定日镜和幕墙结构的抗风性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国已建成的几个定日镜曾经发生过不同程度的风致破坏现象,亟待按照我国的实际情况对定日镜结构的抗风问题进行系统全面的理论和试验研究,获得符合我国具体情况的定日镜设计风荷载参数,提出符合实际的风致响应计算方法,制定符合我国国情的设计准则和控制标准,以满足我国塔式太阳能热发电站的发展的需要。本文结合延庆亚洲首座MW级太阳能塔式热发电站的定日镜抗风研究工作,以中科院电工所的定日镜为原型,进行一系列研究工作,取得了以下的研究成果:
     (1)提出了定日镜结构风荷载的确定方法:
     通过对于定日镜的风洞模型试验、理论分析和数值模拟研究,获得了定日镜风压分布的规律和特征,确定定日镜结构的风荷载及计算公式,并对公式中的参数取值进行了深入分析,研究了定日镜结构的脉动风压特性,将惯性风荷载法、多阶模态力法和时域分析法引入到等效风荷载的计算中,为定日镜的抗风设计提供了基本的风荷载参数。
     (2)建立了定日镜结构风致响应的计算方法:
     在风洞试验、数值模拟研究的基础上,对定日镜风致风振位移响应进行频域分析,基于Davenport谱推导了顺风向风致响应公式,并通过风洞试验数据拟合脉动风压归一化自谱,计算了风致响应,并用时域计算结果进行验证,建立了定日镜风振位移的简化计算方法和镜面板挠度变形的分析计算方法。
     (3)解决定日镜抗风的关键问题:
     在风洞试验、数值模拟研究的基础上,对镜面板开缝时的状况进行了研究,分析五种分隔缝宽度对定日镜受力、镜面板风压分布、结构动力特性和风致响应的影响。通过分析给出定日镜结构有利于抗风的停放姿态,供定日镜使用时采用。进行了定日镜结构动力优化研究,通过建立结构优化数学模型,进行了定日镜用钢量极小化的优化分析,提出了优化措施。
     幕墙玻璃风致损坏现象在国内外时有发生,本文通过构建玻璃幕墙风效应的试验装置,进行了幕墙结构的风压挠度分析和幕墙玻璃的风致应力分析,提出了玻璃幕墙风效应的计算和分析方法。取得了以下的研究成果:
     (1)提出了新的幕墙风致响应分析方法:
     通过试验,对幕墙框架挠度变形、不可开启玻璃面板挠度变形、可开启玻璃面板挠度变形、玻璃面板风致应力等分别进行了研究,分析了负压作用下的窗锁的拉伸变形,对比研究了中空幕墙玻璃迎风面应力和背风面应力,分析了玻璃面板不同位置点处的应力,对比分析了不可开启玻璃幕墙面板应力和可开启玻璃幕墙面板应力,通过对挠度变形和风致应力的一系列综合研究,进而提出了新的玻璃幕墙风致响应的分析方法。
     (2)提出了新的玻璃幕墙风效应的理论分析方法:
     在风荷载作用下,结构胶变形复杂,是非线性的,很难确定它的拉伸或压缩变形所引起的玻璃测点的变形值,受到结构胶变形的影响,幕墙玻璃的实际的边界条件也是复杂的,是有一定的弹性变形的。由此,本文把四边弹性支承作为幕墙玻璃的边界条件,以薄板小挠度弯曲理论为理论基础,引入弯曲矩形板动力问题理论,求解四边弹性支承幕墙玻璃的边界条件,分析幕墙玻璃的风致效应,从而,推导出符合实际幕墙玻璃的边界条件,并提出新的幕墙玻璃效应的计算和分析方法。
Several heliostats appeared wind-induced local failure in our country. Therefore, we need to do some theoretical and experimental reasearch on wind resistance design of helioststs in order tosatisfying the reliability of heliostats. By studing, we can get wind load parameters, propose realistic calculation methods of wind-induced response and develop design criterias in line with our national standards. Our group participated wind resisitence performance analysis on heliostats of Asia's first MW-class solar tower thermal power stations. A series of research work have been done and the following findings have been completed.
     (1)Proposing some methods for determining wind loads on heliostats:
     By wind tunnel model testing, theoretical analysis and numerical simulation, we have obtained wind pressure distribution characteristics, propoesd wind load formulas of heliostats, completed depth analysis of these formulas'parameters and obtained characteristics of whole force of heliostats in different wind directions. And then, we studied characteristics of fluctuating wind pressure and caculated equivalent wind loads by using GBJ method, multi-modal force method and time-domain analysis method. Through these analysis, we obtained wind-resistant design parameters of heliostats
     (2)Seting up calculation methods on wind effect of heliostats:
     Taking the model of a heliostat in wind tunnel as example, the paper derives formulae for spatial wind-induced dynamic response of heliostat using Davenport wind spectrum. The paper presents empirical expressions of power spectrum density on the mirror surface of the heliostat by testing heliostat model in a wind tunnel. It is verified by an example that the accuracy of the power spectrum density of fitting is acceptable and it provides the reference basis for the structure wind-resistance design.
     (3)Solving key issues on wind resisitence design of heliostats:
     By wind tunnel model testing, theoretical analysis and numerical simulation, we studied the influence of mirror panels gap on wind loads, wind pressure distribution, dynamic characteristics and wind-induced response of heliostats. And then, we studied favorably wind-resistant park profile of heliostats. At last, we completed dynamic optimization design of heliostats. A mathematical optimization model was set up to minimize volume of steel of heliostats. Some optimization measures were proposed.
     The damage of curtain walls would occur frequently affected by wind loads. We built test equipments for wind effect analysis of curtain walls and completed the reasearch of wind-induced deflection and stress of curtain walls. At last, we raised calculation methods of dynamic effects of curtain walls. A series of research work have been done and the following findings have been completed.
     (1)Proposing a new analysis method on wind effect of curtain walls
     Through experiments, we studied wind-induced stress of glass panels and wind-induced deflection of curtain wall frames and glass panels. And then, we studied tensile deformation of window locks of curtain walls under negative wind pressure. We compared wind-induced stress of windward side and leeward side of curtain walls, compared wind-induced stress of measuring points at different positions of glass panels and compared wind-induced stress of open glass panels and closed glass panels. At last, we proposed a new analysis method on wind effect of helioststs.
     (2)Proposing a new calculation method of wind effects of glass panels of curtain walls:
     Based on small-deflection thin plate flexure theory, we studied dynamic displacement theory of rectangular thin plate. And we assumed that glass panels under dynamic loads were simple propping rectangular plates under uniform harmonic loads. By calculating and studying, this assumption is consistent with the actual wind effects of glass panels of curtain walls.
引文
[1]中国发展计划委员会基础产业发展司,中国新能源与可再生能源(1999白皮书),北京:中国计划出版社,2000.
    [2]刘全根,国家能源结构调整的战略选择—加强可再生能源开发利用,地球科学进展,2000,15(2):154-164.
    [3]赵玉文,太阳能利用的发展概况和未来趋势,中国电力,2003,36(9):63-69.
    [4]剑桥力,葛新石,太阳能热发电技术,自然,1997,18(6):344-348.
    [5]严陆光,倪受元,李安定,太阳能与风力发电的现状与展望,电网技术,1995,19(5):1-9.
    [6]TRIEB F, Competitive Solar Thermal Power Stations until 2010—the Challenge of Market Introduction, Renewable Energy,2000,19(1/2):163-171.
    [7]葛新石译,太阳能一热能转换过程,北京:科学出版社,1980.
    [8]冒东奎,太阳能热力发电技术进展,甘肃科学学报,1996(3):54-60.
    [9]王长贵,崔容强,新能源发电技术,北京:中国电力出版社,2003.
    [10]Solar P, Concentrating Solar Power in 2001:An IEA/Solar PACES Summary of Present Status and Future Prospects, Solar PACES,2001.
    [11]Tsoutort T, Gekas V, Market K, Technical and Economical Evaluation of Solar Thermal Power Generation, Renewable Energy,2003,28(6):873-886.
    [12]National Renewable Energy Laboratory, Survey of Thermal Storage for Parabolic Trough Power Plants, Cologne:National Renewable Energy Laboratory,2002.
    [13]Buck R, Barth C, Eck M, Dual-receiver Concept for Solar Towers, Solar Energy, 2006,80(10):1249-1254.
    [14]Cermak, J.E., J.A. Peterka, and A. Kareem, Heliostat field-array wind-tunnel test. 1978, DOE/ET/20417-T1, Colorado State Univ., Fort Collins (USA). Dept. of Civil Engineering.
    [15]Ewald, R. L., J. A. Peterka and J. E. Cermak, "Heliostat-Array Wind Tunnel Study, " Technical Report for Martin Marietta Aerospace,1979.
    [16]Peterka, J. A., J. J. Lou and' J. E. Cermak, "Wind-Tunnel Test of a Photovoltaic Concentrator Array," Technical Report for Martin Marietta, Denver, Colorado, 1979.
    [17]Poreh, M., J. A. Peterka and J. E. Cermak, "Wind-Tunnel Study of Wind Loads on Photovoltaic Structures," Technical Report for Bechtel National, San Francisco, California,1979.
    [18]Miller, R. and D. Zimmerman, "Wind Loads on Flat Plate Photovoltaic Array Fields, Phase Ⅱ:Final Report," 1979.
    [19]J. A. Peterka, N. Hosoya, et al. "Wind Load Reduction for Heliostats" Colorado State University,1986.
    [20]Peterka, J.A., et al., Mean and peak wind load reduction on heliostats.1987, SERI/STR-253-3212, Colorado State Univ., Fort Collins (USA).
    [21]Peterka, J.A. and R.G. Derickson, Wind load design methods for ground-based heliostats and parabolic dish collectors. Unknown,1992.
    [22]Andreas Pfahl, Reynolds Number Dependency of Wind Loads on Heliostats,2nd SOLLAB Doctoral Colloquium; October 16-18,2006;Monte Verita, Switzerland.
    [23]Sanche M, Methodology for Generation of Heliostat Field Layout in Central Receiver Systems Based on Yearly Normalized Energy Surfaces, Solar Energy, 2006,80(7):861-874.
    [24]Biggs F, Villiloc C, The Heliostat Model for the Optical Behavior of Reflecting Solar Concentrators, California:SAND76-0347, Sandia National Laboratories, 1979.
    [25]Petlil B, Frecse M, The Development of a Portable Specular Reflectometer for Monitoring Solar Mirror Materials, Optical Materials and Process Technology for Energy Efficiency and Solar Applications, International Society for Optical Engineering,1983,428:125-134.
    [26]Castro M, Peire J, Martinze P, Five-year CESA-1 Simulation Program Review, Solar Energy,1987,38(6):415-424.
    [27]Grossman JW, Static Load Testing of the Heliostat Drive, California:, SAND90-2624, Sandia National Laboratories,1991.
    [28]Slrachan JW, Revisiting the BCS, a Measurement System for Characterizing the Optics of Solar Collectors, Albuquerque:ISA/93 Conference Proceedings, 1993.
    [29]Omar H, Sakaf L, Application possibilities of solar thermal plants in Arba countries [J], Renewable E nergy,1998,14(4):1-9.
    [30]Kirbus A, Krupkin A, Performance Limits of Heliostat Fields.ASME Journal of Solar Energy Engineering,1998,120:240-246.
    [31]Sandia National Laboratories 2000 R&D 100 Awards Entry from, Albuquerque: Sandia National Laboratories,2000.
    [32]Kribus M, Huleihil A, Performance of Rectangular Secondary Concentrator with an Asymmetric Heliostat Field, Solar Energy,2003,69(2):139-151.
    [33]Philipp S, David R, Multi-tower Solar Array, Solar Energy,2003,75:249-260.
    [34]Philipp S, Heliostats for Maximum Ground Coverage, Energy,2004,29: 701-713.
    [35]Peterka L, Bienkiewicz K, Hosoya N, Heliostat mean wind load reduction. Energy,1987,12:261-267.
    [36]Peterka J, Hosoya N, Bienkiewicz B,Wind Loads on Solar Collectors, Blacksburg:Virginia Polytechnic Institute Report,1980.
    [37]Honeywell, Test Report Wind Tunnel Test of 1:30 Scale Heliostat Field Array Model, Test Report 677-14611,1978.
    [38]Strachan, J, Testing and Evaluation of Large-Area Heliostats for Solar Thermal Applications, California:SAND 92-1381,Sandia National Laboratories,1993.
    [39]Wu, Z and Z. Wang, Numerical study of wind load on heliostat. Progress in Computational Fluid Dynamics,2008.8(7/8):503.
    [40]Wang, Z. Wu, Z et al, Wind Dynamics Testing on Dahan Heliostat, Proc of 2007 Solar World Congress, Beijing,18-21 September 2007.
    [41]Wu, Z. Gong, B. Wang, Z. An Experimental and Numerical Study of the Gap Effect on Wind Load on Heliostat. Renewable Energy,2009,35(4).
    [42]Gong, B and Li, Z. Wind Tunnel Test of Heliostat with Gap in Facets, Technical Report, IEE-CAS,2008.
    [43]Wang YL, Li ZN, Application of Surfer in Predicting Wind Field on Structure, 2008 International Symposium on Computational Intelligence and Design, 2008.
    [44]Wang YL, Li ZN, Wind Pressure and Wind-induced Vibration of Heliostat, Advances in Concrete and Structures, Trans Tech Publications Ltd,2008: 935-940.
    [45]宫博,李正农,王莺歌,李秋胜.太阳能定日镜结构风载体型系数风洞试验研究.湖南大学学报(自然科学版),2008,35(9)
    [46]宫博,李正农,吴红华,王莺歌,王志峰.太阳能定日镜结构基于频域的风振响应分析.太阳能学报,2009,30(6)
    [47]宫博,李正农,吴红华,王莺歌,王志峰.定日镜反射板基于薄板弯曲理论的挠度分析.太阳能学报,2009,30(7)
    [48]Gong, B and Li, Z. Wind tunnel study of wind effects on heliostat. The 10th International Symposium on Structural Engineering for Young Experts.2008.
    [49]王莺歌,李正农,宫博.定日镜的风压分布与脉动特性.自然灾害学报,2007,16(6):187-194.
    [50]王莺歌,李正农,宫博,李秋胜.POD法在定日镜风振响应计算中的应用.振动与冲击,2008,27(12)
    [51]王莺歌,李正农,宫博,李秋胜.定日镜表面风压的重构与预测.空气动力学学报,2009,27(9)
    [52]宫博,李正农,王莺歌,王志峰.定日镜结构优化分析.第18届全国结构工程学术会议论文集
    [53]王莺歌,李正农,宫博,李秋胜.定日镜结构风振响应的时域分析.振动工程学报,2008,21(5)
    [54]宫博,李正农,王莺歌,王志峰.分隔缝对定日镜风荷载和风效应的影响.第十四届全国结构风工程学术会议论文集.
    [55]宫博,李正农,王莺歌,李秋胜.太阳能定日镜结构风载体型系数的风洞试验研究.第十三届全国结构风工程学术会议论文集.
    [56]王莺歌,李正农,宫博.定日镜结构风振响应分析.第十三届全国结构风工程学术会议论文集.
    [57]中华人民共和国行业标准.JGJ 102-2003玻璃幕墙工程技术规范.北京:中国建筑工业出版社,2003
    [58]《建筑幕墙工程技术规程》(玻璃幕墙分册)DBJ08-56-96,1996
    [59]上海市工程建设规范.DG/TJ08-803-2005《玻璃幕墙安全性能检测评估技术规程》.(试行本),2005
    [60]中华人民共和国行业标准.GB/T15227-2007建筑幕墙气密、水密、抗风压性能检测方法.北京:中国标准出版社,2008
    [61]李创第,管昌生,黄任常,李桂青.高层建筑玻璃幕墙的风压和风振计算.广西工学院学报,1996,7(4):26-31.
    [62]李创第,李桂青,黄任常.高层建筑玻璃幕墙线性和非线性抗风动力可靠性分析.工业建筑,1999,29(6).
    [63]童丽萍,宁永胜.高层建筑玻璃幕墙结构上的灾害性荷载研究.郑州大学学报(自然科学版),1999,31(4):28-31.
    [64]谢子孟,张明罡.高层建筑幕墙构件风振效应的探讨.中国建筑金属结构,2007.5:17-19.
    [65]韩志惠,周毅,顾明.某建筑顶部装饰幕墙结构的风荷载及风振抖振响应计算. 振动与冲击,2008,27(5):40-43.
    [66]陈彬,吕令毅.点支式幕墙支撑结构风振系数计算.建筑科学2006,22(3):40-44.
    [67]王雪,吕令毅.点式幕墙水平支撑结构风振系数计算.建筑结构与设计,2007(4):10-13.
    [68]张敏,楼文娟,陈勇.矩形建筑双层幕墙的风荷载特性及阵风系数.浙江大学学报(工学版),2008,42(1):54-59.
    [69]邓晓蔚,石永久,王元清,徐悦.大跨度幕墙体系的风振分析.重庆建筑大学学报,2006,28(3):46-50.
    [70]冯若强,花定兴,武岳,沈世钊.单层平面索网幕墙结构玻璃与索网协同工作的动力性能研究.土木工程学报,2007,40(10):27-33.
    [71]武岳,冯若强,沈世钊.单层平面索网幕墙结构的风振响应分析及实用抗风设计方法.计算力学学报,2007,24(5):633-637.
    [72]冯若强,武岳,沈世钊.考虑玻璃参与工作的单层平面索网幕墙结构静力性能研究.建筑结构学报,2005,26(4):99-106.
    [73]冯若强,武岳,沈世钊.单层平面索网幕墙结构的风激动力性能研究.哈尔滨工业大学学报,2006,38(2):153-155.
    [74]冯若强,武岳,沈世钊.单层平面索网结构非线性频率简化计算方法研究.工程力学,2007,24(10):87-91.
    [75]冯若强,武岳,沈世钊.单索幕墙体系中的玻璃与索协同工作机理研究.西安建筑科技大学学报(自然科学版),2006,38(5):619-923.
    [76]冯若强,冀鹏,武岳,沈世钊.单索幕墙中玻璃与索静力协同工作试验.哈尔滨工业大学学报,2006,38(12):2065-2069.
    [77]冯若强,武岳,沈世钊.单层平面索网幕墙结构的几何非线性问题研究.计算力学学报,2008,25(5):640-646.
    [78]江勇.大跨柔性点支式幕墙及采光顶等效风荷载和风振响应研究,同济大学工学博士学位论文,2006.5
    [79]吴丽丽,王元清,石永久.单层平面索网幕墙结构抗风的风振响应特性分析.工程力学,2007,24(增刊Ⅰ):98—103.
    [80]吴丽丽,石永久,王元清.单层平面索网幕墙结构的实用抗风设计方法研究.工程力学,2008,25(2):102—109.
    [81]吴丽丽,王元清,石永久.玻璃幕墙中主体结构对单层索网结构风振响应的影响研究.振动与冲击,2008,27(7):88-101.
    [82]吴丽丽,王元清,石永久.单层平面索网结构风振响应的几何非线性特性研究.振动与冲击,2007,26(4):30-34.
    [83]吴丽丽,王元清,石永久.点支式玻璃建筑单层索网体系的动力特性分析.重庆建筑大学学报,2006,28(3):39—42.
    [84]吴丽丽,王元清,石永久.单层平面索网幕墙结构的风振响应特性分析.工程力学,2007,24(增刊Ⅰ):98-103.
    [85]吴丽丽,石永久,王元清.单层平面索网幕墙结构的实用抗风设计方法研究.工程力学,2008,25(2):102-109.
    [86]石永久,吴丽丽,王元清,罗忆,徐悦.点支式玻璃幕墙建筑单层索网柔性支承体系及其工程应用.工业建筑,2005,35(2):1-5.
    [87]石永久,吴丽丽,王元清.单层索网体系非线性自振特性研究.振动工程学报,2006,19(2):173-178.
    [88]洪天华,李宏男.风荷载作用下单层平面索网体系点支式玻璃幕墙的动力性能研究.防灾减灾工程学报,2008,28(5):156-162.
    [89]殷永炜、张其林.点支式中空和夹层玻璃承载性能的试验研究.建筑结构学报,2004,25(1):93-98.
    [90]袁波.有框幕墙玻璃在均布荷载作用下的挠度研究[同济大学硕士学位论文].上海:同济大学,2003.
    [91]张士翔.建筑幕墙风压变形性能检测数据与常见现象分析.维普资讯,2007.9
    [92]杨仕超,张士翔,张作萍.玻璃幕墙结构抗风设计中的有关问题.建筑结构,1996,4:16-19.
    [93]陆震宇,张云龙.建筑幕墙检测中常见问题及分析.江苏建筑2004,98(4):33-34.
    [94]赖卫中,浅议隐框幕墙抗负风压强度的质量隐患及其防治.工业建筑,1999,29(5):66-68
    [95]刘正权.通风式双层幕墙物理性能测试方法研究.分析测试学报,2006,25(增刊):179-180.
    [96]黄宝锋、卢文胜、曹文清,既有建筑幕墙的安全评价方法初探.结构工程师,2006,22(3):76-79.
    [97]黄宝锋,建筑幕墙结构检测与评价方法研究[同济大学硕士学位论文].上海:同济大学,2006
    [98]陆津龙.既有玻璃幕墙安全性能检测评估,维普资讯.
    [99]张元发,陆津龙.玻璃幕墙安全性能现场检测评估技术探讨.建筑门窗与金属建材,2002(5).
    [100]赵鸣,孙磊,赵鸿.既有玻璃幕墙的结构安全性能模糊综合评判.四川建筑科学研究,2008,34(5).
    [101]黄本才.结构抗风分析原理及应用.上海:同济大学出版社,2001.
    [102]张听,黄本才,等.体育场悬挑屋盖空间风激动力响应和等效风荷载实用计算.建筑结构学报,2005,26(2):40-46.
    [103]顾明.大跨度屋盖结构等效静力风荷载方法及应用.建筑结构学报,2007,28(1):125-129.
    [104]张相庭.工程抗风设计计算手册.北京:中国建筑工业出版社,1998.
    [105]瞿伟廉.高层建筑和高耸结构的风振控制设计.武汉测绘科技大学出版社,1991.
    [106]楼文娟,杨毅,庞振钱.刚性模型风洞试验确定大跨屋盖结构风振系数的多阶模态力法.空气动力学学报,2005,23(2):183-187.
    [107]陆峰,楼文娟.大跨度平屋面的风振响应及风振系数.工程力学2002,19(2):52-57.
    [108]Biagini P, Borri C, Faccchini L, Wind Response of Large Roofs of Stations and Arena, Journal of Wind Engineering and Industrial Aerodynamics,2007,95: 871-887.
    [109]中华人民共和国建设部.建筑结构荷载规范(GB50009-2001).北京:中国建筑工业出版社,2001.
    [110]范么清.结构随机阻尼对框架结构位移的影响研究[武汉理工大学硕士论文].武汉理工大学,2004.
    [111]贺德馨.风工程与工业空气动力学.北京:国防工业出版社,2006.
    [112]张相庭.结构风压和风振计算.上海:同济大学出版社,1984.
    [113]项海帆.风对结构的作用—风工程导论.上海:同济大学出版社,1992.
    [114]杨耀乾.平板理论.北京:中国铁道出版社,1980.
    [115]铁摩信柯.沃诺斯基.板壳理论.北京:科学出版社,1977.
    [116]熊渊博,龙述尧.薄板的局部Petrov_Galerkin方法.应用数学和力学,2004,25(2):189-196.
    [117]孙耀明,孙焕纯,杨家新.弹性薄板弯曲问题的等价的边界积分方程.应用数学和力学,2000,21(11):1125-1132.
    [118]鲍四元,邓子辰.辛几何形态下不同边界条件的薄板解析解.动力学与控制学报,2006,4(4):370-374.
    [119]寿楠椿.弹性薄板弯曲.北京:高等教育出版社,1986.
    [120]马震岳,董毓新.水电站机组及厂房振动的研究与治理.北京:中国水利水电出版社,2004.
    [121]韩林海.钢管混凝土结构.北京:科学出版社,2000.
    [122]刘一锋.玻璃幕墙遭受台风破坏的情况分析.工程质量分析,1998,(1):52-54.
    [123]姜仁,韩智勇,沈瑞良,等.有框幕墙抗风压性能的改进建议.工程质量2002,(11):15-20.
    [124]王金晖,孔军仕,袁培峰.节能幕墙门窗中的结构密封胶.化学建材2009,,25(1):36-39.
    [125]石民祥,杨仕超.玻璃幕墙与门窗结构可靠度设计问题探讨.工程建筑与设计,2003,11:55-60.
    [126]付宝连.弯曲矩形板的广义位移理论.北京:科学出版社,2006.
    [127]付宝连.弯曲薄板功的互等新理论.北京:科学出版社,2003.
    [128]孙明林.弯曲矩形板受迫振动的广义位移解[燕山大学硕士论文].秦皇岛:燕山大学,1994.
    [129]朱敬举.弹性矩形薄板稳定问题的广义位移解及应用[燕山大学硕士论文].秦皇岛:燕山大学,2001.
    [130]曹国雄.弹性矩形薄板振动.北京:中国建筑工业出版社,1983.
    [131]中华人民共和国国家标准.GB16776-2005建筑用硅酮结构密封胶.北京:中国标准出版社,2005
    [132]马启元.倍增幕墙玻璃粘结强度设计值的风险.2009全国铝门窗幕墙行业年会论文.
    [133]王莺歌.塔式太阳能定日镜结构风荷载特性及风振响应研究[湖南大学博士论文].长沙:湖南大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700