    46 McEwan I K, Willetts B B, Rice M A,1992, The grain/bed collision in sand transport by wind, Sedimentology,39:971-981.
    47 Nalpanis P, Hunt L C R, and Barrett C F,1993, Saltating particles over flat beds, J. Fluid Mech.,251:661-685.
    48 Nalpanis P,1985, Saltating and suspended particles over flat and sloping surfaces.Ⅱ. Experiments and numerical simulations. In:Proceedings of International Workshop on the Physics of Blown Sand. Vol.1, Memoir 8, University of Aarhus, Denmark
    49 Owen P R,1964, Saltation of uniform grains in air, J. Fluid Mech.,20:225-242.
    50 Rasmussen K R, Sorensen M,2008, The vertical variation of particle speed and flux density in aeolian saltation:measurement and modeling, J. Geophys. Res.,113, F02S12, doi:10.1029/2007JF000774.
    51 Reitzes J A,1978, Numerical study of continuous saltation. J. of Hydrological Division, American Society of Civil Engineers,104:1305-1321.
    52 Rice M A, Willetts B B, and McEwan I K,1996, Observations of collisions of saltating grains with a granular bed from high-speed cine-film, Sedimentology,43:21-31.
    53 Rice M A, Willetts B B, and McEwan I K,1995, An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flat bed, Sedimentology,42:695-706.
    54 Rumpel D A,1985, Successive eolian saltation:studies of idealize collisions, Sedimentology, 32:267-280.
    55 Sauermann G, Kroy K, Herrmann H J,2001, Continuum saltation model for sand unes, Phys. Rev. E 64:31305.
    56 Shao Y P,2008, Physics and modeling of wind erosion, Springer, University of Cologne, Germany.
    57 Shao Y P, Lu H,2000, A simple expression for wind erosion threshold friction velocity, J. Geophys. Res.-Atmospheres,105(D17):22437-22443.
    58 Shao Y, Li A,1999, Numerical modeling of saltation in the atmospheric surface layer, Bound-lay M,91:199-225.
    59 Shao Y, Raupach M R,1992, The overshoot and equilibration of saltation, J. Geophys. Res.97: 20559-20564.
    60 Sorensen M and McEwan I K,1996, On the effect of mid-air collisions on Aeolian saltation, Sedimentology,43:65-76.
    61 Sorensen M,1991, An analytic model of wind-blown sand transport, Acta Mech. [Suppl] 1: 67-81.
    62 Straingham G E, Simons D B, Guy H P,1965, The behavior of large particles falling in quiescent liquids [D], Geol. Surv. Prof. Pap.,562-C:C1-C36.
    63 Svasek J N, Terwindt J H J,1974, Measurements of sand transport by wind on a natural beach [J], Sedimentology,21:311-322.
    64 Ungar J E, Harf P K,1987, Steady state saltation in air, Sedimentology,34(2):289-299.
    65 Wadell H,1934, The coefficient of resistance as a function of Reynolds Number for solids of various shapes, Journal of Franklin Institute, April,459-490.
    66 White B R,1979, Soil transport by winds on Mars, J. Geophy. Res.,84(Nb9):4643-4651.
    67 White B R,1982, Two-phase movement of saltating turbulent boundary layer flow, Int. J. Multiphase Flow,8:459-473.
    68 White B R and Schulz J C,1977, Magnus effect in saltation, J. Fluid Mech.,81:497-512.
    69 White B R,1982, Two-phase movement of saltating turbulent boundary layer flow, Int. J. Multiphase Flow,8:459-473.
    70 White F M,1974, Viscous fluid flow. McGraw-Hill Book Company, New York.
    71 Willetts BB, Rice MA,1986, Collisions in aeolian saltation, Acta Mechanica 63:255-265.
    72 Willmarth W W, Hark N E, Harvey R L,1964, Steady and unsteady motions and wakes of freely falling diskes [J], Phys. Fluids,7:197-208.
    73 Yue G W, Zheng X J,2006, Electric field in windblown sand flux with thermal diffusion, J. Geophy. Res.,111, D16106,doi:10.1029/2005JD006972.
    74 Zheng X J,2009, Mechanics of Wind-blown Sand Movements, Springer.
    75 Zheng X J, Huang N, Zhou Y H,2003, Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement, J. Geophy. Res., 108(D10):4322.
    76 Zheng X J, Huang N, Zhou Y Y,2006, The effect of electrostatic force on the evolution of sand saltation cloud [J], The European Physical Journal E,19,129-138.
    77 Zheng X J, He L H and Wu J J,2004, Vertical profiles of mass flux for windblown sand movement at steady state, Journal of Geophysical Research,109:B01106, doi:10.1029/2003 JB002656.
    78 Zheng X J, Xie L, Zou X Y.2006. Theoretical prediction of liftoff angular velocity distributions of sand particles in windblown sand flux. Journal of Geophysical Research,111, D11109, doi:10.1029/2005JD006164
    79 Zhou Y H, Guo X and Zheng X J,2002, Experimental measurement of wind-sand flux and sand transport for naturally mixed sands, Physical Review E,66:021305.
    80 Zhou Y H, He Q S, Zheng X J,2004, Attenuation of electro-magnetic wave propagating in sandstorms with consideration of charged sands. The European Physical Journal E, 17:181-187.
    81 Zhou Y H, Li W Q, Zheng X J,2006, Particle dynamics method simulations of stochastic collisions of sandy grain bed with mixed size in aeokian sand saltation, Journal of Geophysical Research,111, D15108, doi:10.1029/2005JD006604.
    82 Zingg A W,1953, Wind tunnel studies of the movement of sedimentary materials. In: Proceedings 5th Hydraulic Conference, Bull.24, Univ. of Iowa city,111-135.
    83 Zou X Y, Wang Z L, Hao Q Z, Zhang C L, Liu Y Z, and Dong G R,2001, The distribution of velocity and energy of saltating sand grains in a wind tunnel. Geomorphology,36:155-165.
    84 董飞,刘大有,贺大良,1995,风沙运动的研究进展和发展趋势,力学进展,25:368-391.
    85 董治宝,董光荣,陈广庭,1995,风沙物理学研究进展与展望,大自然探索,14:30-38.
    86 董治宝,李振山,1998,风成沙粒度特征对其风蚀可蚀性的影响[J],土壤侵蚀与水土保持学报,4(4):1-12.
    87 董治宝,2005,风沙起动形式与起动假说,干旱气象,23(02):64-69.
    88 高迪A S,等.1983,沙漠沙丘沙的形状[J],世界沙漠研究,4:47-49.
    89 国家林业局,2005-06-15,中国荒漠化和沙化状况公告[N].中国绿色时报.
    90 何丽红,2005,风-沙-电的多场耦合效应及其对风沙跃移运动的影响,兰州大学博士学位论文。
    91 黄宁,2002,沙粒带电及风沙电场对风沙跃移运动影响的研究,兰州大学博士学位论文.
    92 黄宁,郑晓静,2006,风沙跃移运动发展过程及静电力影响的数值模拟,力学学报,36 (2):145-151.
    93 霍林(英),1981,摩擦学原理[M],机械工业出版社.
    94 嘉澍,2006,国际防治荒漠化年,上海集邮,9:7-8.
    95 刘贤万,实验风沙物理与风沙工程学,科学出版社,北京,1995.
    96 刘晓平,董治宝,2001,湿沙的风蚀风速起动实验研究[J],水土保持通报,22:1-4.
    97 倪晋仁,李振山,2005,风沙两相流理论及其应用,科学出版社.
    98 戚隆溪,黄飞,2001,沙粒起动风速研究[J],力学与实践,23(4):13-14.
    99 王涛,陈广庭,2001,中国北方沙尘暴现状及对策,中国沙漠,21:322-327.
    100 王涛,朱震达,2001,中国沙漠化研究,中国生态农业报,9(2):7-12
    101 吴正,1987,风沙地貌学[M],北京:科学出版社.
    102 邢茂,郭烈锦,2003,低含水率沙床的临界起沙速度,西安交通大学学报,37(3):318-320.
    103 杨保,1998,气流中颗粒阻力系数和升力系数讨论[J],中国沙漠,18(1):70-76.
    104 杨具瑞,方铎,毕慈芬,等,2003,沟谷坡面风沙起动规律研究[J],力学与实践,25(5):14-17.
    105 杨具瑞,方铎,毕慈芬,等,2004,非均匀风沙起动规律研究[J],中国沙漠,24(2):248-251.
    106 杨俊杰,张克斌,乔锋,李瑞,2006,荒漠化灾害经济损失研究发展,水土保持研究,13(4):40-43.
    107 岳高伟,黄宁,郑晓静,2003,沙粒形状的不规则性及静电力对启动风速的影响,中国沙漠,23(6):61-627.
    108 张玉,宁大同,Smil V,中国荒漠化灾害的经济损失评估[J],中国人口·资源与环境,1996,6(1):45-48.
    109 张煜星,孙时衡,1998,《联合国防治荒漠化公约》的荒漠化士地范畴[J],中国沙漠,18(2):188-192.
    110 邹学勇,朱久江,1992,风沙流结构中起跃移沙粒垂直初速度分布函数,科学通报,23:2175-2177.
    111 董庆生,1997,我国典型沙区中沙尘的物理特性,电波科学学报,12(1):15-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700