三维湍流风沙运动的大涡模拟及沙漠地貌的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用大涡模拟方法和小球运动方程及内置边界条件等方法,进行了三维湍流风沙跃移运动和三维沙波纹演化过程的数值模拟,主要研究工作和结果如下:
     我们研制的三维拟谱法与内置边界方法和风沙运动模型相结合的大涡模拟算法和程序适合于模拟三维风沙跃移运动和三维沙波纹的形成。通过对单颗沙粒的跃移轨迹和单宽输沙率的数值模拟,验证了程序的可靠性。
     在研究单颗沙粒的跃移运动中,使用单向模型对单颗沙粒在不同受力情况下的运动轨迹进行分析后,发现重力和空气阻力是沙粒所受到的最重要的两个作用力。此外,静电力对沙粒运动轨迹的影响要明显大于空气升力,Magnus力的影响主要由沙粒角速度决定,当角速度很小时,其影响可以忽略,当角速度很大时,其影响非常显著。并且对单向和双向模型得到的单颗沙粒跃移轨迹进行比较后,发现在双向耦合模型情况下沙粒跃移的距离近一些,这是由于沙粒对风有了阻碍作用。
     在沙粒群体跃移运动中,静电力对沙粒的平均速度以及风沙流结构都有明显影响,空气升力则影响微小;沙粒沿Y轴的运动速度不易受到Z轴方向受力的影响,即使这个力很大。计算得到风沙流结构分为三层:线性增加层;饱和层;当高度超过饱和层时,输沙量很快下降的下降层。这与实验结果一致。并且静电力对饱和层的高度有明显影响。
     在湍流风沙跃移运动和蠕移运动的共同作用下得到三维沙波纹的演化过程,最终收敛的沙波纹迎风坡平缓,背风坡陡峭,这与自然形成的沙波纹的形态是一致的。在数值模拟中还再现了三维沙波纹的自我修复过程,这从另一个方面说明了我们的数值模拟方法和所采用的跃移、蠕移模型等是合理的,可以反映沙波纹演化过程中的典型自组织特征。分析了沙波纹对三维湍流风场的影响,发现沙波纹地形的出现和发展使得湍流风场在法向有着更强烈的能量交换,揭示了湍流起沙的机理。沙波纹与地表湍流脉动涡量间有着明显的对应关系,这有助于我们解释沙波纹的形成机理。
In this thesis, numerical simulation of three dimensional turbulent aeolian motion and the formation of sand ripples under three dimensional turbulent wind are carried out. The main work and resuls are as follows:
    A large-eddy simulation program for three dimensional aeolian motion and sand ripples under three dimensional turbulent wind is obtained, which combines the three dimensional pseudo-spectrum method and the method of immersed boundary and models of three dimensional aeolian motion. The reliability and verification of the code is vertified with the trajectory of single particle and the sand flux per width with others numerical and experimental results.
    In the motion of single particle, we analyze the trajectories in one-way model when different force act on single particle, and discuss the influence of each force on trajectories of particle, the results show that gravity and aerodynamic drag are the most important forces, electrostatic force play a more important role than lift force. The influence of Magnus force is determined by the angular speed of particle, therefore when the angular speed is small, the influence can be neglected. Because the partcles obstructs the wind, so that the saltation length of single particle obtained by the one-way model is slightly larger than that of by the tow-way model.
    In the motion of large amount of sand particles, electrostatic force plays a more important role than lift force in the average velocity of particles and the structure of aeolian motion. The average velocity of particles in Y direction is hardly affected by the force in Z direction, even this force is quite large. Furthermore, we find the aeolian sand flow is divided into three layers: linearly increasing layer, saturation layer and decrease layer, according to the amount of transportation of sands, which is agreed with experimental results.
    The evolution process of three dimensional sand ripples is obtained, with the models of saltation and creep, the resulting form of sand ripples has the feature of sand ripplrs in the nature, i.e., the slope of lee side is steeper than the slope of up-wind side. Furthermore,
引文
1. Ahmed, I. Y. & Auchterlonie, L. J., 1976, Microwave measurements on dust using an open resonator, Electron. Left., 12:445.
    2. Ahmed, I. Y., 1976, Microwave propagation through sand and dust storms, PhD Thesis, University of Newcastle Upon Tyne. UK.
    3. Ahmed, I. Y., 1977, The effects of sand and dust storms on microwave propagation, Arab States Broadcast, Union Tech. Rev., 1:23-29.
    4. A1-Bader, S. J. & Dawoud, M. M., 1983, Measurement of the complex refractive index of soils and airborne particles, Proc. URSI Commission F. Symposium, Louvain-la-Neuve, Belgium, ESA publication, 8P-194:149-152.
    5. Al-Hafid, H. T., Gupta, S. C., AI-Mashhadani M. & Buni, K., 1979, Study of microwave propagation under adverse dust storm conditions, 3rd World Telecom. Forum, 2.3.7.1-2.3.7.3.
    6. Al-Hafid, H. T., Gupta, S. C. & Buni, K., 1979, Effect of adverse sand-storm media on microwave propagation, Proc. National Radio Science Meeting, URSI F.8, 256.
    7. Al-Hafid, H. T., Gupta, S. C. & Ibrahim, M., 1980, Propagation of microwaves under adverse sand storm condition of Iraq, Proc. North American Radio Science Meeting, URSI F.5, AP-S, 274.
    8. Anderson, R. S., 1987, A theoretical model for aeolian impact ripples, Sedimentology, 1987, 34:943-956.
    9. Anderson, R. S. & Bonas, K. L., 1993, Grains size segregation and straigraphy in aeolian ripples modelled with a cell automation, Acta Mechanica, 365:740-743.
    10. Anderson, R. S., 1990, Eolian ripples as examples of self-organization in geo-morphological systems[J], Earth Science Reviews, 29: 77-96.
    11. Anderson, R. S. & Haft, P. K., 1988, Simulation of eolian saltation, Science, 241:820-823.
    12. Anderson, R. S. & Haft, P. K.,1991, Wind modification and bed response during saltation of sand in air, Acta. Mech.(Supp.), 1:21-25.
    13. Anderson, R. S. & Hallet, B., 1986, Sediment transport by wind: toward a general model, Bulletin of Geological Society of America, 97:523-535.
    14. Anderson, R. S., 1988, Simulation of eolian saltation, Science, 241:820-823.
    15. Ansari, A. J. & Evans, B. G., 1982, Microwave propagation in sand and dust storms, IEE Proc. F. Commun. Radar & Signal Process, 129:315-322.
    16. Asano, S. & Yamaanoto, G., 1975, Light scattering by a spheroidal particle, Appl. Opt., 14:29-49.
    17. Bagnold, R. A., 1941, The physice of blown sand and desert dune, Methuen, London.
    18. Bardina, J., Ferziger, J. H. & Reynolds, W. C., 1980, Improved subgrid scale models for large eddy simulation, AIAA Paper 80-1357.
    19. Bashir, S. O. & McEwan, N. J., 1986, Microwave propagation in dust storms: a review, IEE Proceedings, 133:241-247.
    20. Beyer, R. P. & Leveque, R. J., 1992. Analysis of a onedimensional model for the immersed boundary method. SIAM J. Numer. Anal., 29:332-364.
    21. Bouwkamp, C. J., 1947, On spheroidal wave functions of order zero, J. Math. Phys., 26:79-92.
    22. Bracewell, R. N., 1986, The Fourier transform and its applications, McGraw-Hill, New York.
    23. Brigham, E. O., 1974, The fast Fourier transform, Prentice-Hall, Inc. Englewood Cliffs, N. J.
    24. Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A., 1987, Spectral methods in fluid dynamics, Springer- Verlag.
    25. Caps, H. & Vandewalle, N., 2001, Ripple and kink dynamics, Physical Review E, 64:052301.
    26. Chen, X., 1991, Observe the influence of sand dust storm on radio communication in Gulf war, Electric Wave and Antenna, 6:2.
    27. Chepil, W. S., 1951, An air elutriator for determining the dry aggregate soil structure in relation to erodibility by wind, Sod Sci, 71:197-207.
    28. Chepil, W. S., 1945, Dynamic of wind erosion Ⅲ.The transport capacity of the wind, Siol Sci., 6:397-411.
    29. Chepil, W. S. & Milne, R. A., 1939, Comparative study of soil drifting in the field and in a wind tunnel, Scientific Agriculture, 19:249-257.
    30. Chepil, W. S. & Woodruff, N. P., 1963, The physics of wind erosion and its control, Advance in Agronomy, 15:211-302.
    31. Chernousov, A. A., 1999, LES of mixing layer and flow in square duct by the second-order explicit scheme, http://www.geocities.com/andrei_chernousov/mypage.htm.
    32. Chu, T. S., 1979, Effect of sandstorms on microwave propagation, Bell Syst. Tech. J., 58:549-555.
    33. Comparetto, G., 1993, The impact of dust and foliage on signal attenuation in millimeter wave regime, J. Space Comm., 11:13-20.
    34. Cornelis, W. M. & Gabriels, D., 2004, A simple model for thr prediction of the deflation threshold shear velocity of dry loose particles, Sedimentology, 51:39-51.
    35. Cornish, V., 1899, On kumatology, Geographical J., 13:618.
    36. Cornish, V., 1900, On Desert sand-dunes bordering the Nile Delta, Geographical J., 15:1.
    37. Csahok, Z., Misbash, C. & Rioual et al. F., 2000, Dynamics of aeolian sand ripples, The European Physical Journal E, 3:71-86.
    38. Deardorf, J. W., 1970, A numerical study of three-dimensional turbulent channel flow at large Reynolds number, J. Fluid Mech., 41:452-480.
    39. 董飞,刘大有,贺大良,1995,风沙运动的研究进展和发展趋势,《力学进展》,25(3):368-391.
    40. Favre, A., 1965, Equations des gaz turbulents compressible, Ⅰ, Formes generales, J. de Mécanique, 4:361.
    41. Favre, A., 1965, Equations des gaz turbulents compreesible, Ⅱ, Méthode des vitesses moyennes; méthode des vitesses macroscopiques pondérées par la mass volumique, J. de Mécanique, 4:391.
    42. Ferziger, J. H., 1981, Higher-level simulations of turbulent flows, Dept. Mech. Engng. Rept., TF-16, Stanford Univ.
    43. Flammer, C., 1957, Spheroidal Wave Function, Stanford University Press.
    44. Fredrick, S. S. & Vivekananadan, J., 1999, Propagation delays induced in GPS signals by dry air, water, vapor, hydrometers and other particulates, J. Geo. Res., 65:3504.
    45. Germano, M., Piomelli, U., Moin, P. & Cabot, W. H., 1991, A dynamic subgrid-scale eddy viscosity model, Phys. Fluids, A 3:1760-1765.
    46. Ghobrial, S. I., All, I. A. & Hussein, H. M., 1978, Microwave attenuation in sand storms, Proc. Int. Syrup. Antennas and Propagation, Sendal, Japan, 447-450.
    47. Ghobrial, S. I., 1980, Effect of sandstorms on microwave propagation, IEEE National Telecomms. Conf., Houston, Texas, 43.5.1-43.5.4.
    48. Gill, E. W. B. & Alfrey, G. F., 1949, Frictional electrification, Nature, 163:172.
    49. Gill, E. W. B., 1948, Frictional electrification of sand, Nature, 162:568-569.
    50. Goldstein, D., Handler, R., & Sirovich, L., 1993, Modeling a no-slip flow boundary with an external force field, J. Comput. Phys., 105:354-366.
    51. Greeley, R., Blumberg, D. G. & Williams, S. H., 1996, Field measurement of the flux and speed of wind-blown sand, Sedimentlogy, 43:41-52.
    52. Greeley, R. & Iversen, J. D., 1985, Wind as a Geological Preceeding on Earth, Mars, Venus and Titan, Cambridge University Press, London.
    53. Greeley, R. & Leach, R., 1978, A prelimilary assessment of the effects of electrostatics on Aeolian process, Rep. Planet. Geol. Program, NASA TM 79729:236-237, Washington, D.C.
    54. Greeley, R, Leach, R. N. & Williams, S. H., et al., 1982, Rate of wind abrasion on Mars, J. Geophys. Res., 87(B12): 10009-10024.
    55. Guo, X., Zheng, X. J. & Zhou, Y. H., 2003, Research on the theoretical prediction of the electric field generated by wind-flown sand, Key Engineering Materials, 243-244:583-588.
    56. Haff, P. K. & Anderson, R. S., 1993, Grain scale simulation of loose sedimentary bed, the example of grain-bed impacts in aeolian saltation, sedimentology, 40:175-198.
    57.贺大良,刘大有,跃移沙粒起跳的受力机制,1989,《中国沙漠》,9(2):14-22.
    58.何丽红,2005,《风-沙-电的多场耦合效应及其对风沙跃移运动的影响》,兰州大学博士论文.
    59. Herrmann, H. J. & Luding, S., 1998, Modelling granular media on the computer, Continuum Mechanics and Thermodynamics, 10:189-231.
    60.黄宁,2002,《风沙带电及风沙电场对风沙跃移运动影响的研究》,兰州大学博士论文.
    61. Huang, N. & Zheng, X. J., 2001, A laboratory test of the electrification phenomenon in wind-blown sand flux, Chinese Science Bulletin, 46:417-420.
    62. Huang, N. & Zheng, X. J., 2002, Theoretical simulation of developing process of wind-blown sand movement, Key Engineering Materials, 243-244.
    63.黄宁,郑晓静,陈广庭,屈建军,1998,沙尘暴对无线电波传播影响的研究,《中国沙漠》,18:350-353.
    64.黄宁,郑晓静,带电沙粒的跃移云数值模型,2002,《兰州大学学报》,38:30-35.
    65. Hu, H. H., 1996, Direct simulation of flows of solid-liquid mixtures, Int. J. Multiphase, 22:335.
    66. Iaccarino, G., Kalitzin, G., Moin, P. & Khalighi, B., 2004, Local grid refinement for an immersed boundary RANS solver, AIAA Pap.:2004-0586
    67. Johnson, A., 1994, Mesh Generation and Update Strategies in Parallel Computation of Flow Problems with Moving Boundaries and Inerfaces, Ph.D. thesis, Univ. Minnesota.
    68. Johnson, A. & Tezduyar, T. E., 1999, Advanced mesh generation and update methods for 3D flow simulations, Comput. Mech., 23:130.
    69. Kaxnra, A. K., 1972, Measurements of the electrical properties of dust storms, J. Geophys. Res., 77:5856-5869.
    70. Kawamura, R., 1951, Study on sand movement by wind, Report, Insititute Sci. & Tech. Univ., Tokeyo, 5:95-112.
    71. Kiyoshi, H., & Shen, H. W., 1960, Sand movement by wind action, U. S. Beach Erosion Board Tech. Mere., 119:51.
    72. Lai, M. & Peskin, C. S., 2000, An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys., 160:705-719.
    73. Landry, W. & Werner, B. T., 1994, Computer simulations of self-organized wind ripple patterns, Physical D, 77:238-260.
    74.凌裕泉,贺大良,李长治,1984,风沙电现象实验研究,《中科院兰州沙漠所治沙会议论文集》.
    75.凌裕泉,屈建军,李长治,2003,应用近景摄影法研究沙纹的移动,《中国沙漠》,23(2):118-120.
    76.凌裕泉,吴正,1980,风沙运动的动态摄影实验,《地理学报》,35(2):174-181.
    77.刘宁宇,1998,《槽道热剪切湍流的大涡模拟数值研究》,中国科学技术大学博士学位论文.
    78.刘贤万.1995,《实验风沙物理与风沙工程学》,科学出版社,北京.
    79.李振山,董治宝,陈广庭,1997,风沙运动数值模拟研究的进展,《干旱区研究》,14:63-68.
    80.李振山,倪晋仁,1998,风沙流研究的历史、现状及趋势,《干旱区资源与环境》,12:89-97.
    81. Mansour, N. N., Moin, P., Reynolds, W. C., & Ferziger, J. H., 1997, Improved methods for large eddy simulations of turbulence, Proc. 1st Int'1. Symp. on Turbulent Shear Flows. Penn. State Univ..
    82.马世威,马玉明,姚洪林,1998,《沙漠学》,内蒙古人民出版社,呼和浩特.
    83. McEwan, I. K. & Willetts, B. B., 1991, Numerical model of the saltation cloud, Acta Mech.(Supp.), 1:53-66.
    84. McEwan, I. K. & Willetts, B. B., 1993, Sand transport by wind: a review of the current conceptual model, In: The dynamics and environmental contex of Aeolian sedimentary systems, Spec. Publ. Geol. Soc., 72:7-16.
    85. Mitha, S., Tran, M. Q., Werner, B. T. & Haff, P. K., 1986, The grain-bed impact process in aeolian saltation, Acta Mech., 63:267-278.
    86. Mittal, R. & Iaccarino, G., 2005, Immersed boundary methods, Ann. Rev. Fluid Mech., 37: 239-261.
    87. Moin, P. & Kim, J., 1982, Numerical investigation of turbulent channel flow, J Fluid Mech, vol. 118, 341-77.
    88.倪晋仁,李振山,2002,挟沙气流中输沙量垂线分布的实验研究,《泥沙研究》,1:30-35.
    89. Nino, Y. & Atala, Y., 1997, Discrete computer simulations of ripple emergence and evolution, The 27th Congress of the International Association for Hydraulic Research, New York: ASCE, 1179-1184.
    90. Nishimori, H. & Ouchi, N., 1993, Formation of ripple patterns and dunes by wind-blown sand, Physical Revie~ Letters, 71:197-200.
    91. Owen, P. R., 1964, Saltation of uniform grains in air, J. Fluid Mech., 20:225-242.
    92. Owen, P. R., 1980, The physics of sand movement, Lecture Notes, Workshop on Physics of Desertification, Trieste.
    93. Peskin, C. S., 1972, Flow patterns around heart valves: a digital computer method for solving the equations of motion, PhD thesis. Physiol., Albert Einstein Coll. Med., Univ. Microfilms, , 378:72-30.
    94. 冉启华,1999,风成沙纹的计算机模拟,清华大学硕士学位论文.
    95. Reitzes, J. A., 1978, Numerical study of continuous saltation, J. of Hydrological Division, American Society of Civil Engineers, 104:1305-1321.
    96. Rice, M. A., Willetts, B. B. & McEwan, I. K., 1995, An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a fiat bed, Sedimentology, 42:695-706.
    97. Ristow, G. H., 2000, Pattern Formation in Granular Materials, Springer, New York.
    98. Roma, A. M. , Peskin, C. S. & Berger, M. J., 1999, An adaptive version of the immersed boundary method, J. Comput. Phys., 153:509-534.
    99. Rudge, W. A. D., 1914, On the electrification produced during the raising of a cloud of dust, Prec. R. Soc. Ser. A, 90:256-272.
    100. Rumpel, D. A., 1985, Successive eolian saltation: studies of idealize collisions, Sedimentology, 32:267-280.
    101. Ryde, J. W., 1941, Echo intensities and attenuation due to clouds, rain, hail, sand and dust storms at centimeter wavelengths, Research Laboratories of General Electric Company Ltd, Report 7831:22-24.
    102. Saiki, E. M. & Biringen, S., 1996, Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method, J. Comput. Phys., 123:450-465.
    103. Schmidt, D. S. & Dent, J. D., 1993, A theoretical prediction of the effects of electrostatic forces on saltating snow particles, Ann. Glaciol., 18:234-239.
    104. Schmidt, D. S., Schmidt, R. A. & Dent, J. D., 1998, Electrostatic force on saltating sand, J. Geophy. Res.., 103:8997-9001.
    105. Schultz, F. V., 1950, Scattering by a prolate spheroid, UMM-42, Univ. of Mich..
    106. Shao, Y., 2000, Physics and modelling of wind erosion, Kluwer Academic, Dordrecht.
    107. Shoo, Y. P. & Li A., 1999, Numerical modelling of saltation in the atmospheric surface layer, Boundary Layer Meteorol., 91:199-225.
    108. Shao, Y. P. & Lu, H., 2000, A simple expression for wind erosion threshold friction velocity, Journal of Geophysical Research, 105(22):437-22,432,443.
    109. Shao, Y. P. & Raupach, M. R., 1992, The overshoot and equilibration of saltation, J. Geophys. Res., 97:20559-20564.
    110. Sharief, S. M. & Ghobrial, S. I., 1983, X-band measurements of the dielectric constant of dust, Proc. URSI Commission F symposium, Louvain-Neuve, Belgium, EsA publication SP-194:143-147.
    111. Shaw, P. E. & Chubb, J. N., 1929, Tribo-electricity and friction Ⅳ-Electricity due to air-blown particles, Proc. R. Soc. London Ser. A, 122:48-58.
    112. Siegel, K. M., Schultz, F. V., Gere, E. H. & Sleator, F. E., 1956, The theoretical and numerical determination of the radar cross section of a prolate spheroid, IRE Trans. Antennas Propag., AP-4:266-275.
    113. Simpson, G. C., 1919, British Antarctic expedition, 1910-1913, Meteorology, Volume 1, discussion, Calcutta, printed by Thacker, Spink and Co..
    114. Smagorinsky, U., 1963, General circulation experiments with the primitive equations. I. The basic experiment, Mon. Weath. Rev., 91: 99-164.
    115. Sorensen, M., 1991, An analytic model of wind-blown sand transport, Acta Mech.(Suppl.), 1:67-81.
    116. Stow, C. D., 1969, Dust and sand storm electrification, Weather, 24:134-140.
    117.孙其诚,王光谦,2001,风沙运动的计算机模拟,《科学通报》,46(3):254-256.
    118.孙显科,张凯,张大治,等,2003,沙纹弹道成因理论评析,《中国沙漠》.23(4):471-475.
    119. Swap, R.et al, 1992, Saharan dust in the Amazon Basin. Tellus, 4413,2:133-149.
    120. Tseng, Y. H. & Ferziger, J. H., 2003, A ghost-cell immersed boundary method for flow in complex geometry, J. Comput. Phys., 192: 593-623.
    121. Uman, M. A., 1987, The lightning discharge, Int. Geophys. Set., 39, Academic, San Diego, Calif..
    122. Ungar, J. & Haft, P. K., 1987, Steady state saltation in air, Sedimentology, 34:289-299.
    123. Walter, L. & Werner, B. T., 1994, Computer simulations of self-organized wind ripple patterns, Physics D, 77: 238-260.
    124.王涛,陈广庭,钱正安,2001,中国北方沙尘暴现状及对策,《中国沙漠》,21(4):322-327.
    125.王光谦,冉启华,刘绿波,1998,风成沙纹过程的计算机模拟,《泥沙研究》,(3):1-6.
    126.王式功,杨德保,金炯等,1995,我国西北地区黑风暴的成因和对策,《中国沙漠》,15(1):19-30.
    127. Werner, B. T., 1987, A physical model of wind-bloum sand transport, PHD thesis of California Institute of Technology, California.
    128. Werner, B. T., 1990, A steady-state model of wind-blown sand transport, Journal of Geology, 1:1-17.
    129. Werner, B. T. & Haft, P. K., 1988, The impact process in aeolian saltation: two-dimensional simulations, Sedimentology, 35:189-196.
    130. White, B. R. & Schulz, J. C., 1977, Magnus effect in saltation, J. Fluid Mech., 81:497-512.
    131. White, F. M., 1979, Viscous fluid flow, McGraw-hill Book Company.
    132. Willetts, B. B. & Rice, M. A., 1986, Collision in aeolian saltation, Acts Mech, 63:255-265.
    133. Willetts, B. B. & Rice, M. A., 1988, Particles dislodgement from a flat sand bed by wind, Earth Surface Processes and Landforms, 13:717-730.
    134. Willetts, B. B. & Rice, M. A., 1989, Collision of quartz grains with a sand bed: the influence of incident angle, Earth Surface Processes and Landforms, 14:719-730.
    135.吴正等,2003,《风沙地貌与治沙工程学》,科学出版社,北京.
    136.吴正,凌裕泉,1965,风沙运动及防止风沙危害问题的初步研究,治沙研究,第7号,科学出版社,北京.
    137.肖正华,惠世德,肖庆夏,张晓燕,1994,倒置式大气平均电场仪,《高原气象gg,13:106-113.
    138.严平,董治宝,2004.从2002年第五届风沙国际会议(ICAR-5)看沙漠科学研究的发展趋势.《干旱区地理》,27(3):451-454.
    139.杨东贞,纪湘明,徐晓滨,1995,一次黄沙过程的研究,《气象学报》,49(3):18-26.
    140.杨保,邹学勇,董光荣,1999,风沙流巾颗粒跃移研究的某些进展与问题,《中国沙漠》,19(2):173-178.
    141.尹永顺,1989,砾漠大风地区风沙流研究,《中国沙漠》,9:27-36.
    142.张钱华,2004,《沙波纹模拟及其动力学探讨》,兰州大学博士学位论文,兰州.
    143. Zhao, Z. W., 1993, The measurements of the complex dielectric consist of sand and dust particle at 33.5 and 93 GHz, Int. syrup. Radio Propag., 117-120.
    144.郑晓静,薄天利,谢莉,2007,风成沙波纹的离敝粒子追踪法模拟,《中国科学[G]》.
    145.郑晓静,谢莉,2003,沙粒起跳自旋的分析,《中国沙漠》,23(6):632-636.
    146.郑晓静,周又和,2003.风沙运动巾的若干关键力学问题,《力学与实践》,25(2):1-6.
    147. Zhou, Y. H., Guo, X. & Zheng, X. J., 2002, Experimental measurement of wind-sand flux and sand transport for naturally mixed sands, Physical Review E, 68, 021305.
    148.兹纳门斯基,杨郁华译,1958,《沙地风蚀过程的实验研究和沙堆防止问题》,科学出版社,北京.
    149. Zingg, A. W., 1949, A study of the movement of surface wind, Aqr. Eng., 30:11-13.
    150. Zingg, A. W., 1953, Wind tunnel studies of the movement of sedimentary materials. In: Proceedings 5th Hydraulic Conference, Bull.24, Univ. of Iowa city, 111-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700