TY型风电齿轮箱行星传动系统动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的高速发展,工业化进程的加速,环境与能源的可持续发展问题已经成为人们生存与发展面临的首要问题。风力发电具有建设周期短、装机规模灵活、不污染环境、不消耗燃料等优点,被世界各国优先采用。风电齿轮箱作为风电机组机械传动系统中最重要而又最脆弱的部件,起着增速降扭的作用,其设计的合理性严重影响到风电机组的正常运行。我国已经是风电装机容量最多的国家,成为名副其实的风电大国,但还不是风电强国,在风电设备制造方面与发达国家还有一定的差距。目前,我国还没有完全掌握大型风电齿轮箱设计制造核心技术,造成国产大型风电齿轮箱故障率居高不下。因此,对风电齿轮箱进行系统分析与研究对促进我国风电制造业的健康发展有着重要意义。
     本文以TY型兆瓦级风电齿轮箱为研究对象,首先对其进行动力学仿真分析研究,之后根据分析结果对潜在薄弱环节提出改进方法,最后对风电齿轮箱齿轮传动系统进行了共振分析。主要研究内容和研究成果有以下几方面:
     1)详细分析了TY型风电齿轮箱结构,并与主流机型进行分析对比,TY型主要区别之处在于均载方式上:第一传动级采用太阳轮浮动均载而第二传动级采用行星架浮动均载。
     2)分析了风电齿轮箱所受载荷,讨论了风电齿轮箱交变载荷处理方法,并对实际交变载荷进行了等效处理。
     3)在考虑结构系统影响的前提下,搭建了刚柔耦合TY型风电齿轮箱虚拟样机,实现了Pro/E、 Hypermesh、 Romax Designer联合仿真,对导入部件进行了静强度分析,并以此检测导入部件是否参与系统传动。
     4)在考虑冲击载荷的影响下,对TY-1型风电齿轮箱传动系统进行了多工况稳态分析,分析找出了4个薄弱部件:高速级上风侧两个轴承、第一传动级太阳轮、高速级输出小齿轮。通过分析发现:高速轴上风侧轴承动态承载能力不够;低速轴上风侧轴承受边缘载荷作用;故障齿轮接触疲劳损伤严重,啮合错位造成齿面载荷分布不均局部应力过大,齿面易产生疲劳点蚀;冲击载荷加剧了各部件疲劳损伤,降低了各部件的寿命。为此,将高速轴上风侧轴承更换成高动态承载能力轴承,将低速轴的固定—游动支承方式调整成两端固定支承方式,各轴承寿命均达到设计要求,同时减小了低速轴自由端的变形量,降低了对第二级齿轮传动的影响。另外,通过齿轮修形改善了由啮合错位所造成的齿面载荷分布不均现象,减小了齿轮传动误差,提高了齿轮传动的动态稳定性。
     5)对TY型风电齿轮箱进行共振分析,找出潜在共振响应点。利用Romax动力分析模块求解出系统前40阶固有频率及振型,采用Campbell图对系统进行共振分析,在特征频率作用下系统存在10个潜在共振响应点特别是5、11、24阶固有频率落入了风机主要运行区,通过分析共振点处的振型,可知共振主要引起各齿轮扭摆与径向窜动。
With a high speed development of society and industrial process, sustainable development problems of environment and energy have become primary problems that existence and development of human beings face. Wind power generation is adopted preferentially by every country in the world because of following advantages, including shorter construction time, flexible installed capacity, not pollute the environment and not consume any fuel. Wind power gearbox is the most important but the most fragile component in wind turbine mechanical transmission system. And it plays the role of increasing speed and reducing torque. In addition, the design rationality of wind power gearbox affects the normal operation of fans seriously. Our country has become a country which has the most wind power installed capacities in the world. So, China is worthy of the name of the wind power country, but not a power country. With developed countries, there is a certain gap in this area of wind power equipment manufacture. The designing and manufacturing technology of wind power gearbox has been regarded as one of the main bottlenecks constraining wind power manufacturing development. And the failure rate of domestically produced wind power gearbox remains stubbornly high. Therefore, it is meaningful to strengthen design and research of wind power gearbox for improving healthy development of wind power manufacturing.
     This paper takes megawatt wind power gear box of TY type as research subject. To begin with, dynamics simulation analysis research is conducted. Then, the improvement methods of potential weakness are put forward based on analysis results. At last, resonance analysis of the whole wind power gear box system is carried out. The main research contents and results are shown as follows.
     1) Through conducting analysis of gearbox structure in detail, and by comparing with mainstream model, the main difference of TY type is in the way of load average distribution. The first stage adopts floating load average distribution of sun gear while the second stage adopts floating load average distribution of planetary carrier.
     2) The load applied on wind power gear box is analyzed, and treatment methods of alternating load is discussed. In addition, equivalent treatment of actual alternating load is conducted.
     3) Taking influence of structure system into consideration, rigid flexible coupling TY type virtual prototype of wind power gearbox is established, and realizes united simulation of Pro/E, Hypermesh and Romax Designer. Strength analysis of imported components is conducted by the finite element method. At the same time, on the basis of what has done as above, it can be easily to test whether the imported components are taking part in system transmission.
     4) Considering impact loads generated by turbulence and emergency brake, steady-state analysis, which is under multiple load conditions, of transmission system in TY-1wind power gear box, is carried out. Four weakness parts are found through analysis, including two bearings in high speed and upper wind, input solar wheel and output pinion in high speed. Through analysis, it can be discovered that dynamic bearing capacity of high speed axis, which is in high speed and upper wind, is not enough, and edge load is applied to low speed axis, which is in high speed. Contact fatigue damage of fault gear is serious. Because of meshing dislocation, local stress is bigger, and load distribution of tooth surface is uneven. Therefore, fatigue pitting is easily generating on tooth surface. Besides, impact load increases fatigue damage of components, and reduces components life. For this reason, bearing on high speed axis, which is in high speed and upper wind, is changed into bearing with a high dynamic bearing capacity. And the fixed-floating supporting way of the low speed axis is changed into fixed supporting way at both ends. Bearings life meet the design requirements, and at the same time, free end deformation of low speed axis and influence of second grade gear transmission are reduced. Furthermore, through shape modification, it not only improves uneven phenomenon of tooth surface load distribution due to meshing dislocation, but also reduces gear transmission error and enhances gear transmission dynamic characteristics.
     5) Through resonance analysis of virtual prototype in TY wind power gear box, potential resonance response points are found. By using Romax power solution module, the first forty order nature frequency and vibration mode are solved. The resonance analysis of gear transmission system is conducted through Campbell graph, and ten potential vibration response points, which are under the function of characteristic frequency system, can be found out. Especially five, eleven, twenty-four order natural frequencies have fallen into the main operation area of wind turbine.Through analyzing the vibration mode of resonance point, twist and radial shifting of gears are caused in these resonance points.
引文
[1]高虹,张爱黎.新型能源技术与应用[M].北京:国防工业出版社,2007:1-3.
    [2]张志英,赵萍,李银凤等.风能与风力发电技术[M].北京:化学工业出版社,2010:1.
    [3]Global Wind Energy Outlook 2011 [R]. Global Wind Energy Council,2011:10.
    [4]李俊峰.2008中国风电发展报告[M].北京:中国环境科学出版社,2008:8-9.
    [5]中国风能协会.2011年中国风电装机容量统计[R].中国风能协会,2012:1-5.
    [6]钱伯章.风能技术与应用[M].北京:科学出版社,2010:72-75.
    [7]吴佳梁,李成锋.海上风力发电技术[M].北京:化学工业出版社,2010:23-26.
    [8]Eize Vries. Developments and Trends In Wind Turbines[J]. Renewable Energy World,2002,5(4): 62-71.
    [9]王超,张怀宇,王新慧等.风力发电技术及其发展方向[J].电站系统工程,2006(2):11-13.
    [10]周燕莉.风力发电的现状与发展趋势[J].甘肃科技,2008,24(3):9-11.
    [11]Facing up to the Gearbox Challenge:A survey of gearbox failure and collected industry Knowledge[J]. Wind Power Monthly,2005,21(11).
    [12]AGMA. Standard for Design and Specification of Gearbox for Wind Turbine [S]. ANSI/AGMA/AWEA 6006-A03,2003: 10.
    [13]中国船级社.风力发电机组规范[M].北京:人民交通出版社,2008:78-83.
    [14]王碧石.1.5MW风电机组齿轮箱关键部件的静力与疲劳寿命分析[D].宁夏:宁夏大学,2009.
    [15]李润芳.齿轮系统动力学——振动、冲击、噪声[M].重庆:重庆大学,1997:23-28.
    [16]Kahraman A, Blankenship G W. Planet mesh phasing in epicyclic gear sets [J]. Proc of International Gearing Conference Newcastle, UK,1994:99-104.
    [17]Kahraman A. Load sharing characteristics of planetary transmissions [J]. Mechanism and Machine Theory,1994,29(8):1151-1165.
    [18]Velex P, Flamand L. Dynamic response of planetary trains to mesh parametric excitations [J]. Journal of Mechanical Design, Transactions of the ASME,1996,118(3):7-14.
    [19]张建云,阮忠唐,丘大谋.2K-H型行星齿轮减速器的动态特性分析[J].西安工业大学学报,1997,17(1):83-86.
    [20]J.Lin, R.G.Parker. Structured vibration characteristics of planetary gears with unequally spaced planets [J]. Journal of Sound and Vibration,2000,233(5):921-928.
    [21]孙涛,沈允文,孙智民等.行星齿轮传动非线性动力学方程求解与动态特性分析[J].机械工程学报,2002,38(3):11-15.
    [22]Yuksel C, Kahraman A. Dynamic tooth loads of planetary gears sets having tooth profile wear[J]. Mechanisms and Machine Theory,2004(39):695-715.
    [23]Vijaya Kumar Ambarisha, R.G.Parker. Nonlinear dynamics of planetary gears using analytical and finite element models[J]. Journal of Sound and Vibration,2007,302(1):577-595.
    [24]柴少彪.重型载货汽车行星齿轮轮边减速器动力学性能分析与研究[D].太原:太原理工大学,2010.
    [25]A Heege. Computation of Dynamic Loads in Wind Turbine Power Trains[J]. DEWI Magazine, 2003(8):59-64.
    [26]RAY J.HICKS MBE. Optimized Gearbox Design For Modern Wind Turbine[J].2004: NREL/CP-500-38126
    [27]S.Y.Poon. Design Considerations of Planetary System for Transmission Error Predieition[J]. UK: Romax Technology Limited,2006:20-27.
    [28]董进朝.大型风电齿轮箱关键设计技术研究[D].郑州:机械科学研究总院,2007.
    [29]张立勇.大型风电齿轮箱均载性能研究及优化[D].郑州:机械科学研究总院,2009.
    [30]赵飞.风力发电齿轮箱非线性耦合动态特性研究[D].大连:大连理工大学,2010.
    [31]梁小艳.变桨矩垂直轴风力机总体设计方案研究[D].北京:华北电力大学,2008.
    [32]赵琴.多兆瓦级风力发电机行星齿轮箱的研究和行星齿轮的有限元分析[D].新疆:新疆农业大学,2009.
    [33]陆俊华,李斌,朱如鹏.行星齿轮传动静力学均载分析[J].机械科学与技术,2005(06):21-24.
    [34]靳艳丽.风电行星传动系统的均载与浮动构件的强度研究[D].西安:西安理工大学,2008.
    [35]柯伟.风力发电机组传动系统性能研究[D].北京:华北电力大学,2008.
    [36]Wrigth AD, Balas MJ. Design of control to alternate loads in the controls advanced research turbine[J]. Sol energy Eng 2003,125(4):396-401.
    [37]胡伟辉,林胜,秦中正等.大功率风力发电机组齿轮箱减振支承的结构特点与应用[J].机械,2011,36(4):74-77.
    [38]张立勇,王长路,刘法根.风力发电及风电齿轮箱概述[J].机械传动,2010,32(6):1-4.
    [39]顾海港、林勇刚、李伟等.基于变桨距风力机半物理实验台齿轮箱设计优化[J].农业机械学报, 2006,37(2):150-153
    [40]谭援强,左晃,张跃春等.多级多工况传动载荷处理方法及应用[J].机械强度,2011,33(6):932-938.
    [41]杨绍波.兆瓦级以上风电齿轮箱传动系统的结构与性能研究[D].成都:西华大学,2011.
    [42]王建军,李其汉,李润方.齿轮系统非线性振动研究进展[J].力学进展,2005,5(1):47-51.
    [43]英国Romax科技公司.风电机组齿轮箱传动[J].技术培训教材,2008.
    [44]张红磊.大型风电机组齿轮箱疲劳特性数值模拟[D].北京:华北电力大学,2009.
    [45]于开平.HyperMesh从入门到精通[M],北京:科学出版社,2005.
    [46]胡晓阳.浅谈金属材料疲劳断裂现象及在生产中的应用[J].机械管理开发,2011,13(5):93-94.
    [47]杨晓华,姚卫星,段成美.确定性疲劳累积损伤理论进展[J].中国工程科学,2003,5(4):81-87.
    [48]时轶.风力发电机组齿轮箱认证中的齿轮分析[J].中国船检,2010:73-75.
    [49]杨洁,张晓东.滚动轴承寿命计算方法的分析与应用[J].石油机械,2004,32(5):27-29.
    [50]杨晓蔚.滚动轴承疲劳寿命威布尔分布三参数的研究[D].合肥:合肥工业大学,2003.
    [51]吴强,张妤,宣安光.风电主齿轮箱技术规范标准化剖析[J].电气制造,2010(03):44-45.
    [52]AGMA6006-A03. Standard for Design and Specification of Gearboxes for Wind Turbines[S],2003: 82-90.
    [53]武志斐.基于虚拟样机技术的齿轮系统动力学分析[D].太原:太原理工大学,2008.
    [54]尚振国,王华.宽斜齿轮修形有限元分析[J].农业机械学报,2009,40(02):214-219.
    [55]高学敏.风力发电机组传动系统研究[D].北京:华北电力大学,2007.
    [56]梁君,赵登峰.模态分析方法综述[J].现代制造工程,2006,(08):]39-141.
    [57]黄宜森,顾命,刘松超.1.5MW低风速风力发电机组主传动系统设计及动力学分析[J].可再生能源,2012,30(01):21-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700