直驱永磁风电—燃料电池混合系统建模及功率平滑控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球正面临着能源危机、环境污染和气候变化的压力,应用新能源发电随之成为电力工业发展的时代课题。本文选择风力发电系统中最具有发展前景的直驱永磁风力发电系统DDPGWPS(Direct Drive Permanent Magnet Wind Power System)和燃料电池中最具有商业前景的固体氧化物燃料电池SOFC (Solid Oxide Fuel Cell)作为研究对象。构建了DDPGWPS与SOFC混合发电系统,提出了全风况下按给定功率输出的控制策略,研究了利用SOFC平滑DDPGWPS在全风况下按给定功率输出的功率波动并给出了仿真波形,最后,构建了孤岛中风-氢混合发电系统并进行了功率控制的比较研究。整个研究工作为未来分布式发电系统中新能源的功率控制提供了理论参考。
     首先,基于二质量块-轴数学模型构建了一个包含风速模型、功率转换模型、传动链模型等三个部分的10MW变速直驱型风涡轮机组的标么值MATLAB动态模型。作为风力发电系统的原动力模型,该模型有助于进一步仿真研究变速DDPGWPS的功率特性和并网发电控制技术。
     建立了直驱永磁风力发电机DDPMWG (Direct Drive Permanent Magnet Wind Generator)的电气数学模型和空间状态d-q控制模型,仿真确定了一个10兆瓦DDPMWG的电气参数。在恒定风速下,研究了用BOOST-CHOPPER电路控制永磁发电机转速和输出功率的控制原理及控制参数的整定。构建了使用PWM桥式整流电路控制DDPMWG转速和功率的解耦控制的数学模型及控制电路,提出了一种基于三环P1控制环对有功功率进行控制的控制电路,外环为功率控制环,中环为转速控制环,内环为电流控制环。与传统的两环PI控制电路相比较,这种控制方法直接利用了DDPMWG的功率与转速之间良好的线性关系进行控制,因而具有更好的控制性能且更容易实现稳健的控制策略。仿真分析表明,具有三环PI控制环的PWM整流控制电路比BOOST-CHOPPER控制电路具有更快的控制响应速度、更高的DDPMWG电磁利用率以及更好的定子电流正弦波特性。
     构建了PWM逆变器解耦控制的数学模型及仿真控制电路,仿真分析了并网发电的两种功率控制方式。基于前面的研究及参数的设定,构建了10兆瓦DDPGWPS,在此基础上提出了一种全风况下、基于三环PI控制、按任意给定功率控制的智能稳健控制策略。利用这种策略,能实现当风功率达到了给定功率的时候,按给定功率控制输出,而当风功率达不到给定功率的时候,限定转速在最大风功率所对应的转速上,从而实现最大风功率的追踪,同时,还能防止出现功率失控的状态。提出了一种快速、简单,高效的最大风功率追踪方法,用这种方法改善了按给定功率控制策略中的最大功率追踪方法,在不降低其追踪速度的前提下,提高了其追踪的准确度。进一步提出了一种高于额定风速时,利用DDPMWG的大惯性平滑给定输出功率波动的新颖改进控制策略。仿真验证了上述控制策略的正确性。
     在考虑浓差极化电压和活性极化电压的基础上,建立了SOFC的集总数学模型,给出了其稳态电压电流特性的MATLAB仿真。基于滞回比较的方法建立了SOFC并网输出功率的控制电路,仿真了其动态负荷跟踪特性。由于风速的随机性,间歇性造成DDPGWPS输出功率在风功率不足时,出现向下凹的波动,提出了一种实时功率互补的控制策略,利用SOFC多模块组合形成的充足的电功率和快速的负荷跟随特性平滑DDPGWPS输出功率波动并给出了仿真波形。
     提出了一种用于小孤岛的风-氢混合发电系统,这种系统通过使用电解水制氢储能装置、燃料电池、风力发电机组和柴油机发电机组,采用交流连接的方式,能给小孤岛中的负荷提供较高质量的绿色电能,同时,电解水制氢储能装置所产生的氢气,被用来做为燃料电池的燃料,使风能能得到充分的利用。通过仿真,比较分析了该系统的功率平滑控制特性。
The globe is facing the pressure of energy crisis, environmental pollution and climate change. The application of new energy resources to power generation then becomes the topic of the era of power industry development. DDPMWPS (direct driving permanent magnet wind power generation systems) which is the most promising in wind power system and SOFC (solid oxide fuel cell) which boasts the greatest commercial prospects in fuel cells are chosen in this paper as the research objects. Hybrid power generation systems composed of DDPMWPS and SOFC are built, and the control strategy is proposed in accordance with the setting power under all wind speed situation. In the research, SOFC is used to smooth DDPMWPS'output power fluctuations under all wind speed situation, and the simulation wave form is also presented. The research provides theoretical references for new energy power control of distributed power generation system in the future..
     First of all, a dynamic model of10MW variable speed direct drive wind turbines is built on matlab, which consists of wind speed model, power conversion model and drive train model based on two-mass mathematical model. As the prime mover of the wind-power generation system, this model will be helpful for further researches on the power characteristics of DDPGWPS and grid-connected control technique.
     Electrical mathematical model and space state d-q control model are established, and the DDPMWG (direct drive permanent magnet wind generator) electrical parameter of10MW is identified through simulation. Under constant wind speed, the control principle and parameters'setting about the rotating speed and output power control of DDPMWG are researched by means of BOOST-CHOPPER circuit. The mathematical model and control circuit are built by using PWM bridge rectifier circuit to control PMWG's rotor speed and power decoupling. And a controlling circuit controlling the active power is proposed based on the three-layer PI control structure, with the outer layer as the power control loop, the middle-layer as the rotor speed control loop and the inner-layer as the current control loop. This control method makes direct use of the excellent linear relation between the power and the rotation speed of DDPMWG for control, which therefore shows better control performance and realizes the steady control strategy more easily. The simulation analysis shows that compared with BOOST-CHOPPER, PWM with three-layer PI control structure has faster control response speed, higher electromagnetic utilization and better stator current sine wave characteristics.
     Mathematical model and simulation control circuit of PWM inverter decoupling control are built. Two power control methods of gird-connected power generation are analyzed.10MW DDPGWPS is established based on the previous analysis and parameters setting. On this basis, an intelligent control strategy with any given value of power under all wind speed situation and based on three-layer PI control is provided. By means of this strategy, when the wind power reaches the setting power, it shall be outputted in the setting power, and when the wind power fails to reach the setting power, the rotate speed shall be limited to the speed corresponding to the largest wind power, so as to trace the largest wind power. At the mean time, the incontrollable power can be prevented. A fast, simple and highly-efficient maximum wind power tracking method is put forward, which has improved the maximum power tracking method according to the setting power control strategy and enhanced the tracking accuracy without reducing the tracking speed. Further more, a novel control strategy is given to smooth the setting output power fluctuation by virtue of the considerable inertia of DDPMWG when it is higher than the rated wind speed. The correctness of the above-mentioned control strategy is testified through simulation.
     Lumped mathematical model of SOFC is built based on the concentration polarization voltage and active polarization voltage, and the matlab simulation of steady-state voltage and current characteristics is given. The control circuit with SOFC connected to grid is established based on hysteresis comparison method and dynamic load response performance is researched by simulation. With the randomness of the wind speed, the sunken fluctuation of the DDPGWPS output power appears when the wind power is insufficient. The real-time power complementation control strategy is proposed. The sufficient power and rapid load tracking characteristics composed of SOFC multi modules are used to smooth DDPGWPS output power fluctuations, and the simulation wave form is given.
     A wind-hydrogen hybrid power system is proposed for isolated islands, which can supply high-quality green energy through using wind energy, fuel cell, diesel generator, and an aqua electrolyzer with alternative energy facilities. The generated hydrogen by an aqua electrolyzer is used as fuel for a fuel cell so that wind can be fully utilized. Simulation results verify the feasibility of the system.
引文
[1]罗如意,林晔,钱野.世界风电产业发展综述[J].可再生能源,2010,28(2):14-17.
    [2]SOREN KROHN, POUL-ERIK MORTHORST, SHIMON AWERBUCH, et al. The Economics of wind Energy[R]. EWEA,2009.
    [3]GWEC. Global installed wind power capacity[R]. Global Wind Energy Council. 2009.
    [4]全球风能理事会.全球产业蓝皮书[EB/OL]. http://www. gwec. net/, 2009-08-08.
    [5]申宽育.中国的风能资源与风力发电[J].西北水电,2010,15(1):76-81.
    [6]张明锋,邓凯,陈波等.中国风电产业现状与发展[J].机电工程,2010,27(1):1-3.
    [7]杨晓蔚.风电产业、风电设备及风电轴承[J].轴承,2009,12(12):54-59.
    [8]傅旭,李海伟,李冰寒.大规模风电场并网对电网的影响及对策综述[J].陕西电力,2010,20(1):53-57.
    [9]王宏华.风力发电机及其功率变换器的发展现状[J].机械制造与自动化,2010,39(2):190-192.
    [10]李珂.并网型风力发电系统研究综述[J].微电机,2010,43(2):83-86.
    [11]吴聂根,程小华.变速恒频风力发电技术综述[J].微电机,2009,42(8):69-72.
    [12]胡书举.直驱型风力发电系统概述[J].变频器世界,2009,13(10):55-59.
    [13]李建林,吴春松.变速恒频直驱型风电系统变流器柘朴结构研究[J].电网与清洁能源,2009,25(12):62-69.
    [14]宋金梅,王波,肖海勃.中外常用风力发电技术及风电机概述[J].电气技术,2009,8:79-82.
    [15]计崔.大型风力发电场并网接入运行问题综述[J].华东电力,2008,36(10):71-73.
    [16]李辉,薛玉石,韩力.并网风力发电机系统的发展综述[J].微特电机,2009,24(5): 55-61.
    [17]陈建国.风机控制系统发展现状及展望[J].自动化博览,2009,15(10):16-18.
    [18]赵栋利,胡书举,赵斌,许洪华.风力发电机、变流器及其低电压穿越概述[J].变频器世界,2009,28(2):35-40.
    [19]高超,于晓慧.风力发电机组驱动系统方案对比[J].防爆电机,2009,44(6):18-20.
    [20]宁玉泉.新型风电机组发展趋势[J].电气技术,2009,13(8):22-27.
    [21]高阳,欧阳群,关慧敏.风电场接入电网技术研究综述[J].东北电力技术,2010,28(2):14-17。
    [22]窦筱欣,刘朝,田辉等.固体氧化物燃料电池/燃气轮机混合模式的统计综述[J].燃气轮机技术,2010,23(2):5-11.
    [23]包成,蔡宁生.固体氧化物燃料电池一燃气轮机混合发电系统建模与控制的研究现状与进展[J].机械工程学报,2008,44(2):1-7.
    [24]Anderson P M, Bose A. Stability simulation of wind turbine systems[J], IEEE Transactions on Power Apparatus and Systems,1983,102(12):3791-3795.
    [25]Wasynczuk O, Man D T, Sullivan J P. Dynamic behavior of a class of wind turbine generators during random wind fluctuations[J]. IEEE Transactions Power Apparatus and Systems,1981,100(11):2837-2845.
    [26]Zhou Xuesong, Li Ji, Ma Youjie. Review on wind speed model research in wind power systems dynamic analysis[A]. International Conference on Sustainable Power Generation and Supply[C]. Nanjing:Hehai University Press,2009:1-5.
    [27]曹娜,赵海翔,任普春,戴慧珠.风电场动态分析中风速模型的建立及应用[J].中国电机工程学报,2007,27(36):68-72.
    [28]傅程,王延荣.风力机叶片动力学响应分析[J].太阳能学报,2010,31(7):917-922.
    [29]Petru T, Thiringer T. Modeling of wind turbines for power system studies[J]. IEEE Transactions on Power Systems,2002,17(4):1132-1139.
    [30]Slootweg J G, de Haan S W, Polinder H et al. General model for representing variable speed wind turbines in power system dynamics simulations[J]. IEEE Transactions on Power Systems,2003,18(1):144-151.
    [31]田春筝,李琼林,宋晓凯.风电场建模及其对接入电网稳定性的影响分析[J].电力系统保护与控制,2009,37(19):46-51.
    [32]Kelouwani S, Agbossou K. Nonlinear model identification of wind turbine with a neural network[J]. IEEE Transactions on Energy Conversion,2004,19(3):607-612.
    [33]杨秀媛,肖洋.陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学,2005,25(11):1-5.
    [34]李东东,陈陈.风力发电机组动态模型研究[J].中国电机工程学报,2005,25(3):115-119.
    [35]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机的运行控制及建模仿真[J].中国电机工程学报,2006,26(5):43-50.
    [36]Albadi M H, El-Saadany E F. Wind Turbines Capacity Factor Modeling-A Novel Approach[J]. IEEE Transactions on Power Systems,2009,24(3):1637-1638.
    [37]Yang W, Tavner P J, Wilkinson M R. Condition monitoring and fault diagnosis of a wind turbine synchronous generator drive train[J]. Renewable Power Generation, IET,2009,3(1):1-11.
    [38]Geng H, Yang G. Robust pitch controller for output power leveling of variable-speed variable-pitch wind turbine generator systems[J]. Renewable Power Generation, IET,2009,3(2):168-179.
    [39]Kusiak A, Zijun Zhang, Mingyang Li. Optimization of Wind Turbine Performance With Data-Driven Models[J]. IEEE Transactions on Sustainable Energy,2010, 1(2):66-76.
    [40]Peiyuan Chen, Siano P, Bak-Jensen B, et al. Stochastic Optimization of Wind Turbine Power Factor Using Stochastic Model of Wind Power[J]. IEEE Transactions on Sustainable Energy,2010,1(1):19-29.
    [41]PRABHA KUNDUR.电力系统稳定与控制[M].北京:中国电力出版社2002:83-89.
    [42]李辉,韩力,赵斌,陈哲.风电机组等效模型对机组暂态稳定分析结果的影响[J].中国电机工程学报,2008,28(17):105-111.
    [43]Muyeen S M, Hasan A M, Takahashi R et al. Transient stability analysis of grid connected wind turbine generator system considering multi-mass shaft modeling[J]. Electric Power Components Systems,2006,34(10):1121-1138.
    [44]Muyeen S M, Ali M H, Takahashi R et al. Comparative study on transient stability analysis of wind turbine generator system using different drive train models[J]. Renewable Power Generation, IET,2007,1(2):131-141.
    [45]Coughlan Y, Smith P, Mullane A et al. Wind Turbine Modeling for Power System Stability Analysis-A System Operator Perspective[J]. IEEE Transactions on Power Systems,2007,22(3):929-936.
    [46]Trudnowski D J, Gentile A, Khan J M. Fixed-speed wind-generator and wind-park modeling for transient stability studies[J]. IEEE Transactions on Power Systems, 2004,19(4):1911-1917.
    [47]Norton Robert L. Machine Design[M]. Prentice Hall,1998.
    [48]Kazimierczuk M K, Massarini A. Feedforward control of DC-DC PWM boost converter[J]. Circuits and Systems Ⅰ:IEEE Transactions on Fundamental Theory and Applications,1997,44(2):143-148.
    [49]Ngo K D. Alternate forms of the PWM switch models[J]. IEEE Transactions on Aerospace and Electronic Systems,1999,35(4):1283-1292.
    [50]Kazimierczuk M K, Starman L A. Dynamic performance of PWM DC-DC boost converter with input voltage feedforward control[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,1999,46(12):1473-1481.
    [51]Bryant B, Kazimierczuk M K. Modeling the closed-current loop of PWM boost DC-DC converters operating in CCM with peak current-mode control[J]. IEEE Transactions on Circuits and Systems I:Regular Papers,2005,52 (11):2404-2412.
    [52]谭勋琼,吴政球等.基于DSP解耦能流管理的三端口双向DC-DC转换器[J].湖南大学学报(自然科学版),2009,36(11):38-43.
    [53]胡炎申,谢运祥.三相交错并联Boost DC/DC变换器设计与研制[J].电力电子技术,2006,40(2):45-47.
    [54]刘雁飞.平均电流控制下的DC/DC变换器大小信号统一动态模型[J].电工技术学报,2007,22(5):85-91.
    [55]何亮,方字,李吉等.峰值电流控制DC/DC变换器的恒值限流方法[J].电工技术学报,2006,21(10):86-89.
    [56]Bryant B, Kazimierczuk M K. Voltage loop of boost PWM DC-DC converters with peak current-mode control [J]. IEEE Transactions on Circuits and Systems I: Regular Papers,2006,53(1):99-105.
    [57]Cao Xinping, Chiang Wen-Jen, King Ya-Chin. Electromagnetic Energy Harvesting Circuit With Feedforward and Feedback DC-DC PWM Boost Converter for Vibration Power Generator System[J]. IEEE Transactions on Power Electronics, 2007,22(2):679-685.
    [58]许峨峰,冯江华,许建平.考虑损耗模型的永磁同步电机直接转矩控制[J].电力电子技术,2005,39(2):24-28.
    [59]王生铁,张润和,田立欣.小型风力发电系统最大功率控制扰动法及状态平均建模与分析[J].太阳能学报,2006,27(8):828.834.
    [60]Shen D, Lehn P W. Fixed-frequency space-vector-modulation control for three-phase four-leg active power filters[J]. IEE Proceedings-Electric Power Applications,2002,149(4):268-274.
    [61]Blasko V, Kaura V. A new mathematical model and control of a three-phase AC—DC voltage source converter[J]. IEEE Transactions on Power Electronics, 1997,12(1):116—123.
    [62]何致远,韦巍.基于虚拟磁链的PWM整流器直接功率控制研究[J].浙江大 学学报(工学版),2004,38(12):1619-1622.
    [63]Malinowski M, Jasinski M, Kazmierkowski M P. Simple direct power control of three phase PWM rectifier using space-vector modulation(DPC-SVM)[J]. IEEE Transactions on Industrial Electronics,2004,51(2):447-454.
    [64]王久和,李华德.一种新的电压型PWM整流器直接功率控制策略[J].中国电机工程学报,2005,25(16):47-52.
    [65]钟炎平,沈颂华.PWM整流器的一种快速电流控制方法[J].中国电机工程学报,2005,25(12):52-56.
    [66]曾岳南,毛宗源,罗彬.永磁同步电机无位置、速度传感器控制[J].电力电子技术,2004,40(4):28-30.
    [67]孙凯,许镇琳,邹积勇.基于自抗扰控制器的永磁同步电机无位置传感器矢量控制系统[J].中国电机工程学报,2007,27(3):18-22.
    [68]刘毅,贺益康,秦峰等.基于转子凸极跟踪的无位置传感器永磁同步电机矢量控制研究[J].中国电机工程学报,2005,25(17):121-126.
    [69]王晓磊,赵克友.永磁同步电机最小损耗的直接转矩控制[J].电机与控制学报,2007,11(4):331-334.
    [70]李长红,陈明俊,吴小役.PMSM调速系统中最大转矩电流比控制方法的研究[J].中国电机工程学报,2005,25(21):169-174.
    [71]林伟杰.永磁同步电机两种磁场定向控制的比较[J].电力电子技术,2007,41(1):26-28.
    [72]田淳,胡育文.永磁同步电机直接转矩控制系统理论及控制方案的研究[J].电工技术学报,2002,17(1):7-11.
    [73]熊新,梁晖.兆瓦级风力发电变流系统多重斩波器的研究[J].电力电子技术,2006,40(5):47-49.
    [74]Song H S, Joo I W, Nam K. Source voltage sensorless estimation scheme for PWM rectifiers under unbalanced conditions. IEEE Transactions on hdustrial Electronics,2003,50(6):1238-1245.
    [75]Cecati C, Dell'Aquila A, Lecci A, et al. Implementation issues of a fuz zy-logic-based three-phase active rectifier employing only Voltage sensors. IEEE Transaction on Industrial Electronics,2005,52(2):378-385.
    [76]邓卫华,张波,丘东元.三相电压型PWM整流器状态反馈精确线性化解耦控制研究[J].中国电机工程学报,2005,25(7):97-103.
    [77]Rodriguez J R, Dixon J W, Espinoza J R, et al. PWM regenerative rectifiers: state of the art[J]. IEEE Transactions on Industrial Electronics,2005,52(1): 5-22.
    [78]张崇巍,张兴.PWM整流器及其控制.北京:机械工业出版社,2003.
    [79]尹明,李庚银,张建成等.直驱式永磁同步风力发电机组建模及其控制策略[J].电网技术,2007,31(15):61-65.
    [80]胡书举,李建林,许洪华.永磁直驱风电系统低电压运行特性的分析[J].电力系统及其自动化,2007,31(17):73-77.
    [81]邢作霞,姚兴佳,陈雷,郑琼林.基于成本模型法的1 MW变速风电机组的参数优化设计分析[J].太阳能学报,2007,28(5):538-544.
    [82]贾要勒,乘刚,杨仲庆.风力发电系统的H∞鲁棒控[J].太阳能学报,2004,25(1):85-91.
    [83]严干贵,魏治成,穆钢等.直驱永磁同步风电机组的动态建模与运行控制[J].电力系统及其自动化学报,2009,21(6):35-39.
    [84]张岳,王凤翔.直驱式永磁同步风力发电机性能研究[J].电机与控制学报,2009,13(1):78-82.
    [85]胡书举,王剑飞,赵栋等.无速度传感器控制永磁直驱风电变流器的研制[J].2009,13(1):67-72.
    [86]Holmes D G, Mcgrath B P. Opportunities for harmonic cancellation with carder-based PWM for two-level and multilevel cascaded inverters[J]. IEEE Transactions on industry applications,2001,37(2):574-582.
    [87]杨贵杰,孙力,崔乃政等.空间矢量脉宽调制方法的研究[J].中国电机工程学报,2001,21(5):79-83.
    [88]瞿兴鸿,廖勇,姚骏等.永磁同步直驱风力发电系统的并网变流器设计[J].电力电子技术,2008,42(3):22-24.
    [89]Chinchilla M, Arnaltes S, Burgos J C. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid[J]. IEEE Transactions on Energy Conversion,2006,21(1):130-135.
    [90]Strachan N P W, Jovcic D. Dynamic Modelling, Simulation and Analysis of an Offshore Variable-Speed Directly-Driven Permanent-Magnet Wind Energy Conversion and Storage System (WECSS)[A]. OCEANS 2007[C], Europe,2007: 1-6.
    [91]Agarwal V, Aggarwal R K, Patidar P. A Novel Scheme for Rapid Tracking of Maximum Power Point in Wind Energy Generation Systems[J]. IEEE Transactions on Energy Conversion,2010,25(1):228-236
    [92]Kazmi S M, Goto H, Guo H J, Ichinokura O. A Novel Algorithm for Fast and Efficient Speed-Sensorless Maximum Power Point Tracking in Wind Energy Conversion Systems[J]. IEEE Transactions on Industrial Electronics,2011,58 (1):29-36.
    [93]Ching-Tsai Pan, Yu-Ling Juan. A Novel Sensorless MPPT Controller for a High-Efficiency Microscale Wind Power Generation System[J]. IEEE Transactions on Energy Conversion,2010,25 (1):207-216.
    [94]Geng H, Yang G. Robust pitch controller for output power levelling of vari able-speed variable-pitch wind turbine generator systems[J]. Renewable Power Gene ration, IET,2009,3(2):168-179.
    [95]Haque M E, Negnevitsky M, Muttaqi K M. A Novel Control Strategy for a Variable-Speed Wind Turbine With a Permanent-Magnet Synchronous Generator[J]. IEEE Transactions on Industry Applications,2010,46(1):331 339.
    [96]Ren Y F, Bao G Q. Control Strategy of Maximum Wind Energy Capture of Direct-Drive Wind Turbine Generator Based on Neural-Network[A]. Power and Energy Engineering Conference (APPEEC)[C], Asia-Pacific,2010:1-4.
    [97]邓秋玲,黄守道,肖锋.变速直驱永磁同步发电机风力发电系统的控制[J].微特电机,2008,(6):51-54.
    [98]王丰收,沈传文,刘伟.风力发电系统控制策略研究[J].电气传动自动化,2006,28(5):1-5.
    [99]Galdi.V., Piccolo A, Siano P. Designing an Adaptive Fuzzy Controller for Maximum Wind Energy Extraction[J]. IEEE Transactions on Energy Conversion, 2008,23 (2):559-569.
    [100]Boys J T, Handley P G. Harmonic analysis of space vector modulated PWM waveforms[J]. IEE Proceedings, Part B:Electric Power Applications,1990, 137(4):197-204.
    [101]Koutroulis E, Kalaitzakis K. Design of a maximum power tracking system for wind-energy-conversion applications[J]. IEEE Transactions on Industrial Electronics,2006,53(2):486-494.
    [102]Morimoto S, Nakayama H, Sanada M, et al. Sensor-less output maximization control for variable-speed wind generation system using IPMSG[J]. IEEE Transactions on Industry Applications,2005,41(1):60-67.
    [103]Wai R J, Lin C Y, Chang Y R. Maximum-power-extraction algorithm for grid-connected PMSG wind generation system[J]. IET Electric Power Applications,2007,1(2):275—283.
    [104]Thiringer T, Linders J. Control by variable rotor speed of a fixed-pitch wind turbine operating in a wide speed range[J]. IEEE Transactions on Energy Conversion,1993,8(3):520—526.
    [105]Wang Q, Chang L C. An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems[J]. IEEE Transactions on Power Electronics,2004,19(5):1242-1249.
    [106]Chinchilla M, Amaltes S, Burgos J C. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid[J]. IEEE Transactions on Energy Conversion,2006,21(1):130—135.
    [107]廖勇,何金波,姚骏等.基于变桨距和转矩动态控制的直驱永磁同步风力发电机功率平滑控制[J].中国电机工程学报,2009,29(18):71-77.
    [108]耿华,许德伟,吴斌等.永磁直驱变速风电系统的控制及稳定性分析[J].中国电机工程学报,2009,29(33):68-75.
    [109]廖勇,庄凯,姚骏等.直驱式永磁同步风力发电机双模功率控制策略的仿真研究[J].中国电机工程学报,2009,29(33):76-82.
    [110]姚骏,廖勇,瞿兴鸿等.直驱永磁同步风力发电机的最佳风能跟踪控制[J].电网技术,2008,32(10):12-14.
    [111]赵仁德,王永军,张加胜.直驱式永磁同步风力发电系统最大功率追踪控制[J].中国电机工程学报,2009,29(27):106-111.
    [112]Hall D J, Colclaser R G. Transient modeling and simulation of a tubular solid oxide fuel cell[J]. IEEE Transactions Energy Converse,1999,14(3):749-753.
    [113]Padulles J, Ault G W, Mcdonald J R. An integrated SOFC plant dynamic model for power system simulation[J]. Journal of Power Sources,2000,86(1/2): 495-500.
    [114]Nagata S, Momma A, Kato T, Kasuga Y. Numerical analysis of output characteristics of tubular SOFC with internal reformer[J]. Journal of Power Sources,2001,101(1):60-71.
    [115]Zhu Y, Tomsovic K. Development of models for analyzing the load following performance of microturbines and fuel cells[J]. Electric Power Systems Research, 2002,62,(1):1-11.
    [116]Kenney B, Karan K. Impact of nonuniform potential in SOFC composite cathodes on the determination of electrochemical kinetic parameters[J].Journal of the Electrochemical Society,2006,153(6):1172-1180.
    [117]Lazzaretto A, Toffolo A, Zanon F. Parameter setting for a tubular SOFC simulation model[J]. Journal of Energy Resources Trans.,2004,126(1):40-46.
    [118]Noren D A, Hoffman M A. Clarifying the Butler-Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models[J]. Journal of Power Sources,2005,152:175-181.
    [119]Zhao F, Virkar A V. Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters[J]. Journal of Power Sources,2005, 141(1):79-95.
    [120]Sedghisigarchi K, Feliachi A. Dynamic and transient analysis of power distribution systems with fuel cells—Part Ⅰ:Fuel cell dynamic model[J]. IEEE Transactions on Energy Conversion,2004,19(2):423-428.
    [121]Jiang Z, Dougal R A. A compact digitally controlled fuel cell/battery hybrid pow er source[J]. IEEE Transactions on Industrial Electronics,2006,53(4):1094—1104.
    [122]Martins G M, Pomilio J A, Buso S, Spiazzi G. Three-phase low frequency commutation inverter for renewable energy systems[J]. IEEE Transactions on Industrial Electronics,2006,53(5):1522-1528.
    [123]Tekin M, Hissel D, Pera M C, Kauffmann J M. Energymanagement strategy for embedded fuel-cell systems using fuzzy logic[J]. IEEE Transactions on Industrial Electronics,2007,54(1):595-603.
    [124]Hatziadoniu C J, Lobo A A, Pourboghrat F, Daneshdoost M. A simplified dynamic model of grid-connected fuel-cell generators[J]. IEEE Transactions on Power Delivery,2002,17(2):467-473.
    [125]Qi Y, Huang B, Chuang K T. Dynamic modeling of solid oxide fuel cell:The effect of diffusion and inherent impedance[J]. Journal of Power Sources, 2005,150(1/2):32-47.
    [126]Iwata M, Hikosaka T, Morita M, Iwanari T. Performance analysis of pla nar-type unit SOFC considering current and temperature distributions[J]. Solid State Ionics,2000,132(3):297-308.
    [127]Gebregergis A, Pillay P, Bhattacharyya D, Rengaswemy R. Solid oxide fuel cell modeling[J]. IEEE Transactions on Industrial Electronics,2009,56(1):139-148.
    [128]王礼进,张会生,翁史烈.内重整高温固体氧化物燃料电池建模与仿真[J].中国电机工程学报,2007,27(35):78-83.
    [129]丁明,严流进,茆美琴,杨为.分布式发电中燃料电池的建模与控制[J].电网技术,2009,33(9):8-13.
    [130]Wikimedia Foundation,Inc.Solidoxide fuel cell [EB/OL].[2009-12-28]. ht tp://en.wikipedia.org/wiki/Solid_oxide_fuel_cell.
    [131]Wikimedia Foundation, Inc. Butler-Volmer equation [EB/OL]. [2009-12-28].http://en.wikipedia.org/wiki/Butler-Volmer_equation.
    [132]Wikimedia Foundation, Inc. Partial_pressure [EB/OL]. [2009-12-28]. http:// en.wikipedia.org/wiki/Partial_pressure.
    [133]Rajashekara K. Hybrid fuel-cell strategies for clean power generation.[J]. IEEE Transactions on Industry Applications,2005,41(3):682-689.
    [134]Ghanavati, G, Esmaeili, S. Dynamic simulation of a wind fuel cell hybrid power generation system[A]. World Non-Grid-Connected Wind Power and Energy Conference[C],2009:1-4.
    [135]Caisheng Wang, Nehrir M H. Power Management of a Stand-Alone Wind/Phot ovoltaic/Fuel Cell Energy System[J]. IEEE Transactions on Energy Conversion, 2008,23(3):957-967.
    [136]Naik R, Mohan N, Rogers M. A novel grid interface, optimized for utility-scale applications of photovoltaic, wind-electric, and fuel-cell systems [J]. IEEE Transactions on Power Delivery,1995,10(4):1920-1926.
    [137]Senjyu T, Nakaji T, Uezato K. A hybrid power system using alternative energy facilities in isolated island [J], IEEE Transactions on Energy Conversion,2005, 20(2):406-414.
    [138]Dagdougui H, Minciardi R Ouammi A. A Dynamic Decision Model for the Real-Time Control of Hybrid Renewable Energy Production Systems[J]. Systems Journal, IEEE,2010,4(3):323-333.
    [139]Teng, J H. Modeling distributed generations in three-phase distribution load flow[J]. Generation, Transmission & Distribution, IET,2008,2(3):330-340.
    [140]Atwa Y M, El-Saadany E F. Probabilistic approach for optimal allocation of wind-based distributed generation in distribution systems[J]. Renewable Power Generation, IET,2011,5(1):79-88.
    [141]Nymand M, Andersen M A E. High-Efficiency Isolated Boost DC-DC Converter for High-Power Low-Voltage Fuel-Cell Applications[J]. IEEE Transactions on Industrial Electronics,2010,57(2):505-514.
    [142]David M B, Donald W N. Current Control of VSI-PWM Inverters[J]. IEEE Transactions on Industry Applications,1985,21 (4):562-570.
    [143]Liyan Qu, Wei Qiao. Constant Power Control of DFIG Wind Turbines With Supercapacitor Energy Storage[J]. IEEE Transactions on Industry Applications, 1985,47 (1):359-367.
    [144]Gebregergis A, Pillay P, Bhattacharyya D, Rengaswemy R. Solid oxide fuel cell modeling[J]. IEEE Transactions on Industrial Electronics,2009,56(1):139-148.
    [145]谭勋琼,吴政球,周野等.固休氧化物燃料电池的集总建模与仿真[J].中国电机工程学报,2010,30(17):104-110.
    [146]王礼进,张会生,翁史烈.内重整高温固体氧化物燃料电池建模与仿真[J].中国电机工程学报,2007,27(35):78-83.
    [147]Lukas M D, Lee K Y, Ghezel-Ayagh. Development of a stack simulation model for control study on direct reforming molten carbonate fuel cell power plant [J]. IEEE Transactions on Energy Conversion,1999,14(4):1651-1657.
    [148]Chena Chun-Lung, Hsieha Sheng-Chuan, Leea Tsung-Ying, Lub Chia-Liang. Optimal integration of wind farms to isolated wind-Diesel energy system[J], Energy Conversion and Management,2008,49(6):1506-1516.
    [149]Abbey C, Joos G. A Stochastic Optimization Approach to Rating of Energy Storage Systems in Wind-Diesel Isolated Grids[J]. IEEE Transactions on Power Systems,2009,24(1):418-426.
    [150]Dokopoulos P S, Saramourtsis A C, Bakirtzis A G.. Prediction and evaluation of the performance of wind-diesel energy systems[J]. IEEE Transactions on Energy Conversion,1999,11(2):385-393.
    [151]邓赞高吴必军何再明等.风力和柴油联合独立发电系统仿真研究[J].太阳能学报,2008,41(3):332-336.
    [152]栗文义,张保会,巴根.风/柴/储能系统发电容量充裕度评估[J].中国电机工程学报,2006,26(16):62-67.
    [153]刘学平,刘天琪,李兴源.混合独立发电系统功率协调策略与仿真[J].电网技术,2010,34(9):202-205.
    [154]Dagdougui H, Minciardi R, Ouammi A. A Dynamic Decision Model for the Real-Time Control of Hybrid Renewable Energy Production Systems[J]. IEEE Systems Journal,2010,4(3):323-333.
    [155]Rajashekara K. Hybrid Fuel-Cell Strategies for Clean Power Generation[J]. IEEE transactions on industry applications,2005,41(3):682-689.
    [156]卢继平,白树华.风光氢联合式独立发电系统的建模及仿真[J].电网技术,2007,31(22):75-79.
    [157]Horiuchi N, Kawahito T, Sizuki T. Power control of induction generator by V/F control for wind energy conversion system[J]. Transactions of the Institute of Electrical Engineers of Japan,1998,118-B(10):1170-1176.
    [158]Kodama N, Matsuzaka T, Inomata N. The power variation control of a wind generator by using probabilistic optimal control[J]. Transactions of the Institute of Electrical Engineers of Japan,2001,121-B(1):22-30.
    [159]Chedid R B, Karaki S H, El-Chamali C. Adaptive fuzzy control for wind-diesel weak power systems[J]. IEEE Transactions on Energy Conversion,2000, 15(1):71-78.
    [160]Sasaki K et al. On the voltage drop of phosphoric acid fuel cell due to its on-off operation[J]. Transactions of the Institute of Electrical Engineers of Japan,1998, 118-B(12):1450-1456
    [161]Wang P, Billinton R. Reliability benefit analysis of adding WTG to a distribution system[J]. IEEE Transactions on Energy Conversion,2001,16(2):134—139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700