考虑分布式发电的配电网综合负荷建模方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紧密结合国家大力开发可再生洁净能源分布式发电技术与装备的科技发展战略,综合运用电力系统分析、系统辨识、计算机技术、统计数学等科学原理与方法,将总体测辨法、仿真实验等电力系统负荷建模理论与方法有机结合,围绕考虑风力发电(Wind Power Generation,WG)、光伏电池(Photovoltaic,PV)、燃料电池(Fuel Cell,FC)、微型燃气轮机(Microturbine,MT)等典型分布式发电装置影响的配电网广义综合负荷建模开展了一系列的研究,具体工作和贡献有如下几个方面:
     1、针对电力系统传统感应电动机综合负荷模型存在的结构缺陷,从总体测辨的角度,提出了一种“配电网集结等效的综合感应电动机模型”。模型将配电网络用集总线路-变压器组集结等效,并计及了变压器有载调整分接头的影响;在静态负荷中考虑负荷暂态无功功率的补偿调整作用。推导出了模型的完整解析描述;提出了模型参数的“递推辨识策略”。模型实现了220kV变电站综合负荷物理环境—模型辨识环境—仿真计算环境的统一,更加符合电网的综合负荷实际结构。基于现场实测数据的建模实例表明,该模型在参数稳定性、泛化能力等综合性能上,较传统感应电动机模型有了一定的提高,为考虑分布式发电影响的配电网综合负荷建模提供了有效的广义综合负荷模型结构体系基础。
     2、基于MATLAB仿真工具并运用总体测辨负荷建模方法,研究了考虑WG的配电网综合负荷模型结构。提出把WG看作一个功率消耗为负的广义动态负荷,用异步发电机来等效描述;进而提出了一种任意动静比例的异步电机并联静态负荷的配电网广义综合负荷模型来描述含WG的配电网综合负荷特性。3种典型运行方式的建模研究,检验了该模型对不同WG容量和负荷水平的配电网综合负荷特性的综合适应性能力。
     3、在构建IEEE 14节点典型配电系统的基础上,研究了容量比例、地理位置和接入方式(集中或分散)等影响因素下WG接入对配电网综合负荷特性的影响。研究表明,容量比例的影响要明显大于地理位置的影响,占主导作用;且WG分散接入的影响要明显小于WG集中接入。在此基础上,利用上面的研究数据,进一步验证了所提出的任意动静比例的异步电机并联静态负荷的广义综合负荷模型的有效性;进而结合第1部分的研究成果对该模型进行了扩展,提出“任意动静比例的配电网集结等效的异步电机广义综合负荷模型”,比较分析验证了该模型的优越性。
     4、为研究考虑PV和FC等直流分布式电源影响的配电网综合负荷建模,在构建PV和FC发电系统的基础上,详细阐述了各功能模块的模型和并网控制策略;提出把直流分布式电源看作一个功率消耗为负的广义静态负荷,用恒功率模型来等效描述;进而提出了一种等效静态负荷并联感应电动机的广义综合负荷模型来等效描述含直流分布式电源的配电网综合负荷特性;针对三种不同接入容量比例的直流分布式电源,进行了总体测辨建模研究,通过模型自描述能力、泛化能力和影响其综合负荷特性的关键参数(动静比例和ZIP静态负荷系数)的变化规律分析,验证了该模型的有效性。
     5、为研究考虑MT的配电网综合负荷建模,在构建MT发电系统的基础上,详细阐述了各功能模块的模型和控制策略;提出把微型燃气轮机看作一个功率消耗为负的广义动态负荷,用一阶微分方程模型来等效描述;进而提出了一种微型燃气轮机和感应电动机组成的等效动态负荷并联静态负荷的广义综合负荷模型来等效描述含MT的配电网综合负荷特性;针对MT接入容量的不同,对三个样本进行了总体测辨建模研究,验证了该模型的有效性。
With the fast development of renewable and clean energy generation, there will be a series of new theory and practical problems to be solved. One of them is the modeling of power systems. Based on the background stated above, this dissertation studies the composite load modeling of distribution power network considering distributed generation. The main work and contributions are as below:
     1. Aiming at the disadvantages of the structure of traditional induction motor load model, a novel“synthesis induction-motor model considering distribution network”is established. In this model, the distribution network is equivalent to a line connecting to a terminal transformer, which can describe the influence of OLTC (on-load tap changer) and reactive power compensation. The model achieves the unity of the physics environment, parameters identification environment and simulation applying environment of composite load at the power substation. The results of modeling test based on simulation measured data shows that the“synthesis induction-motor model considering distribution network”has excellent identifiability, generalization, and the composite describing capability. Its integral performance is better than traditional induction motor model. This model provides the basis and effective structure for research on load modeling of distribution network considering distributed generation.
     2. The composite load model of distribution network including wind power generation (WG) is studied with MATLAB Simulation toolbox and theory of measurement-based method. The research proves that the WG could be considered as generalized dynamic load which consumes negative power, and could be described by asynchronous generator. In order to describe the synthetic load characteristic of distribution network including WG, the author proposes a kind of generalized composite load model that is constituted by asynchronous machine in parallel with static load. In the model, the ratio of dynamic load can be any real numerical value. The validity of this composite load model with any ratio of dynamic load is testified by modeling of three typical operation modes under different capacity of wind power generation.
     3. Using the typical IEEE 14 node distribution network as simulation environment, the author systematically studied the impact of WG on composite load characteristics, which consider some impotent influential elements such as capacity ratio, location, and the connecting mode to the distribution network and so on. It has been proved that the influence of capacity is apparently greater than that of location, and the effect of dispersed WG is smaller than that of the centralized, hence the dispersed connection one have advantage to the safe and stable operation of power system. Using the measured data from simulation, the validity of generalized composite load model is tested through fitting result, average error and identification parameters. At the same time, the generalized composite load model of asynchronous machine with any ratio of dynamic load is proposed, and its superiority is also tested.
     4. For the sake of studying on the composite load modeling of distribution network with photovoltaic (PV) and fuel cell (FC), the PV and FC grid-connected power system is established and the model of each function module and control strategy are expounded. It is pointed out that the PV and FC could be considered as generalized static load which consumes negative power, and could be described by constant power model. Based on this, the generalized composite load model of equivalent static load in parallel with induction motor is proposed to describe the synthetic load characteristic of distribution network including PV and FC. The validity of this generalized composite load model is testified by modeling of three typical modes under different capacity of PV and FC.
     5. In order to study the composite load modeling of distribution network with microturbine (MT), the model of each function module and control strategy are expounded with establishing of the MT generation system. It is pointed out that the MT could be considered as generalized dynamic load which consumes negative power, and could be described by a first-order differential state equation. And the generalized composite load model of equivalent dynamic load consisted of MT and induction motor in parallel with static load is proposed to describe the synthetic load characteristic of distribution network including MT. The validity of the composite load model is testified by modeling to three different typical capacity of MT.
引文
[1] Kundur P.Power system stability and control.北京:中国电力出版社,2001
    [2] Taylor C W.Power system voltage stability.New York:McGraw-Hill,1994
    [3]鞠平,马大强.电力系统负荷建模(第二版).北京:中国电力出版社,2008
    [4]贺仁睦,王卫国,蒋德斌,等.广东电网动态负荷实测建模及模型有效性的研究.中国电机工程学报,2002,22(9):78-82
    [5]章健.电力系统负荷模型与辨识.北京:中国电力出版社,2007
    [6] General Electric Company.Load modeling for power flow and transient stability studies.New York:EPRI Report of Project RP849-7,1987
    [7] Hwang J C,Huang C W,Cheng C T.The development of load characteristics information network system to improve the estimated efficiency of load synthesis in TaiPower . In : First International Conference on Innovative Computing, Information and Control.Beijing,2006,6-9
    [8]汤涌,张东霞,张红斌,等.东北电网大扰动试验仿真计算中的综合负荷模型及其拟合参数.电网技术,2007,31(4):75-78
    [9] Kosterev D N,Taylor C W,Mittelstadt W A.Model validation for the August 10,1996 WSCC system outage.IEEE Transactions on Power Systems,1999,14(3):967-979
    [10] David J H.Nonlinear dynamic load models with recovery for voltage stability studies.IEEE Transactions on Power Systems,1993,8(1):166-176
    [11] IEEE Task Force on Load Representation for Dynamic Performance. Standard load models for power flow and dynamic performance simulation . IEEE Transactions on Power Systems,1995,10(3):1302-1313
    [12] Louie K W,Marti J R.A method to improve the performance of conventional static load models.IEEE Transactions on Power Systems,2005,20(1):507-508
    [13] Marti J R,Louie K W.New aggregate load model for different load data formats. In:Electrical and Computer Engineering Conference.Montreal,2003,613-616
    [14]李欣然,贺仁睦,周文.综合负荷的广义感应电动机模型及描述能力.华北电力大学学报,1999,26(1):18-24
    [15]王卫国,贺仁睦,王铁强.反映综合负荷动特性机理的感应电动机模型.电力系统自动化,2002,26(4):23-28
    [16]汤涌,侯俊贤,刘文焯.电力系统数字仿真负荷模型中配电网络及无功补偿与感应电动机的模拟.中国电机工程学报,2005,25(3):8-12
    [17]周海强,茆超,鞠平,等.考虑配电网络的综合负荷模型可辨识性分析.电力系统自动化,2008,32(16):16-19
    [18]陈谦,孙建波,蔡敏,等.考虑配电网络综合负荷模型的参数确定.中国电机工程学报,2008,28(16):45-50
    [19]张广东.牵引供电系统综合负荷模型结构研究:[湖南大学硕士学位论文].长沙:湖南大学,2008,1-8
    [20]金艳,鞠平,吴峰.地方电厂对区域负荷建模的影响.中国水电科技进展,2002,22(5):35-37
    [21]鞠平,何孝军,黄丽,等.广义电力负荷的模型结构和参数确定.电力系统自动化,2006,30(23):11-13
    [22]王吉利,贺仁睦,马进.配网侧接入电源对负荷建模的影响.电力系统自动化,2007,31(20):22-26
    [23]张红斌,汤涌,李柏青.差分方程负荷模型参数分散性的研究.中国电机工程学报,2006,26(18):1-5
    [24]姚建刚,陈亮,戴习军,等.混沌神经网络负荷建模的理论研究.中国电机工程学报,2002,22(3):99-102
    [25]张浩然,韩正之,李昌刚.基于支持相量机的非线性系统辨识.系统仿真学报,2003,15(1):119-121
    [26]罗庆跃,黄大足,黄乘顺,等.基于DW分离模糊负荷模型的无功功率优化.长沙电力学院学报(自然科学版),2006,21(1):10-14
    [27]林舜江.负荷动特性的建模及其对电压稳定的影响研究:[湖南大学博士学位论文].长沙:湖南大学,2008,3-5
    [28]李培强.统计测辨法综合负荷建模研究:[湖南大学博士学位论文].长沙:湖南大学,2009,4-10
    [29]鞠平,李德丰,陆小涛.电力系统非机理负荷模型的可辨识性.河海大学学报,1999,27(1):16-19
    [30] Shi J H,He R M.Measurement-based load modeling:model structure. In:IEEE Bologa Power Tech Conference Proceedings.Bologa,2003,1-5
    [31]史真惠,朱守真,郑竞宏,等.改进BP神经网络在负荷动静比例确定中的应用.中国电机工程学报,2004,24(7):25-29
    [32] Rudolph G . Convergence analysis of canonical genetic algorithms . IEEE Transactions on Neural Networks,1994,5(1):96-101
    [33]韩祯祥,文福拴.模拟进化方法简介.电力系统自动化,1995,19(12):5-10
    [34]李欣然,金群,刘艳阳,等.遗传策略的综合改进及其在负荷建模中的应用.电网技术,2006,30(11):40-46
    [35]石景海,贺仁睦.动态负荷建模中负荷时变性研究.中国电机工程学报,2004,24(4):83-90
    [36]鞠平,金艳,吴峰,等.综合负荷特性的分类综合方法及其应用.电力系统自动化,2004,28(1):64-68
    [37]李欣然,林舜江,刘扬华,等.基于实测响应空间的负荷动特性分类原理与方法.中国电机工程学报,2006,26(8):39-44
    [38]林舜江,李欣然,李培强,等.基于实测响应空间的负荷动特性直接综合方法.中国电机工程学报,2006,26(21):36-42
    [39]贺仁睦.电力系统精确仿真与负荷模型实用化.电力系统自动化,2004,28(16):4-7
    [40]鞠平,潘学萍,韩敬东.3种感应电动机综合负荷模型的比较.电力系统自动化,1999,23(19):40-43
    [41]马进,贺仁睦,周彦军.负荷模型泛化能力的研究.中国电机工程学报,2006,26(21):29-35
    [42] He R M , Ma J , Hill D J . Composite load modeling via measurement approach.IEEE Transactions on Power Systems,2006,21(2):663-672
    [43]郑竞宏,朱守真.基于滑差同调等值的空调群负荷建模.电力系统自动化,2008,32(16):11-14
    [44]顾丹珍,艾芊,陈陈,等.冲击负荷的实用建模新方法.电力系统自动化,2006,30(20):10-14
    [45]卫志农,鞠平.电力负荷在线建模方法.中国电机工程学报,1995,15(6):361-369
    [46]林舜江,李欣然,刘杨华.考虑负荷动态模型的暂态电压稳定快速判断方法.中国电机工程学报,2009,29(4):14-20
    [47]马瑞,贺仁睦,王鹏,等.计及负荷静态电压特性的多目标交易研究.中国电机工程学报,2005,25(9):1-6
    [48]谢会玲,鞠平,陈谦.广域电力系统负荷整体建模方法.电力系统自动化,2008,32(1):1-5
    [49] Momoh J A.Smart grid design for eddicient and flexible power nerworks operation and control . In : IEEE/PES Power Systems Conference and Exposition.Seattle,2009,1-8
    [50] Hughes J.IntelliGrid architecture concepts and IEC61850.In:IEEE PES Transmission and Distribution Conference and Exhibition.Dallas,2006,401-404
    [51] EPRI.Intelligrid architecture status report: Technology transfer activities and recommendation.http://intelligrid.epri.com,2005-12-23
    [52] DOE.Smart grid activities at the department of energy presented to FERC- NARUC collaborative leadership.http://www.amsc.com,2008-05-07
    [53] DOE.Smart grid: An introduction.http://www.oe.energy.gov,2008-09-10
    [54] U.S. Department of Energy.Obama administration announces availability of 3.9 billion to invest in smart grid technologies and electric transmission infrastructure.http://www.energy.gov,2009-06-25
    [55] Rogai S.Telegestore project progresses and results.In:IEEE International Symposium on Power Line Communications and Its Applications.Pisa,2007,1-2
    [56] Buchholz B,Schluecking U.Energy management in distribution grids European cases.In:IEEE Power Engineering Society General Meeting.Montreal,2006,1-2
    [57]陈树勇,宋书芳,李兰欣,等.智能电网研究综述.电网技术,2009,33(8):1-7
    [58]余贻鑫,栾文鹏.智能电网.电网与清洁能源,2009,25(1):7-11
    [59]谢开,刘永奇,朱治中,等.面向未来的智能电网.中国电力,2008,46(6):19-22
    [60] Puttgen H B,MacGregor P R,Lambert F C.Distributed generation: semantic hype or the dawn of a new era.IEEE Power and Energy Magazine,2003,1(1):22-29
    [61] Chiradeja P,Ramakumar R.An approach to quantify the technical benefits of distributed generation.IEEE Transactions on Energy Conversion,2004,19(4):764-773
    [62]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述.电网技术,2003,27(12):71-75
    [63]刘扬华,吴政球,涂有庆,等.分布式发电及其并网技术综述.电网技术,2008,32(15):71-76
    [64] Lasseter R H,Paipi P.Microgrids: a conceptual splution.In:IEEE 35th Annual Power Electronics Specialists Conference.Aachen,2004,4285-4290
    [65]鲁宗相,王彩霞,闵勇,等.微电网研究综述.电力系统自动化,2007,31(19):100-104
    [66] McDermott T E,Dugan R C.Distributed generation impact on reliability and power quality indices.In:IEEE Rural Electric Power Conference.Colorado,2002,D3/1- D3/7
    [67]庞建业,夏晓宾,房牧.分布式发电对配电网继电保护的影响.继电器,2007,35(11):5-8
    [68]赵豫,于尔铿.电力零售市场研究(六)分散式发电对电力系统的影响.电力系统自动化,2003,27(15):25-28
    [69] Nara K,Hayashi Y,Ikeda K,et al.Application of tabu search to optimal placement of distributed generators.In:IEEE Power Engineering Society Winter Meeting.Ohio,2001,918-923
    [70] Daly P A,Morrison J.Understanding the potential benefits of distributed generation on power delivery system . In : IEEE Rural Electric Power Conference.Arkansas,2001,A2/1-A2/13
    [71]陈海焱,段献忠,陈金富.分布式发电对配网静态电压稳定性的影响.电网技术,2006,30(19):27-30
    [72] Brown R E,Freeman L A A.Analyzing the reliability impact of distributed generation.In:IEEE Power Engineering Society Summer Meeting.Vancouver,2001,1013-1018
    [73] Choi B K,Chiang H D,Li Y H,et al.Measurement-based dynamic load models:derivation, comparison, and validation.IEEE Transactions on Power Systems,2006,21(3):1276-1283
    [74]张红斌,汤涌,张东霞,等.基于总体测辨法的电力负荷建模系统.电网技术,2007,31(4):32-35
    [75]肖锋,李欣然,王立德,等.基于神经网络的并行差分方程综合负荷模型.电力系统及其自动化学报,2009,21(1):41-47
    [76]王立德,李欣然,李培强,等.基于人工神经网络的综合负荷模型.电网技术,2008,32(16):59-65
    [77]李欣然,贺仁睦,周文,等.综合负荷感应电动机模型的改进及其描述能力.电力系统自动化,1999,23(9):23-27
    [78]鞠平,赵夏阳,李东辉.电力负荷模型可辨识性分析方法.电力系统自动化,1999,23(19):29-33
    [79]施鹏飞.从世界发展趋势展望我国风力发电前景.中国电力,2003,36(9):54-62
    [80] Righter R W.Pioneering in wind energy:The California experience.Renewable Energy,1996,9(1-4):781-784
    [81] Schumacher K,Sands R D.Innovative energy technologies and climate policy in Germany.Energy Policy,2006,34(18):3929-3941
    [82] Enzensberger N,Fichtner W,Rentz O.Financing renewable energy projects via closed-end funds—a German case study.Renewable Energy,2003,28(13):2023-2036
    [83] Klaassen G,Miketa A,Larsen K,et al.The impact of R&D on innovation for wind energy in Denmark, Germany and United Kingdom . Ecological Economics,2005,54(2-3):227-240
    [84] Rodriguez J M,Fernandez J L,Beato D,et al.Incidence on power system dynamics of high penetration of fixed speed and doubly fed wind energy systems: study of Spanish case.IEEE Transactions on Power Systems,2002,17(4):1089-1095
    [85] Ackermann T.Wind Power in Power Systems.Chichester:John Wiley & Sons Ltd,2005,745-746
    [86] Liu W Q,Gan L,Zhang X L.Cost-competitive incentives for wind energy development in China: institutional dynamics and policy changes . Energy Policy,2002,30(9):753-765
    [87]王晓蓉,王伟胜,戴慧珠.我国风力发电现状和展望.中国电力,2004,37(1):81-84
    [88]李俊峰,高虎,施鹏飞,等.中国风电发展报告.北京:中国环境出版社,2007,61
    [89]孙元章,吴俊,李国杰.风力发电对电力系统的影响.电网技术,2007,31(20):55-61
    [90]迟永宁,刘燕华,王伟胜,等.风电接入对电力系统的影响.电网技术,2007,31(3):77-81
    [91] Chai C I , Lee W J , Fuangfoo P , et al . System impact study for the interconnection of wind generation and utility system.IEEE Transactions on Industry Applications,2005,41(1):163-168
    [92] Vachtsevanos G J,Kalaitzakis K C.Penetration of wind electric conversion systems into the utility grid. IEEE Transactions on Power Apparatus and Systems,1985,PAS-104(7):1677-1683
    [93]雷亚洲,王伟胜,印永华,等.基于约束规划的风电穿透功率极限计算.中国电机工程学报,2002,22(5):32-35
    [94]吴俊玲,周双喜,孙建锋,等.并网风力发电场的最大注入功率分析.电网技术,2004,28(20):28-32
    [95]雷亚洲,王伟胜,印永华,等.含风电场电力系统的有功优化潮流.电网技术,2002,26(6):18-21
    [96]迟永宁,王伟胜,戴慧珠.改善基于双馈感应发电机的并网风电场暂态电压稳定性研究.中国电机工程学报,2007,27(25):25-31
    [97] Datta R,Ranganathan V T.A method of tracking the peak power points for a variable speed wind energy conversion system.IEEE Transactions on Energy Conversion,2003,18(1):163-168
    [98]马幼捷,张继东,周雪松,等.含风电电力系统电压稳定问题的分岔.电力系统及其自动化学报,2008,20(5):117-123
    [99]迟永宁,王伟胜,戴慧珠.大型风电场对电力系统暂态稳定性的影响.电力系统自动化,2006,13(18):38-39
    [100] Salman K , Anita L J . Windmill modeling consideration and factors influencing the stability of a grid-connected wind power based embedded generator.IEEE Transactions on Power Systems,2003,18(2):793-802
    [101]范伟,赵书强.考虑风力发电的电力系统小干扰稳定性分析.华北电力大学学报,2009,36(2):23-27
    [102]梁玉枝,崔树平,王冬梅.对风电场接入电网后系统继电保护配置的探讨.华北电力技术,2009,29(9):1-4
    [103]文玉玲,晁勤,吐尔逊伊布拉.风电场的继电保护.可再生能源,2009,27(1):93-96
    [104]白鸿斌,王瑞红,王真,等.风电场接入电网的电能质量分析方法研究及案例分析.东北电力大学学报,2008,28(6):33-37
    [105] Kumano T.A short circuit study of a wind farm considering mechanical torque fluctuation.In:IEEE Power Engineering Society General Meeting.Montreal,2006,1-6
    [106] Wang W S,Chen M.Towards the integrating wind power into power grid in China.Electricity,2004,16(4):49-53
    [107] Strbac G,Shakoor A,Black M,et al.Impact of wind generation on the operation and development of the UK electricity systems.Electric Power Systems Research,2007,77(9):1214-1227
    [108]雷亚洲,Gordon L.国外风力发电导则及动态模型简介.电网技术,2005,25(12):27-32
    [109] Petru T,Thiringer T.Modeling of wind turbines for power system studies. IEEE Transactions on Power Systems,2002,17(4):1132-1139
    [110] Wei Q,Hareley R G,Venayagamoorthy G K.Dynamic modeling of wind farms with fixed-speed wind turbine generators.In:IEEE Power Engineering Society General Meeting.Tampa,2007,1-8
    [111]范高锋,赵海翔,王伟胜,等.基于恒速风电机组的风电场并网过程仿真.电网技术,2007,31(14):20-23
    [112] Dusonchet L,Massaro F,Telaretti E.Transient stability simulation of a fixed speed wind turbine by Matlab/Simulink.In:International Conference on Clean Electrical Power.Capri,2007,651-655
    [113]李俊峰,王斯成,张敏吉,等.中国光伏发展报告.北京:中国环境科学出版社,2007,24-25
    [114]张颖颖,曹广益,朱新坚.燃料电池:有前途的分布式发电技术.电网技术,2005,29(2):57-61
    [115]李春华,朱新坚,胡万起,等.光伏/燃料电池联合发电系统的建模和性能分析.电网技术,2009,33(12):88-93
    [116] Dakkak M,Hirata A,Muhida R,et al.Operation strategy of residential centralized photovoltaic system in remote areas.Journal of Renewable Energy,2003,28(7):997-1012
    [117] Nelson D B,Nehrir M H,Wang C.Unit sizing and cost analysis of stand alone hybrid wind/PV/fuel cell power generation systems.Journal of Renewable Energy,2006,31(10):1641-1656
    [118]李炜,朱新坚,曹广益.基于一种改进的BP神经网络光伏电池建模.计算机仿真,2006,23(7):228-230
    [119] Lalouni S,Rekioua D.Modeling and simulation of a photovoltaic system using fuzzy logic controller . In : Second International Conference on Development in eSystems Engineering.Dhabi,2009,23-28
    [120]翁史烈,翁一武,苏明,等.熔融碳酸盐燃料电池动态特性的研究.中国电机工程学报,2003,23(7):168-172
    [121] Lukas M D,Lee K Y,Ghezel A H.Development of a stack simulation model for control study on direct refoming molten carbonate fuel cell power plant.IEEE Transactions on Energy Conversion,1999,14(4):1651-1657
    [122]吴小娟,朱新坚,曹广宜,等.固体氧化物燃料电池的数学模型及自适应神经模糊辨识模型的研究.电网技术,2008,32(1):9-14
    [123] Nether P.Two-dimensional transient model of a cascaded micro-tubular solid oxide fuel cell fed with methane.Journal of Power Sources,2006,157(1):325-334
    [124]苗青,曹广益,朱新坚.基于ROLS算法的RBF神经网络燃料电池电特性建模.热能动力工程,2005,20(4):387-389
    [125]卫东,曹广益,朱新坚.基于神经网络辨识的质子交换膜燃料电池建模.系统仿真学报,2003,15(4):817-819
    [126]赵争鸣,刘建政,孙晓瑛,等.太阳能光伏发电及其应用.北京:科学出版社,2005,27-29
    [127]吴海涛,孔娟,夏东伟.基于MATLAB/Simulink的光伏电池建模与仿真.青岛大学学报(工程技术版),2006,21(4):74-77
    [128]粟秋平,周林,刘强,等.光伏并网发电系统最大功率跟踪新算法及其仿真.电力自动化设备,2008,28(7):21-24
    [129]刘邦银,段善旭,刘飞,等.基于改进扰动观察法的光伏阵列最大功率点跟踪.电工技术学报,2009,24(6):91-94
    [130] Shmilovitz D.On the control of photovoltaic maximum power point tracker via output parameters.IEE Proceedings-Electric Power Applications,2005,152(2):239-248
    [131]赵庚申,王庆章,许盛之.最大功率点跟踪原理及实现方法的研究.太阳能学报,2006,127(10):997-1001
    [132] Sera D,Teodorescu R,Hantschel J,et al.Optimized maximum power point tracker for fast-changing environmental conditions. IEEE Transactions on Idustrial Electronics,2008,55(7):2629-2637
    [133]李晶,窦伟,徐正国,等.光伏发电系统中最大功率点跟踪算法的研究.太阳能学报,2007,28(13):268-272
    [134] Tse K K,Ho B M T,Chung H S H,et al.A comparative study of maximum power point trackers for photovoltaic panels using switching-frequency modelation scheme.IEEE Transactions on Industrial Electronics,2004,51(2):410-418
    [135] Kottas T L,Boutails Y S,Karlis A D.New maximum power point tracker for PV araays using controller in close cooperation with fuzzy cognitive networks.IEEE Transactions on Energy Conversion,2006,21(3):793-803
    [136] Otieno C A,Nyakoe G N,Wekesa C W.A neural fuzzy based maximum power point tracker for a photovoltaic system.In:AFRICON.Nairobi,2009,1-6
    [137]姚雪梅,夏东伟,李建.基于GA-RBF神经网络的光伏电池MPPT研究.青岛大学学报(工程技术版),2009,24(2):10-14
    [138] Esram T,Chapman P L.Comparison of photovoltaic array maximum power point tracking techniques.IEEE Transactions on Energy Conversion,2007,22(2):439-449
    [139] Yu T C,Chien T S.Analysis and simulation of characteristics and maximum power point tracking for photovoltaic systems.In:International Conference onPower Electronics and Drive Systems.Taipei,2009,1339-1344
    [140] Coelho R F,Concer F,Martins D C.A study of the basic DC-DC converters applied in maximum power point tracking.In:Brazilian Power Electronics conference.Grosso,2009,673-678
    [141]李炜,朱新坚.光伏系统最大功率点跟踪控制仿真模型.计算机仿真,2006,23(6):239-243
    [142] Sungwoo Bae,Kwasinski A.Maximum power point tracker for a multiple- input cuk dc-dc converter.In:The 31st International Telecommunications Energy Conference.Incheon,2009,1-5
    [143]蔡晓峰,张鸿博.光伏发电系统最大功率点跟踪的占空比扰动法仿真研究.发电技术,2009,31(9):19-24
    [144]张占松.开关电源的原理与设计.北京:电子工业出版社,2004,68-71
    [145]韦莉,张逸成,沈玉琢,等.基于MATLAB的大功率电源系统的建模与仿真.系统仿真技术,2009,5(3):202-207
    [146] Zhu Y,Tomsovic K.Development of models for analyzing the load-follwing performance of micriturbines and fuel cells.Electric Power Systems Research,2002,62(1):1-11
    [147]朱新坚.中国燃料电池技术现状与展望.电池,2004,34(3):202-203
    [148] US Department of Energy.Fuel Cell Handbook.Morgantown:EGG Services Parsons Inc,2000,3-24
    [149] Li Y H,Choi S S,Rajakaruna S.An analysis of the control and operation of a solid oxide fuel-cell power plant in an isolated system.IEEE Transactions on Energy Conversion,2005,20(2):381-387
    [150] Hatziadoniu C J,Lobo A A,Pourboghrat F,et al.A simplified dynamic model of grid-connected fuel cell generators.IEEE Transactions on Power Delivery,2002,17(2):467-473
    [151]汤根土,骆仲泱,倪明江,等.平板状阳极支撑固体氧化物燃料电池的数值模拟及性能分析.中国电机工程学报,2005,25(10):116-121
    [152]王志群,朱守真,周双喜.逆变型分布式电源控制系统的设计.电力系统自动化,2004,28(24):61-70
    [153]任碧莹,孙向东,同向前,等.并网逆变器的改进误差拍控制策略.电力电子技术,2009,43(8):35-36
    [154]吴佳宇,马秀娟,孙玉德,等.光伏并网逆变器控制策略研究.电源技术应用,2009,12(8):10-12
    [155] Hatziadoniu C J,Nikolov E N,Pourboghrat F.Power conditioner control andprotection for distributed generators and storage.IEEE Transactions on Power Systems,2008,18(1):83-90
    [156] Choi S S,Li B H,Viathgamawa D M.Design and analysis of the inverter- side filter used in the dynamic voltage restorer.IEEE Transactions on Power Delivery,2002,17(3):857-864
    [157]夏小荣,陈辉明,蒋大鹏.电压型PWM并网逆变器.电源技术应用,2005,8(10):21-24
    [158]丁明,严流进,茆美琴,等.分布式发电中燃料电池的建模与控制.电网技术,2009,33(9):8-13
    [159]侯健敏,周德群.分布式能源研究综述.沈阳工程学院学报(自然科学版),2008,4(4):289-293
    [160]左远志,杨晓西,丁静.微型燃气轮机分布式能源发展冷思考.煤气与热力,2008,28(6):10-13
    [161]王建,王志伟.微型燃气轮机在我国能源工业中的发展前景.发电设备,2006,20(6):394-397
    [162]孙可,韩祯祥,曹一家.微型燃气轮机系统在分布式发电中的应用研究.机电工程,2005,22(8):55-60
    [163]靳智平.微型燃气轮机发电在我国的应用前景.电力学报,2004,19(2):95-97
    [164] Saha A K, Chowdhury S P, Chowdhury S, et al. Microturbine based distributed generator in smart grid application.In:The 20th International Conference and Exhibition on Electricity Distribution.Czech Republic,2009,1-6
    [165]李政,王德慧,薛亚丽,等.微型燃气轮机的建模研究(上)——动态特性分析.中国动力工程学报,2005,25(1):13-17
    [166] Power W I . Simplified mathematical representations of heavy duty gas turbines.Journal of Engineering for Power, Transactions ASME,1983,105(4):865-869
    [167]闫大朋,闫士杰,李爱平,等.微型燃气轮机的新型神经网络控制的研究.控制工程,2008,15(5):541-543
    [168] Saha A K,Chowdhury S,Chowdhury S P,et al.Modeling and performance analysis of a microturbine as a distributed energy resource.IEEE Transactions on Energy Conversion,2009,24(2):529-538
    [169] Gaonkar D N,Patel R N,Pillai G N.Dynamic model of microturbine generation system for grid connected/islanding operation . In : IEEE InternationalConference on Industrial Technology.Mumbai,2006,305-310
    [170] Leonard M,Dharival R S.Manufacture and testing of prototype microturbine module.Electronics Letters,2006,42(8):460-462
    [171] Soon K Y,Milanpvic J V,Hughes F M.Overview and comparative analysis of gas turbine models for system stability studies.IEEE Transactions on Power Systems,2008,23(1):108-118
    [172] Fethi O,Dessaint L A,AI-Haddad K.Modeling and simulation of the electric part of a grid connected microturbine.In:IEEE Power Engineering Society General Meeting.Denver,2004,2212-2219
    [173] Schiemenz I , Stiebler M . Control of a permanent magnet synchronous generator used in a variable speed wind energy system.In:IEEE International Electric Machines and Drives Conference.Cambridge,2001,872-877
    [174]王旭,黄凯征,汪万伟.三相电压型PWM整流器建模和仿真研究.系统仿真学报,2008,20(19):5204-5207
    [175]王成山,马力,王守相.基于双PWM换流器的微型燃气轮机系统仿真.电力系统自动化,2008,32(1):56-60
    [176] Al-hinai A,Schoder K,Feliach A.Control of grid-connected split-shaft microturbine distributed generator.In:The 35th Southeastern Symposium on System Theory.Toronto,2003,84-88
    [177] Guda S R,Wang C,Nehrir M H.A simulink-based microturbine model for distributed generation studies.In:The 37th Annual North American Power Symposium.Ames,2005,269-274
    [178]张红斌,贺仁睦,刘应梅.感应电动机负荷模型参数解析灵敏度分析及参数辨识策略研究.电网技术,2004,28(6):10-14
    [179]张进,贺仁睦.基于参数灵敏度分析的负荷建模研究.现代电力,2005,22(5):29-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700