高柔结构质量阻尼器振动控制应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高柔建筑结构周期较大,风荷载效应明显,结构舒适性和安全性需特别关注,质量阻尼器是减小该类结构风致振动的有效措施。世界上已有较多建筑采用质量阻尼器来减少风荷载和地震作用等多种激励下的振动。然而,在实际应用中,被动、半主动和主动质量阻尼器均存在若干关键问题需要研究,如时滞、控制算法等。为促进质量阻尼器振动控制技术的进一步发展和应用,综合质量阻尼器在实际应用中的具体问题,从被动、半主动和主动三个方面系统地研究了质量阻尼器振动控制的理论与应用,为质量阻尼器的具体实施提供了理论依据,主要内容包括以下几个方面:
     (1)考虑地震激励作用,基于相对能量公式,研究了TMD对系统各种能量的控制效果,并考虑TMD子结构参数摄动,探讨了TMD控制系统各种能量谱的变化规律。研究结果表明,荷载激励频谱成份对SDOF-TMD控制系统能量的控制效果有较大影响,在荷载主要频率成份段,TMD控制系统能量随子结构参数摄动变化规律明显。
     (2)针对最优调谐质量阻尼器在风荷载激励下行程过大的问题,提出了离位阻尼和开关阻尼两种限位振动控制策略。考虑限位间距和限位阻尼参数的变化,以广州新电视塔为分析模型,研究了两种限位阻尼控制策略下的结构位移和加速度响应控制效果变化规律。研究结果表明,开关阻尼限位的控制效果对间距更为敏感,离位阻尼限位控制对加速度峰值有更好的控制效果,两种阻尼限位控制策略均能在结构响应控制效果损失较小的情况下限制更大的TMD摆幅。
     (3)针对一类密频结构响应中多阶频率占主要成分的振动控制问题,提出了风振激励下基于小波频率识别的半主动可调调谐质量阻尼器振动控制方法。以深圳梧桐山电视塔作为研究对象进行了仿真分析,结果表明,该方法相比经典TMD振动控制,能控制更多的结构频率,控制效果更好,在结构刚度发生变化时也能取得较好的控制效果。
     (4)针对混合质量阻尼器控制器时滞的问题,建立了单自由度结构考虑时滞影响的HMD控制系统基本特性与时滞相关的六次超越特征方程,得到了系统各阶频率与时滞的数值变化关系,研究了HMD控制系统在时滞影响下的失稳机理。研究结果表明,HMD控制系统中AMD的设计频率和阻尼对控制系统的时滞有较大影响,是决定系统最大允许时滞的主要因素;过大的时滞将率先激起控制系统高阶频率的高阶负阻尼,且其失稳破坏机理为驱动力高频强迫振动引起的失稳。提出了HMD控制系统基于模糊自适应调节的滑模变结构时滞补偿控制方法,并考虑地震作用和风荷载激励,以广州新电视塔为分析模型,论证该算法时滞补偿控制的有效性。
     (5)研究了HMD控制系统最优时滞补偿控制算法,对该最优时滞补偿控制算法的时滞鲁棒性进行了评估。设计了主动控制试验模型,选取直线电机作为AMD的驱动设备,进行了HMD控制系统最优补偿控制的试验研究,从试验上对比研究了地震激励下HMD最优时滞补偿和TMD的控制效果。试验结果表明,HMD系统最优时滞补偿算法控制效果较好且易实现,HMD能取得比TMD更好的控制效果。
     (6)提出了高柔结构主动质量阻尼器振动控制设计的通用设计方法,以深圳京基金融中心为分析对象,考虑模型试验横风荷载和脉动风荷载激励,选取极点配置控制算法,按照所提出的设计步骤详细地研究了该结构AMD振动控制设计。结果表明,在不同风荷载激励下,AMD均能有效控制结构响应。进一步结合该结构的空间布置和控制指标要求,提出了基于新型滚珠丝杠旋转螺杆驱动的AMD振动控制系统实施方案。
The common characteristics of high-flexible buildings are that it has long fundamental period and the vibration response is mainly controlled with wind excitation. It is effective for mass dampers to reduce the high-flexible structural vibration induced with wind. The wordwide implementation of the mass dampers has been improved rapidely, especially more and more domastic high-flexbile buildings have been and to be equiped with mass dampers, however, there still are some key problems to be researched for the Pass/SATMD/Active mass dampers for applications and for improving the structural comfortability and safety. In order to consider the detailed problems and facilitate the applications of the mass dampers the mass damper theory and application have been studied which support the mass damper design, the main contents are following:
     (1) Considering the earthquake excitations and based on the relative energy formulars, the system energy control effect and the energy spectrum of TMD control system has been studied. The results show that the main frequency spectrum of load excitations influences the control system energy response and the variation rules of TMD control system energy response is obvious as the TMD parameters changes when the structure frequency is close to the load main frequency.
     (2) The position-off and On-Off damper position-limited control strategies are proposed to limit the maxium displacement of thd moving mass for TMD. The variation rules of the structural displacement and acceleration response are researched as the position-limited and changeable damper parameter adaptive based on the analysis model of Guangzhou New TV Tower. The results show that the control effect of position-limited On-Off damper is sensitive to the limited space, the control effect of the position-off damper is much better for the structural acceleration reponse, moreover, the movement space for moving mass of TMD can be limited as expected with the less loss of the control effect for the main structural response based on the two control strategies.
     (3) Considering the vibration control problem for the class of close frequency structures that the several frequencies are dominant of the structural reponse, the semi-tunalbe TMD vibration control method is proposed with the wavelet time-frequency analysis identify technology based the TMD basic principle. The simulating analysis is conducted based on the Shenzhen Wutongshan TV Tower. It shows that it can control the several frequencies of the structure at the same time and gets much better control effect than the classical TMD and it is effective even as the structural stiffness changed range at±15%.
     (4) For the HMD controller time-delay problm, the six order transcendental proper equation of SDOF-HMD time-delay control system is estabilished. The proper equation is solved and the numerical relationship of structural frequency and damping ration are obtained, moreover, the nonstablity reason is found that the large time-delay will cause the structural high-frequency nonstable. Furthermore, the HMD time-delay compensation control method of fuzzy adaptive adjusting siliding is proposed. Considering the Guangzhou New TV Tower as the analysis model, the method is validated to be effective.
     (5) The algorithm of optimal time-delay compensation control of HMD control system is proposed which is proved to be robust for the time-delay occurrence with the numerical simulation. The optimal compensation method is proved from the active control test model with the linear motor as the driving device. The results show that the compensation control method is effective and easy to be implemented and the HMD control effect is much bette than TMD under the earthquake excitations.
     (6) The general design method is proposed for mass damper vibration control of the high-flexible structures. Based on the real structure of Shenzhen Kingkey Finance Center, the AMD vibration control is designed according to the proposed general method with the pole assignment algorithm under the tested across wind load and simulating along fluctuating wind excitation. The results show that it is effective of the AMD to control the structural response under different wind load, furthermore, according the structural space condiction, the AMD control system implement plan is proposed by the new screw assembling driving devices.
引文
1欧进萍著.结构振动控制―主动、半主动和智能控制.科学出版社. 2003
    2李国强,陈素文,李杰,陆雪平.上海金茂大厦结构动力特性测试.建筑结构学报, 2000, 33(2):35-39
    3 M. Abe, Y. Fujino. Dynamic Characterization of Multiple Tuned Mass Dampers and Some Design Formulas. Earthquake Engineering and Structural Dynamics 1994,23:813–835
    4 G. Chen, J.N. Wu. Optimal Placement of Multiple Tune Mass Dampers for Seismic Structures. Journal of Structural Engineering Asce. 2001,127:1054–1062
    5 C. Li, Y. Liu. Further Characteristics for Multiple Tuned Mass Dampers. Journal of Structural Engineering Asce. 2002b,128:1362–1365
    6 A. Kareem, S. Kline. Performance of Multiple Mass Dampers Under Random Loading. Journal of Structural Engineering Asce. 1995,121:348–361
    7 A. J. Clark. Multiple Passive Tuned Mass Damper for Reducing Earthquake Induced Building Motion. Proc., 9th World Conf. on Earthquake Engrg.. 1988,5:779-784
    8 T. Igusa, K. Xu. Wide-band Response Characteristics of Multiple Subsystem with High Modal Density. 1n:Proceedings of the Second International Conference on Stochastic Structural Dynamics., Florida, U. S. A., 1990
    9 R.S. Jangid, T.K. Datta. Performance of Multiple Tuned Mass Dampers for Torsionally Coupled System. Earthquake Engineering and Structural Dynamics, 1997, 26:307-317
    10 Rahul Rana, T. T. Soong. Parametric Study and Simplified Design of Tuned Mass Dampers. Engineering Structure. 1998, 20(3):193-204
    11 R.S. Jangid. Optimum Multiple Tuned Mass Dampers for Base-excited Undamped System. Earthquake Engineering and Structural Dynamics, 1999, 28:1041-1049
    12 W. E. Schmitendorf. Designing Tuned Mass Dampers Via Static Output Feedback:a Numerical Approach. Earthquake Engineering and Structural Dynamics, 2000, Vo1(29):127-137
    13 H. Yamaguchi, N. Harnpornchai. Fundamental Characteristics of Multiple Tuned Mass Dampers for Suppressing Harmonically Forced Oscillations. Earthquake Engineering and Structural Dynamics, 1993, 22:51-62
    14 M. Abe, Y. Fujino. Dynamic Characteristics of Multiple Tuned Mass Dampers and Some Design Formulas. Earthquake Engineering and Structural Dynamics, 1994, 23:813-835
    15 R.S. Jangid. Dynamic Characteristics of Structures with Mul-Tiple Tuned Mass Dampers. Structural Engineering and Mechanics, 1995, 3:497-509
    16 A. Kareem, S. Kline. Performance of Multiple Mass Dampers under Random Loading. Journal of Structural Engineering, Asce, 1995, 121:348-361
    17 Ahsan Kareem. Modelling of Base-isolated Buildings with Passive Dampers under Winds. Journal of Wind Engineering and Industrial Aerodynamics, 1997, Vol (72):323- 333
    18 M. Setareh. Use of the Doubly-tuned Mass Dampers for Passive Vibration Control. Proc., First World Conf on Struct, Control, 1994,1, Wp4:12-2l
    19 L. Zuo and S. A. Nayfeh. Minimax Optimization of MDOF Tuned-mass Dampers. Journal of Sound and Vibration. 2003, 1-22
    20 Jingning Wu and Genda Chen. Optimization of Multiple Tuned Mass Dampers for Seismic Response Reduction. Proceeding of the American Control Conference, Chicago, Lllinonis, June. 2000, 519-523
    21 Jingning Wu, Genda Chen. Optimal Mass Distribution of Multuple Tuned Mass Dampers
    22张旭升,王肇民.钢结构电视塔的MTMD风振控制研究及设计.计算力学学报, 1998,15(1):101-107
    23张丹.随机风荷载作用下高耸结构的MTMD控制系统的研究.硕士学位论文. 2002
    24 Chunxiang Li. Performance of Multiple Tuned Mass Dampers for Attenuating Undesirable Oscillations of Structures under the Ground Acceleration. Earthquake Engineering and Structural Dynamics, 2000, 29:1405-1421
    25郑罡,高赞明,倪一清.高层建筑MTMD风振控制的参数优化.振动与冲击. 2004,23(3):117-121
    26 Chunxiang Li. Optimum Multiple Tuned Mass Dampers for Structures under the Ground Acceleration Based on DDMF And ADMF. Earthquake Engineering And Structural, Dynamics, 2002, 31:897-919
    27涂文戈,邹银生. MTMD对建筑结构多模态控制的减震分析.地震工程与工程振动. 2003,23(5):174-179
    28 Chien-liang Lee, Yung-tsang Chen, Lap-loi Chung and Yen-po Wang. Optimal Design Theories and Applications of Tuned Mass Dampers. Engineering Structure. 2006, 28:43-53
    29 Y.L. Xu, J. Teng. Optimum Design of Active/Passive Control Devices for Tall Buildings Under Earthquake Excitation. Structural Design of Tall Buildings. 2002, 11(2):109-127
    30滕军.相邻结构间控制器位置及控制律的降阶优化方法研究.建筑结构学报. 2003,24(4):17-24
    31胡冗冗,王亚勇.地震动瞬时能量与结构最大位移反应关系研究.建筑结构学报.2000,21(2):71-76
    32程光煜,叶列平.弹塑性sdof系统的地震输入能量谱.工程力学,2008,25(2):28-39
    33肖明葵,刘纲,白绍良.基于能量反应的地震动输入选择方法讨论.世界地震工程.2006,22(3):89-94
    34 K. K. F. Wong and Y. L. Chee. Energy Dissipation of Tuned Mass Dampers During Earthquake Excitations. the Structural Design of Tall and Special Buildings. 2004,13:105–121
    35项海帆,瞿伟廉.高层建筑风振控制基于规范的实用设计方法.振动工程学报. 1999,12(2):151-156
    36李春祥,熊学玉,胡俊生. TMD高层钢结构系统按规范抗风设计方法.工业建筑. 2000,30(4):1-4
    37李春祥,熊学玉.高层钢结构TMDS风振舒适度控制最优参数与简化设计.振动与冲击. 2002.21(2):86-92.
    38龙复兴,张旭,顾平,姚进. TMD结构系统的按规范抗震设计方法.哈尔滨建筑大学学报. 1997,30(3):1-6
    39欧进萍,王永富.设置TMD/TLD控制系统的高层建筑风振分析与设计方法.地震工程与工程振动. 1994,14(2):61-75
    40瞿伟廉,陶牟华, C. C. Chang.五种被动动力减振器对高层建筑脉动风振反应控制的实用设计方法.建筑结构学报. 2001,22(2):29-35
    41吕明云,瞿伟廉.非线性被动动力减振器对高耸结构风振控制的实用设计方法.振动与冲击. 2004, 23(1):27-33
    42 G.W. Housner, L.A. Bergman, T.K. Caughey, A.G. Chassiakos, R.O. Claus, S.F. Masri, E. Skelton, T.T. Soong, , B.F. Spencer, J.T.P. Yao. Structural Control: Past, Present, and Future. Journal of Engineering Mechanics Asce 1997,123: 897–971
    43滕军,高峰,刘红军,李长朴,李洪峰.脉动风作用下电视塔桅杆结构TMD控制的惯性质量效应与位置优化.工程抗震与加固改造, 2006,28(1):35-40
    44 S.E. Semercigil, D. Lammers and Z. Ying. A New Tuned Vibration Absorber for Wide Band Excitations. Journal of Sound and Vibration, 1992, 156:445-459
    45 J.O. Aidanpaa and R. B. Gupta. Periodic and Chaotic Behaviour of a Threshold-Limited Two-Degree-Of-Freedom System, Journal of Sound and Vibration 1993, 165: 305-327.
    46 O. Janin and C.H. Lamarque. Comparison of Several Numerical Methods for Mechanical Systems with Impacts, International Journal for Numerical Methods In Engineering, 2001,51:1101-1132.
    47 S.F. Masri. Theory of the Dynamic Vibration Neutralizer with Motion-limiting Stops, Sme, Journal of Applied Mechanics, 1972, 6:563-568.
    48 S. Ema and E. Marui. a Fundamental Study on Impact Dampers, International Journal of Machine Tools and Manufacturers, 1996,36:293-306.
    49 F.S. Collette. a Combined Tuned Absorber and Pendulum Impact Damper under Random Excitation, Journal of Sound and Vibration, 1998,216:199-213.
    50 C.C. Cheng and J.Y. Wang. Free Vibration Analysis of a Resilient Impact Damper, International Journal Of Mechanical Science, 2003,45:589-604.
    51韩兵康,杜冬.结构半主动调谐质量阻尼器的发展.振动与冲击. 2004,24(2):46-50
    52李春祥,杜冬. MTMD对结构刚度和质量参数摄动的鲁棒性.振动与冲击, 2004,23(1):38-40
    53 J.C. Chang and T.T. Soong. Structural Control Using Active Tuned Mass Dampers. Journal of Engineering Mechanics Division, Asce 1980,106(6):1091-1098
    54 G.W. Housner, L.A. Bergman, T.K. Caughey, Et Al. Structural Control: Past, P Resent, and Future, Journal of Engineering Mechanics, Asce 1997,123(9):897-971
    55 K. Iwanami, K. Seto. Optimum Design of Dual Tunedmass Dampers and their Effectiveness. Proceedings of The Jsme( In Japanese) ,1984,50(449):44-52
    56杨润林,闫维明,周锡元.结构半主动控制研究中存在的若干问题.建筑结构学报. 2007,28(4):64-75
    57 S. Ohrui, N. Koshika, Et Al. Study in Pulse Type Seismic Controlby Initial Stoke Apended TMD. Proc. 1st Int. Conf. on Motionand Vibration Control, Yokohama, Japan, 1992:267-272
    58 M. Setareh. Application of Semi-active Tuned Mass Dampers to Base-excited Systems. Earthquake Engineering and Structural Dynamics, 2001,30:449-462
    59 M Abe. Semi-active Trned Mass Dampers Using Pules Control. Proc. 11th World Conf. on Earthquake Engineering.Acapulco,Mexico, 1996
    60 C.N. David, Lin Yingjie, Roberto. Semiactive Motion Controlusing Variable Stiffness. Journal of Structural Engineering,Asce 1994, 120(4):1291-1306
    61 D. Hrovat, P. Barak, M. Rabins. Semi-active Versus Passive Oractive Tuned Mass Dampers for Structural Control. Journal of Engineering Mechanics, Asce 1983, 109(3):691-705
    62 M. Setareh. Use of Semi-active Tuned Mass Dampers for Vibration Control of Force Excited Structures. Structural Engineering and Mechanics, 2001,11(4):341-356
    63 T. Pinkaew, Y. Fujino. Effectiveness of Semi-active Tuned Mass Dampers under Harmonic Excitation. Engineering Structures, 2001,23(7):850-856
    64欧进萍,隋莉莉.结构振动控制的半主动磁流变质量驱动器.地震工程与工程振动, 2002 ,22(2):108-114
    65黄斌,刘晖.智能TMD对高层建筑风振响应的抑制.振动与冲击, 2003,22(4):58-61
    66 R.L. Yang, X.Y. Zhou, X.H. Liu. Seismic Structural Control Using Semi-Active Tuned Mass Dampers. Earthquake Engineering and Engineering Vibration. Iem, 2002,1(1):111-118
    67 A.M. Kayania, D. Veneziano, J.M. Biggs. Seismic Effectivenessof Tuned Mass Dampers. Journal of Structural Division Asce.1981,107(8):1465-1484
    68 J.R. Sladek, R.E. Klingner. Effect of Tuned Mass Dampers Onseismic Response. Journal of Structural Engineering. Asce,1983,109(8):2004-2009
    69杨润林.结构模糊振动控制的研究.北京:中国建筑科学研究院,2002
    70 S. Ohrui, N. Koshika, Et Al. Study In Pulse Type Seismic Controlby Initial Stoke Apended TMD. Proc. 1st Int. Conf. on Motionand Vibration Control. Yokohama, Japan,1992:267-272
    71 M. Abé. Semi-active Tuned Mass Dampers for Seismic Protection of Civil Structures. Earthquake Engineering and Structural Dynamics. Asce,1996,25(7): 743-749
    72 N. Tanaka, Y. Kikushinma. Impact Vibration Control Using a Semi-Active Damper. Journal of Sound And Vibration. 1992,158(2):277-292
    73 T.K. Caughey. Musing on Structural Control. Proc. Int. Work-Shop on Struct. Control,1993:65-75
    74 C.A. Rogers. an Introduction to Intelligent Material Systemsand Structures. Intelligent Structures. Elsevier Applied Science, New York,1990,N.Y.3-41
    75 P.L. Walsh, J.S. Lamancusa. a Variable Stiffness Vibration Absorber for Minimization of Transient Vibrations. Journal of Soundand Vibration.1992,158 (2):195-211
    76 V. Nadathur, S. Nagarajaiah. Wind Response Control of Building With Variable Stiffness Tuned Mass Damper Using Empirical Mode Decomposition and Hilbert Transform. Journal of Engineering Mechanics, 2004,130(4):451-458
    77 F. Casciati, T. Yao. Comparison of Strategies for the Active Control of Civil Structurs. Proc., First Wordl Conf. Struct. Control. Los, Angeles, Usa,1994, Wa1:3-12
    78 S.F. Masri, G.A. Bekey. Optimum Pulse Control of Flexible Structures. Journal of Applied Mechanics. 1981,48:619-626
    79王伟,王焕定等.高阶单步时滞修正算法主动控制实验研究.地震工程与工程震动. 1999,19(3):106-108
    80 M. Hoshiya, Y. Saito. Predictive Control of SDOF System, Journal of Engineering Mechanics.1995,121(10):1049-1055
    81 J.N. Yang, Z. Li and S.Vongchavalitkul. Generalization of Optimal Control Theory: Linear and Nonlinear Control. Journal of Engineering Mechanics. 1994,120(2):266-283
    82 C.C. Chang, L.O. Yu. A Simple Optimal Pole Location Technique for Structural Control. Engineering Structures.1998,20:792-804
    83 A.E. Bryson, Y.C. Ho. Applied Optimal Control: Optimization, Estimation, and Control. New York:Hemisphere, 1975
    84 J.C.H. Chang, T.T. Soong. Structural Control Using Active Tuned Mass Dampers. Journal of Engineering Mechanics. Asce, 1980, 106(6):1092-1098
    85 J. Suhardjo, B.F. Spencer, A. Kareem. Active Control Of Wind Excited Buildings:a Frequency Domain Based Design Approach. Journal of Wind Engineering and Industrial Aerodynamite, 1992,41-44:1985-1996
    86 J. Suhardjo, B.F. Spencer, A. Kareem. Frequency Domain Optimal Control of Wind-excited Buildings. Journal of Engineering Mechanics, Asce, 1992, 118(2):2463-2481
    87 B.F. Spencer, J. Suhardjo, M.K. Sain. Frequency Domain Optimal Control Strategies for Aseismic Protection. Journal of Engineering Mechanics, Asce, 1994, 120(1):135-158
    88 C.C. Chang, H.T.Y. Yang. Control of Buildings Using Active Tuned Mass Dampers. Journal of Engineering Mechanics, Asce, 1995, 121(3):355-366
    89 S. Ankiredi, H.T.Y. Yang. Simple ATMD Control Methodology for Tall Buildings Subject to Wind Loads. Journal of Stw. Ctural Engineering, Asce, 1996, 122(1):83-91
    90李春祥.基于刚度-阻尼器ATMD模型的性能评价.振动与冲击, 2004,23(3):14-16
    91 J.C.H. Chang, T.T. Soong. Structural Control Using Active Tuned Mass Dampers. Journal of Engineering Mechanics Division.Asce 1980, 106(6):1091-1098
    92 R. Adhikari, H. Yamaguchi. Sliding Mode Control of Buildings With ATMD. Earthquake Engineering and Structural Dynamics,1997,26:409-422
    93 J.C. Wu, J.N. Yang, W.E. Schmitendor. Reduced-Order H∞and LQR Control for Wind-excited Tall Buildings. Engineering Structures,1998,20(3):222-236
    94 J.N. Yang, J.C. Wu, B. Samali, A.K. Agrawal. a Benchmark Problem for Response Control of Wind-Excited Tall Buildings. Http://Www. Eng. Uci. Edu/Jnyang /Benchmark.Htm, 1999
    95 S. Sarbjeet, T.K. Datta. Nonlinear Sliding Mode Control of Seismic Response of Building Frames. Journal of Engineering Mechanics. Asce, 2000,126(4):340-347
    96 I. Nagashima. Optimal Displacement Feedback Control Law for Active Tuned Mass Damper. Earthquake Engineering and Structural Dynamics. 2001,30:1221-1242
    97 M. Aldawod, B. Samali, F. Naghdy, K.C.S. Kwok. Active Control of Along Wind Response of Tall Building Using a Fuzzy Controller. Engineering Structures, 2001, 23:1512-1522
    98 I. Nagashima, Y. Shinozaki. Variable Gain Feedback Control Technique of Active Mass Damper and Its Application to Hybrid Structural Control. Earthquake Engineering and Structurnl Dynamics. 1997, 26:815-838
    99 Mohammed Aldawod, Bijan Samali, Fazel Naghdy, C.S. Kenny. Active Control of Along Wind Response of Tall Building Using a Fuzzy Controller. Engineering Structures. 2001,23:1512–1522
    100 Mohammed Aldawod, Bijan Samali, Fazel Naghdy, C. S. Kenny. Active Control of Cross Wind Response of Tall Building Using a Fuzzy Controller. Journal of Engineering Mechanics, 2004,130(4).
    101 M. Battaini, F. Casciati and L. Faravelli. Fuzzy Control of Structural Vibration. an Active Mass System Driven by a Fuzzy Controller. 1998, 27:1267-1276.
    102 A. S. Ahlawat and A. Ramaswamy. Multi-Objective Optimal Design of Flc Driven Hybrid Mass Damper for Seismically Excited Structures. Journal of Engineering Mechanics. 2005, 131(5):424-430.
    103 A. S. Ahlawat and A. Ramaswamy. Multiobjective Optimal Fuzzy Logic Control System for Response Control of Wind-Excited Tall Buildings. Journal of Engineering Mechanics. 2004, 130(4):524-530.
    104 A. S. Ahlawat and A. Ramaswamy. Multiobjective Optimal Flc Driven HybridMass Damper System for Torsionally Coupled, Seismically Excited Structures. Earthquake Engineering snd Structural Dynamics. 2002,31:2121–2139
    105张顺宝,程文襄,李爱群,蔡丹绎.南京电视塔风振的神经网络预测控制.特种结构. 2002,3:31-33
    106李宏男,金峤.遗传BP神经网络主动AMD对偏心结构的减震控制.地震工程与工程振动. 2003,23(2):134-142
    107 Gang Mei, Ahsan Kareem and Jeffrey C. Kantor. Model Predictive Control of Structures under Earthquakes Using Acceleration Feedback. Journal of Engineering Mechanics. 2002,128(5):574-585
    108 G. Song. Et Al. Robust Hinfinity Control for Aseismic Structures with Uncertainties in Model Patameters. Earthquake Engineering and Engineering Vibration.2007,6(4):409-416
    109 R. Guclu And A. Sertbas. Evaluation of Sliding Mode and Propotional-Integral-Derivative Controlled Structures with an Active Mass Damper. Journal of Vibration and Control.2005,11(3):397-406
    110李芦钰.结构非线性振动的职智能控制方法与试验研究.哈尔滨工业大学博士学位论文. 2008
    111 K. Gu, V.L. Kharitonov and J. Chen. Stability of Time Delay Systems. New York, Springer-Verlag, 2003
    112 T. Liu, Y.Z. Cai, D.Y. Gu. Et Al. New Modified Smith Predictor Scheme for Integrating and Unstable Processs with Time Delay. Ieee Proc. Control Theory Appl..2005,152(2):238-246
    113戴护军,徐鉴.时滞对于参数激励系统周期运动的影响.力学学报, 2004,25(3):69-76
    114 H.Y. Hu. Using Delayed State Feedback to Stabilize Periodic Motions of an Oscillator. Journal of Sound and Vibration,2004,275(3-5):1009-1025
    115 S.Y. Xu, L. James, C. W. Yang, Et Al. an LMI Approach to Guaranteed Cost Control for Uncertain Linear Neutral Delay Systems. International Journal of Robust and Nonlinear Control. 2003,13(1):35-53
    116 G.D. Hu, M. Liu. Stability Criteria of Linear Neutral Systems with Multiple Delays. Ieee, Trans. Autom. Control. 2007,52(3):720-724
    117 G.-Da. Hu, G.-Di Hu And X.Zou. Stability of Linear Neutral Systems with Multiple Delays: Boundary Criteria. Applied Mathematics and Computation. 2004,148(3):707-715
    118 J.N. Yang, A. Akbarpour, G. Askar. Effect of Time Delay on Control of Seismic-Excited Building. Journal of Structural Engineering Asce. 1990, 116(10):2801-2814
    119 C.C. Lin, J.F. Sheu, S.Y. Chu, L.L. Chung. Time-Delay Effect and Its Solution for Optimal Output Feedback Control of Structures. Earthquake Engineering and Structural Dynamics, 1996, 25:547-559
    120 A.K. Agrawal, J.N. Yang. Compensation of Time-Delay for Control of Civil Engineering Structures. Earthquake Engineering and Structural Dynamics. 2000(29):37-62.
    121 L.L. Chung, A.M. Reinhorn, T.T. Soong. Experiments on Active Control of Seismic Structures. Asce, Journal of Engineering Mechanics. 1988,114(2):241-256
    122 S. Mcgreevy, T.T. Soong, A.M. Reinhorn. an Experimental Study of Time-Delay Compensation in Active Structural Control. Proceedings of Sem 6th Modal Analysis Conference, 1987(2):733-739
    123 L.L. Chung, C.C. Lin, K.H. Lu. Time-Delay Control of Structures. Earthquake Engineering and Structural Dynamics. 1995(24):687-701
    124 Cai Guoping, Huang Jinzhi. Optimal Control Method for Seismically Excited Building Structures with Time Delay In Control. Journal of Engineering Mechanics. Asce,2002,128(6):602-612
    125 A.K. Agrawal, J.N. Yang. Effect of Time-Delay on Stability and Performance of Actively Controlled Civil Engineering Structures. Earthquake Engineering and Structural Dynamics. 1997,26:1169–1185
    126李忠献,张伟,姜忻良,郑志杰高层建筑地震反应全反馈主动TMD控制理论研究.地震工程与工程振动. 1997,17(3):60-63
    127金峤,周晶.考虑控制延时的AMD对偏心结构离散变结构控制.哈尔滨工业大学学报. 2005,37(6):790-794
    128 A. Nishitani, Y. Inoue. Overview of The Application of Active/Semi-Active Control to Building Structures in Japan. Earthquake Engineering and Structural Dynamics, 2001,30:1565-1574
    129 S. Y. Chu, T. T. Soong, C. C. Lin and Y. Z. Chen. Time-Delay Effect and Compensation on Direct Output Feedback Controlled Mass Damper Systems. Earthquake Engineering and Structural Dynamics. 2002(31):121–137
    130潘颖,王超,蔡国平.地震作用下主动减震结构的时滞离散最优控制.工程力学. 2004,21(2):88-94
    131蔡国平,黄金枝.控制存在延时的建筑结构地震作用下的最优控制方法.应用力学学报. 2001,18(4):42-50
    132滕军著.结构振动控制的理论、技术和方法.北京,科学出版社, 2009
    133 L.L. Chung, A.M. Reinhorn And T.T. Soong. Experiments on Active Control of Seismic Structures. Asce, Journal of Engineering Mechanics. 1988,114:241-256
    134 L.L. Chung, R.C. Lin, T.T. Soong. Et Al. Experiments on Active Control for MDOF Seismic Structures. Asce, Journal of Engineering Mechanics. 1989, 115(8):1609-1627
    135 T.T. Soong, A.M. Reinhorn and J.N. Yang. Active Response Control of Building Structures under Seismic Excitation. Proceedings of 9th World Conference on Earthquake Engineering, Tokyo, Japan, 1988, 8:453-458
    136 T.T. Soong, A.M. Reinhorn and Y. P. Wang. Et Al. Full Scale Implementation of Active Control I: Design and Simulation. Journal of Engineering Mechanics. 1991, 117(11):3516-3536
    137 A.M. Reinhorn, T.T. Soong. Full Scale Implementation of Active Control Ii: Installation and Performance. Journal of Engineering Mechanics. 1993, 119(6):1935-1960
    138 S.J. Dyke, B.F. Spencer. Implementation of an Active Mass Driver Using Acceleration Feedback Control. Microcomputers In Civil Engineering: Special Issue on Active And Hybrid Structural Control. 1996,11:305-323
    139 J.N. Yang, J.C. Wu. Control of Sliding-Isolated Building Using Sliding Mode Control. Journal Of Structural Engineering. 1996,122(2):179-186
    140 C.H. Loh, P.Y. Lin And N.H. Chung. Experimental Verification of Building Control Using Active Bracing System. Earthquake Engineering and Structural Dynamics. 1999,28:1099-1119
    141 J.C. Wu. Experiment on a Full-Scale Building Model Using Modified Sliding Mode Control. Journal of Engineering Mechanics. 2003,129(4):363-372
    142 Mohammed Aldawod, Bijan Samali, and Jianchun Li. Experimental Verification of an Active Mass Driver System on a Five-storey Model Using a Fuzzy Controller. Structural Control and Health Monitoring. 2006,13(5):917-943
    143宋根由.结构主动控制(AMD)系统试验分析.哈尔滨建筑大学博士学位论文. 1996
    144田石柱,刘季.结构模型的AMD主动控制试验.地震工程与工程振动. 1999, 19(4):90~94
    145欧进萍,王刚,田石柱.海洋平台结构振动的AMD主动控制试验研究.高技术通讯. 2002,10:85~90
    146张微敬,欧进萍.基于单片机模糊控制器的AMD主动控制试验研究.建筑结构学报. 2006, 27(1):37-42
    147张春魏.结构振动的电磁驱动AMD控制系统及其相关理论与试验研究.哈尔滨工业大学博士学位论文. 2005
    148 B.F. Spencer And S. Nagarajaiah. State of the Art of Structural Control. Journal of Structural Engineering. 2003,129(7):845-856
    149周福霖.工程结构减振控制.北京,地震出版社, 1997
    150余钱华,胡世德,范立础.桥梁结构MTMD被动控制机理及试验.中国公路学报.2008,21(4):50-55
    151 L.K. Tracy. Full-scale Measurements and System Identification A Time-Frequency Perspective. Doctor Article of the University of Notre Dame. 2003.
    152 J. Lardies, M.N. Ta. Berthillier Modal Parameter Estimation Based on The Wavelet Transform of Output Data. Archive of Applied Mechanics. 2004, 73:718–733.
    153 Ya-lan Xu, Jian-jun Chen and Tai-rin Hu. Modal Parameters Identification Using the Wavelet Transform. Journal of Xidian University. 2004.31(2):281-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700