风电齿轮箱轴承疲劳寿命研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能以其清洁、可再生、储量大及分布广等优点,受到了越来越多的重视及青睐,在全球探求新能源的今天,风能产业迎来了前所未有的发展机遇。目前,降低风力发电机组的故障率是设计和使用过程中的核心问题,故障的发生不仅影响运转效率及发电量,而且也大大增加了维修、更换零件等所需要的费用,因此,风力发电机组的可靠性是其性能的主要衡量指标之一。
     在风电机组的各部件中,因风电齿轮箱的故障而造成停机的概率最高。而在复杂多变的外界载荷作用下,风电齿轮箱内部轴承的寿命难以准确预估是导致风电齿轮箱失效的一个重要因素。为了达到使用寿命要求,国产的大型风电机组中的齿轮箱轴承大多依靠进口,增加了生产成本,因此研究风电齿轮箱轴承的受力及疲劳寿命对风电行业的发展有着重大的意义。风电增速齿轮箱的高速轴端轴承由于转速较高,载荷变化较大,使预估其使用寿命的难度增加。本文拟对该处轴承进行动力学模拟及疲劳寿命分析。
     当前,对轴承疲劳寿命的分析方法主要有试验法和疲劳寿命分析法两种。试验法具有较高的可靠性,但对风电增速箱的实验监控周期较长、费用较高;疲劳寿命分析法采用有限元分析法,利用数值仿真技术等对轴承的疲劳寿命进行分析预测。在采用有限元分析的研究方法中,前人多对轴承进行静力学或对单一的轴承进行动力学模拟,而较少采用多体动力学系统对整个传动系统进行动态分析。
     本文结合我国风电发展的实际情况,针对2MW级风电齿轮箱的关键技术,从轴承基本额定寿命计算、变载荷模拟以及在多体动力学系统中对轴承寿命的预测等方面进行较为系统的研究。在ADAMS软件中,基于风电增速箱多体系统,对三种不同工况下圆柱滚子轴承内部关键部件滚动体与保持架进行动力学分析,得到动态载荷文件;应用ANSYS软件分析各时刻下滚动体与保持架的动应力与应变情况;基于nSoft软件分析风电高速轴圆柱滚子轴承在变载荷冲击作用下的疲劳寿命。
     本文通过对风电齿轮箱高速轴轴承的理论分析、动力学仿真研究、寿命的预测及结果的分析,探讨了风电齿轮箱高速轴承的强度及寿命的分析方法,对风电齿轮箱轴承的设计、优化改进等可提供一定的理论参考。
Wind energy has been more and more popular because of its advantages such asclean, renewable ability, large storage, and wide distribution. At the present time, newkinds of energy are being searched all around the world, which offers a good chanceto wind energy industry. The key problem for the wind turbine is to reduce failure rateduring designing and operating. Operation efficiency and generating capacity arelargely influenced by failure, which increases the cost for maintenance and replacingparts. Reliability has become one of main standards for wind turbines.
     The failure of the gearbox leads to the highest rates of halt among the parts inwind turbines. It is difficult to forecast fatigue life of bearings accurately in thecondition of the complex loads outside, which is one of the important factors to affectfailure of the gearbox. In order to fulfill the requirement of operating life, bearings inlarge wind turbine domestic gearboxes have to rely on import, which increasesproduction cost. So there will be great significances for the research on stress and thefatigue life of wind turbine gearbox bearings for the wind energy industry. High speedand largely variational loads lead to the indetermination for the cylindrical rollerbearings located on the high speed shaft in the gearbox. In the paper, dynamicssimulation and the analysis of fatigue life will be carried on for the bearings in thelocation.
     The analysis methods for fatigue life of bearings are divided into experimentalmethod and finite element analysis. The first one is more credible, however, spendingmore time and cost. Finite element analysis is used in numerical simulation to forecastthe fatigue life of bearings. Though statics or accurate dynamics simulation is widelyused in the second method, dynamics research on the whole transmission systemthrough multi-body dynamics software is less used.
     Combining with the actual situation of wind energy development in our country,researching on the basic life, simulation on the variational loads and forecasting thefatigue life for bearings are carried out in the paper, aiming at the key technology forthe2MW wind turbine gearbox. The main parts in the bearing are analyzed underthree kinds of conditions in ADAMS, from which dynamic load data is obtained.Stress and strain for the roller and cage in different time are showed in ANSYS. The fatigue life of the cylindrical roller bearing of wind turbine gearbox is forecasted innSoft.
     By using theory analysis, dynamics simulation and the fatigue life analysis, themethods for strength and fatigue life of the cylindrical roller bearing in wind turbinegearbox are discussed, which provide a certain theory reference to the design,optimization and improvement for bearings in the wind turbine gearbox.
引文
[1]李俊峰,施鹏飞,高虎.中国风电发展报告2010[M].海口:海南出版社,2010.
    [2]Z. Hameed,J. Vatn,J. Heggset.Challenges in the reliability and maintain-ability data collectionfor offshore wind turbines[J]. Renewable Energy,2011(8):2154-2165.
    [3]http://www.ge.com/cn
    [4]E. Martínez,F. Sanz,S. Pellegrinia.Life cycle assessment of a multi-megawatt wind turbine[J].Renewable Energy,2009(3):667-673.
    [5]刘庆玉,李秩,谷士艳.风能工程[M].沈阳,辽宁民族出版社,2008.
    [6]Z. Hameed,Y.S. Hong,Y.M. Cho,etc.Condition monitoring and fault detection of windturbines and related algorithms: A review[J] Renewable and Sustainable Energy Reviews,2009(1):1-39.
    [7]Baku M. Nagai,Kazumasa Ameku,Jitendro Nath Roy.Performance of a3kW wind turbinegenerator with variable pitch control system[J]. Applied Energy,2009(9):1774-1782.
    [8]中讯网,每周风讯2011(44):2-4.
    [9]A. Greco,K. Mistry,V. Sista, O. Eryilmaz.Friction and wear behaviour of boron based surfacetreatment and nano-particle lubricant additives for wind turbine gearbox applications[J].Wear,2011(6):1754-1760.
    [10]John F. Hall,Dongmei Chen.Performance of a100kW wind turbine with a Variable RatioGearbox[J]. Renewable Energy,2012(44):261-266.
    [11]张岩.大型风电机组齿轮箱动力学特性仿真与分析[D].北京:华北电力大学,2009.
    [12]MARTINEZ E, SANZ F, PELLEGRINI S. Status plans and technologies for offshore windturbines in Europe and North America [J].Renewable Energy,2009,(3):646-654.
    [13]风电齿轮箱失效.姚小芹.北京鉴衡认证中心,2008.
    [14]孔勤建.我国风电齿轮箱行业自主创新发展中的问题与对策[J].风能,2011(7):40-43.
    [15]陆建国,风电齿轮箱轴承应用分析[J].电器制造,2010(9):68-69.
    [16]W.Musial,S.Butterfield,B. McNiff. Improving Wind Turbine Gearbox Reliability[C]. The2007European Wind Energy Conference,2007:1-10.
    [17]Andrew Kusiak,Haiyang Zheng,Zhe Song.Analysis and estimation of transient stability for agrid-connected wind turbine with induction generator[J]. Renewable Energy,2010(3):695-702.
    [18]Kamel Abboudi,Lassaad Walh,Yassine Driss.Dynamic behavior of a two-stage gear trainused in a fixed-speed wind turbine[J]. Mechanism and Machine Theory,2011(12):1888-1900.
    [19]刘贤焕,叶仲和.大型风力发电机组用齿轮箱优化设计及方案分析[J].机械设计与研究,2006年专刊:92-94.
    [20]于晨光,马文勇,朱兵.大功率风力发电机组整机试验台的载荷加载装置:中国,20168096[P].2010-12-22.
    [21]王晶晶,吴晓玲.风电齿轮箱的发展及技术分析[J].机械传动,2008(6):5-8.
    [22]宁玉泉.新型风电机组发展趋势[J].电气技术,2009(8):22-27.
    [23]王朝阳,袁包钢.风电齿轮箱发展趋势.中国可再生能源学会.2011年学术年会论文[C].北京:2011.
    [24]杨晓蔚.风电产业、风电设备及风电轴承[J].轴承,2009(12):54-59.
    [25]朱亮,立言.材料特性对风电轴承耐久性的影响[J].西安理工大学学报,2009(4):460-465.
    [26]李国云,秦大同.风力发电机齿轮箱加速疲劳试验技术分析[J].重庆大学学报,2009(11):1252-1256.
    [27]万长森.滚动轴承的分析方法[M].北京:机械工业出版社,1985.
    [28]罗继伟,罗天宇.滚动轴承分析计算与应用[M].北京:机械工业出版社,2009.
    [29]黄浩,张鹏顺,温建民.高速圆柱滚动体轴承的刚度研究[J].中国机械工程,2011(11):1245-1247.
    [30]董进朝,大型风电齿轮箱关键设计技术研究[D],郑州:机械科学研究总院,2007.
    [31]孙文迪,陈满儒.基于可靠性理论的风电机组偏航轴承寿命预测[J].制造业自动化,2011(3):85-90.
    [32]邓四二,贾群义.滚动轴承设计原理[M].北京:中国标准出版社,2008.
    [33]张占立,王燕霜,邓四二,刘喆.高速圆柱滚子轴承动态特性分析[J].航空动力学报,2011(2):397-403.
    [34]何加群,风力发电机组轴承的抗疲劳制造[J].轴承,2010(12):50-54.
    [35]何加群,范光辉.风电轴承需求与创新能力建设[J].风能,2011(5):26-27.
    [36]招妙妍.风电齿轮箱高速轴故障处理与分析[J].设备管理与维修,2011(9):16-17.
    [37]董进朝,刘忠明.风电齿轮箱轴承寿命计算方法研究[J].机械传动,2007(05):9-12.
    [38]Jan Helsen,Frederik Vanhollebeke,Ben Marrant,etc.Multibody modelling of varyingcomplexity for modal behaviour analysis of wind turbine gearboxes [J].Renewable Energy,2011(36):3098-3113.
    [39]刘泽九,贺士荃,刘晖.滚动轴承应用[M].北京:机械工业出版社,2007.
    [40]石秉楠,袁带英,刘卫等.MW级风力发电机组主轴轴承寿命分析[J].电网与清洁能源,2010(8):50-52.
    [41]刘耀中.Timken滚动体轴承寿命计算[J].轴承,2004(l):46-48.
    [42]NSK中国技术中心. NSK新寿命计算式的开发[J].轴承,2006(l0):45-48.
    [43]Biswanath Nandi,Douglas Lucas.应用于风电齿轮箱高速轴与高速中间轴的定位轴承[J].电器制造,2009(9):76-78.
    [44]谢春普,陈宏伟,张树庆等.大功率风电增速箱设计[J].重型机械,2010(1):59-62.
    [45]T.A.Harris,M.N.kotzals著,罗继伟等译.滚动轴承分析(原书第5版):第二卷轴承技术的高等概念[M].北京,机械工业出版社,2010.
    [46]Ioannides,E.and Harris,T.,A new fatigue life model for rolling bearings [J].ASME Trans,1985(107):367-378.60
    [47]International Organization for Standards,International Standard ISO281,Rolling bearing—dynamic load ratings and rating life,2007.
    [48]马吉胜.ADAMS多体系统建模与动力学方程迭代求解[J].兵工自动化,2004(2):49-51.
    [49]吴文大.风力发电机组齿轮箱国产化的材料、工艺和结构研究[D].杭州:浙江大学,2006.
    [50]范雨晴,马莹,姜韶峰等.高精密轴承常用保持架材料[J].轴承,2010(12):45-49.
    [51]Andrew Kusiak, Wenyan Li.The prediction and diagnosis of wind turbine faults[J].Renewable Energy,2011(1):16-23.
    [52]Andrew Kusiak, Wenyan Li, Zhe Song.Dynamic control of wind turbines[J]. RenewableEnergy,2010(2):456-463.
    [53]王国军,胡仁喜,陈新等. nSoft疲劳分析理论与应用实例指导教程[M].北京:机械工业出版社,2007.
    [54]张凤琴,杜辉,邓四二等.基于ADAMS的圆柱滚动体轴承仿真分析[J].河南科技大学学报:自然科学版,2009(4):15-18.
    [55]杨海生,邓四二,李晌等.航空发动机主轴高速圆柱滚动体轴承保持架柔体动力学仿真[J].轴承,2011(2):7-11.
    [56]陈绍军.基于虚拟样机的大型风电机组齿轮传动系统冲击特性分析[D].北京:华北电力大学,2008.
    [57]张锁怀,张文礼,张青雷.基于ADAMS的MW级风力发电机组动力学建模[J].华北电力大学学报,2009(7):51-57.
    [58]方桂景,冯刚.书友臂中回转轴承寿命预测[J].机械设计与制造,2011(6):54-56.
    [59]牛蔺楷.兆瓦级风力发电机偏航轴承疲劳损伤分析[D].太原:太原理工大学,2011.
    [60]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [61]董达善,张振,刘龙.基于nSoft的起重机主梁管节点疲劳寿命分析[J].起重运输机械,2012(1):14-17.
    [63]张红磊.大型风电机组齿轮箱疲劳特性数值模拟[D].北京:华北电力大学,2009.
    [63]陈观慈,贾平,毛范海等.风电轴承多工况试验载荷谱的编制[J].轴承,2010(10):21-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700